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Photonic bands of metallic systems. I. Principle of calculation and accuracy
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The dispersion relation, the field distribution, and the lifetime of the radiational eigenmodes in two-
dimensional photonic crystals composed of metallic cylinders were calculated for theE polarization by means
of the numerical simulation of the dipole radiation based on the finite-difference time-domain~FDTD! method.
The convergence and the central processing unit time were compared with the plane-wave expansion method.
The opaque frequency ranges in the transmission spectra calculated by the method of Pendry and MacKinnon
corresponded quite well to the band gaps and the antisymmetric modes found in the photonic band diagram.
The dispersion relation and the symmetry of the eigenmodes obtained by the numerical calculation were
consistent with the prediction of the group theory and the analytical expression by the long-wavelength
approximation.
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I. INTRODUCTION

The dispersion relation and the density of states of
radiation field in photonic crystals are substantially differe
from those in free space.1–4 When their crystal structure i
appropriately designed and the amount of the spatial mo
lation of their dielectric constant is large enough, frequen
ranges called photonic band gaps can appear in which
electromagnetic eigenmode is allowed to exist. Optical pr
erties of atoms and molecules embedded in such phot
crystals can also be quite different from those in free sp
or uniform materials. For example, if the transition fr
quency of the embedded atoms lies in the photonic band
no optical transition is allowed and spontaneous emissio
photons is completely forbidden. In the very beginning of t
extensive investigation of photonic crystals, Yablonovit
pointed out these types of drastic changes of the opt
properties and their possible application to light-emitti
devices.5

In most theoretical investigations reported so far, the
electric constants of the photonic crystals were assume
be independent of frequency. When we deal with transpa
materials whose optical transition frequencies are far fr
those of the relevant radiation field, this assumption is r
sonable. However, when we deal with materials whose re
0163-1829/2001/64~4!/045116~8!/$20.00 64 0451
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nant polarization plays an important role in their optical r
sponse, we cannot neglect the frequency dependence of
dielectric constants.

To our knowledge, a small number of numerical wor
have been reported related to this problem. Kuzmiak a
co-workers treated two-dimensional photonic crystals co
posed of metallic cylinders with a dielectric constant of t
Drude type by means of the plane-wave expans
method.6–8 Nojima calculated the dispersion relation of e
citon polaritons in a one-dimensional photonic crystal.9 The
calculation was performed by searching the zero points
the determinant of the coefficients obtained by the pla
wave expansion. Yannopapaset al. reported the dispersion
relation and transmission spectra of fcc lattices compose
metallic spheres.10 The calculation was performed by th
transfer matrix method based on the vectorial Korring
Kohn-Rostoker~KKR! formalism.11,12 In this case, spherica
waves were used as a basis set, and good numerical acc
was attained with a small number of spherical waves. T
same holds for a two-dimensional array of circular cylinde
since we may use cylindrical waves as the basis set.13 How-
ever, in general cases in which we cannot assume a sphe
or cylindrical symmetry for the components of the cryst
we have to apply a more general method such as the pl
wave expansion in spite of its slow convergence.
©2001 The American Physical Society16-1
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Since spheres and cylinders are the simplest structure
be analyzed, they have been treated by the plane-wave
pansion method as well. As Kuzmiaket al. reported for the
two-dimensional array of metallic cylinders, in contrast w
the frequency-independent case, the eigenvalue equation
isfied by the expansion coefficients is not linear withv2/c2,
wherev is the angular frequency of the radiation field andc
is the light velocity in free space. So they had to linearize
eigenvalue equation by taking a larger basis set, which
sulted in a heavier computational task. In the case of thE
polarization for which the electric field is parallel to the cy
inder axis and perpendicular to the two-dimensional pla
the linearization procedure needed triple plane waves. In
case of theH polarization for which the magnetic field i
parallel to the cylinder axis, quadruple plane waves w
necessary. Usually the central processing unit~CPU! time for
the diagonalization of a matrix is proportional to the cube
its dimension, and hence to the cube of the number of
plane waves. So the computaional task was 27 times hea
for the E polarization and 64 times heavier for theH polar-
ization than the frequency-independent case. Extensio
this method to three-dimensional systems and more com
cated systems such as those containing structural de
seems difficult, as a much larger number of plane waves
necessary for an accurate calculation.

One of the present authors and his collaborator repo
another method based on the numerical simulation of
dipole radiation by means of the finite-difference tim
domain ~FDTD! method.14 Originally, this method was ap
plied to the problem of point defects in a two-dimension
square crystal, and an excellent agreement between the
oretical calculation and the experimental observation w
shown.15 Later, it was applied to point defects in a hexagon
crystal,16 line defects in a square crystal,17 and the evaluation
of the quality factor in the presence of dielectric loss.18 In
this method, the electromagnetic field radiated by an os
lating point dipole is calculated as a function of the oscil
tion frequency. The eigenfrequency is obtained as a re
nance frequency, i.e., as a peak frequency of the radia
spectrum. The emitted field at the resonance frequency g
the eigenfunction. The CPU time for this method is ess
tially proportional to the number of the representative poi
on the spatial mesh used for the discretization of Maxwe
equations, which is in marked contrast to the case of
plane-wave expansion method for which the CPU time
proportional to thecubeof the number of the plane waves. I
addition, the FDTD algorithm is especially suitable for t
vector processing and parallel computing, and so, the C
time can be reduced greatly by using a computer with
vector processor or a parallel machine. Therefore, the
merical simulation of the dipole radiation is superior to t
plane-wave expansion method when large and/or com
cated systems are analyzed. For example, we can deal w
larger supercell than that usually assumed in the plane-w
expansion method when we calculate the eigenfrequen
and the eigenfunctions of localized defect modes. Thus
impurity-band effect can be eliminated.16 Three-dimensiona
systems can also betreated, as was shown by the exce
calculation by Hwanget al.19 The spatial symmetry of the
04511
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eigenmodes is rigorously taken into account as well by
posing an appropriate boundary condition when we solve
difference equations derived from Maxwell’s equations. T
lifetime of the eigenmodes can be obtained by evaluating
temporal decrease in the accumulated radiation energy
switching off the oscillation of the dipole.

In this study, we analyzed the radiation field in tw
dimensional metallic systems. The present work consist
two papers. This paper~Paper I! deals mainly with the prin-
ciple and accuracy of our numerical method. The conv
gence and the CPU time of our method will be compa
with the plane-wave expansion method. The dispersion r
tion, the field distribution, and the lifetime of the radiation
eigenmodes in two-dimensional square crystals compose
metallic cylinders calculated for theE polarization will be
presented and compared with the prediction of the gro
theory. The transmission spectra calculated by the metho
Pendry and MacKinnon20 will be compared with the disper
sion relation, and good correspondence between them wi
shown. In the following paper~Paper II!,21 we will deal with
theH polarization of the same system and show the prese
of eigenmodes with extremely small group velocites due
the localized nature of surface plasmons. This feature will
further clarified by comparing their eigenfrequencies a
eigenfunctions with the Mie resonance states for a sin
metallic cylinder.

II. THEORY

Let us explain our method here. We consider the radiat
process of an oscillating dipole moment that is embedde
the photonic crystal. We begin with the following two equ
tions ~MKS units!:

“3E~r ,t !52m0

]

]t
H~r ,t !, ~1!

“3H~r ,t !5
]

]t
$D0~r ,t !1Pd~r ,t !%, ~2!

whereE(r ,t), H(r ,t), and m0 denote the electric field, the
magnetic field, and the magnetic permeability of free spa
respectively. In Eq.~2!, Pd(r ,t) stands for the oscillating
dipole moment:

Pd~r ,t !5md~r2r0!exp~2 ivt !, ~3!

wherem and r0 are the magnitude and the position of th
dipole moment, andd is Dirac’s delta function.D0(r ,t) de-
notes the electric displacement due to the regular dielec
structure of the photonic crystal. It is generally given by t
convolution integral of the electric field and the dielectr
response functionF(r ,t):

D0~r ,t !5«0E
2`

`

dt8F~r ,t2t8!E~r ,t8!, ~4!
6-2
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where«0 is the permittivity of free space.F(r ,t) is given by
the Fourier transform of the dielectric constant«(r ,v),
which is now a function of frequency as well as the spa
coordinates:

F~r ,t !5
1

2pE2`

`

dv «~r ,v!exp~2 ivt !. ~5!

Note thatF(r ,t) should satisfy the causality, i.e.,

F~r ,t !50 for t,0, ~6!

which implies that«(r ,v) does not have a pole in the upp
half of the complexv plane.

In order to treat the particular problem discussed
Kuzmiak et al.,6–8 we consider a photonic crystal that co
tains metallic components and assume a dielectric cons
of the Drude type in the metal:

«m~r ,v!5«`F12
vp

2

~v1 id!~v1 ig!
G , ~7!

where«` is the dielectric constant at sufficiently high fre
quencies,vp is the plasma frequency,g is the relaxation
rate, andd is a positive infinitesimal. In Eq.~7!, we took into
account the imaginary part of the dielectric constant in or
to fulfill the Kramers-Kronig relation and hence the caus
ity. Then Eq.~5! leads to

F~r ,t !5«`d~ t !1
«`vp

2

g
@12exp~2gt !#u~ t !, ~8!

whereu(t) is a unit step function. From Eqs.~4! and~8!, we
obtain

1

«0

]

]t
D0~r ,t !5«`

]

]t
E~r ,t !1«`vp

2E
0

`

dt8e2gt8E~r ,t2t8!

~9!

in the metallic region. On the other hand, we assume that
dielectric constant is frequency independent outside
metal, i.e.,

«~r ,v!5«b~r !. ~10!

Thus we have

D0~r ,t !5«0«b~r !E~r ,t !. ~11!

In the FDTD calculation, we discretized Eqs.~1! and ~2!
to obtain difference equations,22 and solved the latter nu
merically with initial conditionsE50 andH50, and bound-
ary conditions

E~r1a,t !5exp~ ik•a!E~r ,t !, ~12!

H~r1a,t !5exp~ ik•a!H~r ,t !, ~13!

wherek is a wave vector in the first Brillouin zone anda is
the elementary lattice vector. The latter conditions extract
contribution to the radiated electromagnetic field from p
ticular eigenmodes with the specified wave vector. We
thus calculate the resonance frequency as a function ok,
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i.e., we can obtain the dispersion relation. By the bound
conditions, Eqs.~12! and~13!, it is enough to treat a unit cel
in the numerical calculation, and we do not need additio
boundary conditions such as the absorbing boundary co
tion, which is often necessary when we treat a finite volu
by the FDTD calculation.22 This fact resulted in a small CPU
time. The computation of the integral in the second term
the right-hand side of Eq.~9! may seem time-consuming at
first glance. But it is not, since the kernel has a simple for
When we denote the electric field at timet5pDt by E(p)(r ),
whereDt is the interval of the temporal mesh points andp is
an integer, the integral is approximated by

F(p)~r !5 (
q50

p

Dte2qgDtE(p2q)~r !. ~14!

F(p)(r ) can easily be calculated, since we have the follow
recursive equation:

F(p11)~r !5DtE(p11)~r !1e2gDtF(p)~r ! ~15!

with F(0)(r )50. So, the increase in the numerical task co
pared with the case of frequency-independent dielectric c
stants is not serious, and it is actually several tens of perc

In the next section, we will first present the band structu
of a three-dimensional simple cubic lattice composed of
electric spheres with a frequency-independent dielectric c
stant and compare the convergence and the CPU time
the case of the plane-wave expansion method. Here we d
with the frequency-independent case since the plane-w
expansion method is impractical for the frequency-depend
case. Next we will present the band structure and the fi
distribution of the two-dimensional square lattice compos
of metallic cylinders for theE polarization. We will show
that the eigenmodes for theE polarization have their replica
in free space, and the group-theoretical assignment of t
symmetries based on the reduction of the reducible repre
tations given by the linear combination of plane waves
free space is satisfactory. We will also show that the lon
wavelength approximation gives an appropriate descrip
of the band structure of the metallic system in the lo
frequency region.

Let us conclude this section by giving three remar
First, our method is not restricted to dielectric constants
the Drude type. If we would like to treat semiconductors,
example, we may assume the following dielectric consta

«s~v!5«`

vL
22v22 ivg

vT
22v22 ivg

, ~16!

wherevT (vL) is the transverse~longitudinal! exciton fre-
quency andg is the relaxation rate. In this case, the respon
function is given as follows:

F~ t !5«`d~ t !1 i«`

vL
22vT

2

2VT

3$e2(G1 iVT)t2e2(G2 iVT)t%u~ t !, ~17!

where
6-3
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G5
g

2
~18!

and

VT5AvT
22

g2

4
. ~19!

We can deal with other cases as long as the assu
frequency-dependent dielectric constant satisfies the ca
ity or the Kramers-Kronig relation.

Second, if thek vector in the first Brillouin zone chose
for the photonic band calculation has a certain symme
i.e., if the eigenmode fork should have a certain spatia
symmetry expected by the group theory, we may impose
additional boundary condition on the electromagnetic fie
which reduces the spatial region dealt with in the numer
calculation considerably and leads to the decrease in
CPU time.

Third, the present method can be extended to the case
the analytical form of the frequency-dependent dielec
constant is not known. This is a very important and practi
feature of the present method. For example, let us ass
that we know the values of the complex dielectric constan
certain frequencies by experimental observations. Thus
have a certain number of the pairs of the frequency and
complex dielectric constant,$v j ,« j%. The key idea is that the
use of the response function given in Eq.~4! is necessary to
describe the non-steady-state of the radiation field after
abrupt introduction of the oscillating dipole att50 and that
the radiation field after a long period that can be regarde
in a steady state is well described by the dielectric constan
the oscillation frequency alone. This implies that the cho
of the analytical form of the dielectric constant is not impo
tant when we calculate the radiation field at a given angu
frequencyv j and a given dielectric constant« j . For ex-
ample, by choosingvT , vL , «` , and g appropriately for
eachv j so that«s(v j )5« j , the radiation field in the realistic
system, which is not described by an analytical expressio
the dielectric constant, can be calculated by the pres
method.

As a demonstration of this remarkable feature, we cal
lated the eigenfrequencies of the metallic system descr
above by using the dielectric constant of a semicondu
given in Eq.~16!. For v j,vp , we denote

«m~v j !5« j5« j81 i« j9 . ~20!

We took

vT5
v j

A2
and vL5A3

2
v j . ~21!

From Eq.~16!, we have

g5
~« j81u« j u!vT

A2« j9
, ~22!
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«`5« j

2g21vT
2

2g22vT
2

. ~23!

By substituting these values in Eq.~17! for eachv j , we
calculated the spectra of the dipole radiation and obtained
resonance frequencies. Some results are listed in Tab
where the eigenfrequencies obtained by the metallic and
semiconductorlike dielectric constants are compared. A
clearly seen, the difference is amazingly small and less t
0.3% for this example. This is apparent evidence for the f
that we can extend our method to the case in which
analytical form of the dielectric constant is not known.

III. RESULTS AND DISCUSSION

Figure 1 shows the dispersion relation of the simple cu
lattice composed of a dielectric sphere with the dielec
constant of 13 at each lattice point. The ordinate denotes
normalized eigenfrequency, wherea andc denote the lattice
constant and the light velocity in free space, respective
The abscissa denotes the wave vector between theG point,
~0,0,0!, and X point, (p/a,0,0), in the first Brillouin zone.
The symmmetry of the magnetic field of each band is a
shown, which is an irreducible representation of theC4v
point group. The unit cell was divided into 80380380 parts
and one period of the oscillation was divided into 320 ste
in order to discretize Maxwell’s equations. The further d
crease of the size of the spatial and temporal meshes did
bring about an apparent change in the resonance freque
as will be shown later. The symmetries shown in this figu
were obtained by examining the field distributions of t
eigenmodes. They are consistent with the prediction of
group theory based on the reduction of the reducible rep
sentations given by the linear combination of plane wave
free space, which was described in detail in Ref. 23.

Figure 2 shows the convergence properties for the FD
and the plane-wave expansion methods,24 where the abscissa
denotes the cubic root of the number of the spatial me
A3 N, for the former and that of the basis plane waves,A3 M ,
for the latter. The eigenfrequencies were evaluated at
middle point between theG andX points. The eigenfrequen
cies obtained by the FDTD method are represented by s
circles, whereas those obtained by the plane-wave expan

TABLE I. Comparison between the eigen-angular-frequenc
of the lowest symmetric band on theD point calculated with the
metallic response function (M ), Eq. ~8!, and with that of the semi-
conductor (S), Eq. ~17!. The wave numberk and the angular fre-
quencyv are normalized with the lattice constanta and the light
velocity c. See text for details.

ka/2p va/2pc (M ) va/2pc ~S!

0.1 0.750 0.752
0.2 0.764 0.766
0.3 0.785 0.786
0.4 0.805 0.805
0.5 0.814 0.815
6-4
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method are represented by open circles. As we will see la
the plane-wave expansion method is impractical whenM is,
say, greater than 4000. Thus we plotted data obtained
M<4096 in Fig. 2. It is apparent that the convergence
va/2pc.0.4 is not satisfactory for the plane-wave expa
sion method even whenM54096. On the other hand, th
CPU time for the FDTD method is relatively small and t

FIG. 1. The dispersion relation for the three-dimensional sim
cubic lattice composed of a dielectric sphere at each lattice po
The ordinate denotes the normalized frequency wherea andc stand
for the lattice constant and the light velocity in free space, resp
tively. The abscissa denotes the wave vector,k. The dispersion
relation was calculated fork between theG point, (0,0,0), and the
X point, (p/a,0,0), in the first Brillouin zone. The symmetry o
each band for the magnetic field is also shown, which is an irred
ible representation of theC4v point group. The following param-
eters were assumed for the numerical calculation: the dielectric
stant of the spheres is 13.0, that of the background is 1.0; the
of the radius of the sphere to the lattice constant is 0.3:1.0.

FIG. 2. The convergence behavior of the FDTD method~solid
circles! and the plane-wave expansion method~open circles!. The
ordinate is the normalized frequency. The abscissa denotes th
bic root of the number of mesh pointsN or that of the plane waves
M. The same parameters as for Fig. 1 were used for nume
calculation.
04511
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eigenfrequencies can be calculated with very largeN. The
convergence is really satisfactory as shown in Fig. 2. T
CPU time for both methods is compared in Fig. 3. Since
CPU time depends on the source program, the compiler,
architecture of the computer, and so on, this figure should
considered to just give an estimation of the CPU time. Ho
ever, it is apparent that the FDTD method is much supe
than the plane-wave expansion method when we need a
rate calculation with largeN or M.

Next let us present the results for the metallic system
According to Kuzmiak et al.,6–8 we analyzed two-
dimensional photonic crystals composed of a square arra
metallic cylinders with a radiusr m . The following param-
eters were assumed:r m /a50.472~crystal 1! or 0.0564~crys-
tal 2!, «`51.0, vpa/2pc51.0, andg50.01vp , where a
denotes the lattice constant. We will restrict our discuss
as usual to the case that the wave vectork lies in the two-
dimensional (x-y) plane. In this case, Maxwell’s equation
are decoupled into two polarization components. One is
E polarization for which the electric field is perpendicular
the x-y plane and the other is theH polarization for which
the magnetic field is perpendicular to thex-y plane. We treat
the E polarization in this Paper. TheH polarization will be
treated in Paper II.

In the actual calculation, we discretized the wave equat
for Ez that was obtained from Eqs.~1! and~2! by eliminating
Hx andHy and solved it. This simplified treatment for theE
polarization did not reduce the accuracy of the numeri
calculation, since the wave equation forEz is not very sin-
gular due to the fact thatEz and its derivatives of the firs
order are continuous. The two-dimensional unit cell was
vided into 40340 parts for crystal 1 and 1203120 parts for
crystal 2, and one period of the oscillation was divided in
160 steps for crystal 1 and 480 steps for crystal 2 in orde
discretize the wave equation. The further decrease in the
of the spatial and temporal meshes did not bring about
apparent change in the resonance frequencies. The life
of the eigenmodes was evaluated by observing the temp

e
t.

c-

c-

n-
tio

cu-

al

FIG. 3. The CPU time necessary for the numerical calculat
for one wave vector in the first Brillouin zone as a function of t
number of the mesh pointsN or the number of the plane wavesM.
The supercomputer~Hitachi SR 8000! in Hokkaido University
Computing Center was used. In the numerical calculation, one n
that consisted of eight CPU’s was used with the FORTRAN
compiler that enabled parallel computing in the node.
6-5
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KAZUAKI SAKODA et al. PHYSICAL REVIEW B 64 045116
decrease in the accumulated electromagnetic energy
200 cycles of the oscillation of the dipole moment. The to
electromagnetic energy after switching off the oscillati
showed an exponential decay and we could obtain the
time easily.

The dispersion relation for crystal 1 thus obtained is p
sented in Fig. 4 where the symmetry of each eigenmod
also shown. In this figure, the number in parentheses is g
in order of the ascending frequency when there is more t
one mode of the same symmetry in the analyzed spe
region. The symmetry assignments are consistent with
prediction of the group theory that was obtained by the co
parison with the irreducible representations of the radiat
field in free space.25 This fact implies that the radiationa
eigenmodes for theE polarization in this frequency range a
essentially modified plane waves. Note that there is no eig
mode forva/2pc,0.745. We can show that this cutoff fre
quency is consistent with the long-wavelength approxim
tion of Maxwell’s equations. In this approximation, th
dispersion relation is given by

v2

c2
5

k2

«̄
, ~24!

where«̄ denotes the spatial average of the dielectric cons
and is given by

«̄;11~«`21! f 2
f «`vp

2

v2
. ~25!

FIG. 4. The dispersion relation of the two-dimensional squ
photonic crystal composed of metallic cylinders~crystal 1! for theE
polarization calculated by means of the numerical simulation of
dipole radiation. The ordinate is the normalized frequency wherev,
a, andc stand for the angular frequency of the radiation field, t
lattice constant of the crystal, and the light velocity in free spa
According to the previous calculation by Kuzmiaket al. ~Refs.
6–8!, the following parameters were used for numerical calculati
r m /a50.472 (f 50.7), wherer m denotes the radius of the metall
cylinders,«`51.0, vpa/2pc51.0, andg50.01vp in Eq. ~7!. The
dispersion relation was drawn for highly symmetric points in t
first Brillouin zone of the two-dimensional crystal:G(0,0),
X(p/a,0), andM (p/a,p/a). The spatial symmetry of each eigen
mode for Ez is also shown in this figure, where the number
parentheses is given in order of the ascending frequency when
is more than one mode of the same symmetry in the analyzed
quency region.
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In this equation,f is the filling factor of the metallic cylin-
ders: f 50.7 for crystal 1 andf 50.01 for crystal 2. From
Eqs.~24! and ~25!, we obtain

v5Ac2k21 f «`vp
2

11~«`21! f
. ~26!

Substituting the assumed parameters for crystal 1 into
equation, the cutoff frequency is obtained as 0.84. This va
is fairly close to the numerical result. Equation~26! also tells
us that the eigenfrequency takes the smallest value at thG
point and increases parabolically with smallk.

Figure 5 shows three typical examples of the eigenfu
tions, that is,~a! the E mode at theM point, ~b! the E mode
at theG point, and~c! the B1~1! mode at theX point. The
maximum of each electric field is normalized to unity. No
that these eigenfunctions have the correct symmetr
Kuzmiak et al. reported a very curious observation for th
case off 50.1 in that these modes had exactly zero amp
tudes. They concluded that these modes were some arti
of the calculation and were not of real existence.8 This as-
sertion is, however, completely wrong, as is evident fro
Fig. 5. The appearance of these modes is natural and co
tent with the group theory since theE mode at theM point,
for example, connects with theA ~symmetric! and B ~anti-
symmetric! modes on theS point, which is expected from
the compatibility relation.25

Next, Figs. 6 and 7 show the transmission spectra of c
tal 1 with eight lattice layers calculated by the Pend
MacKinnon method.20 The incident plane wave was assum
to be propagated in the (1,0) (G-X) direction and the (1,1)
(G-M ) direction, respectively. In Table II, the opaque fr
quency ranges where the transmittance is less than 0.1
compared with the band gaps and the frequency ran
where only antisymmetric (B) modes exist. Note that the
antisymmetric modes do not couple to the plane wave co
ing from outside of the photonic crystal at normal inciden
because of the mismatching of the spatial symmetry,
they do not contribute to the transmittance.25,26 So, we refer
to them as uncoupled modes. Figure 8 shows the lifetime
the five lowest eigenmodes. It depends strongly on
amount of the field distribution in the metallic region.

e

e

.

:

ere
e-

FIG. 5. The distribution of the electric field of~a! theE mode at
theM point, ~b! theE mode at theG point, and~c! theB1(1) mode
at theX point. The maximum of each electric field is normalized
unity. For the doubly degenerateE modes, only one eigenfunction
is shown. The other eigenfunction can be obtained by a rotation
90°. For all eigenmodes, the eigenfunctions show their pecu
symmetries.
6-6
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PHOTONIC BANDS OF METALLIC SYSTEMS. I. . . . PHYSICAL REVIEW B 64 045116
The dispersion relation and the lifetime of the lowest ba
for crystal 2 with a filling factor of 0.01 are shown in Figs.
and 10. In the long-wavelength approximation, the cut
frequency is given byva/2pc50.1, which is very close to
the numerical result, 0.097. Figure 10 shows a very inter
ing behavior of the lifetime of the lowest band. It varie
more than three orders of magnitude withk. This feature
originates from the variation of the field distribution. F
example, theB2 mode on theM point is antisymmetric abou
thex andy axes. Its amplitude is thus equal to zero on the
axes. Because the electric field is continuous and the ra
of the metallic cylinders is small for crystal 2, the electr
field is small everywhere in the metal. This is the reason w
the dielectric loss is small and the lifetime is long for theB2
mode. On the other hand, theA1 mode on theG point is
totally symmetric and it may have a large amplitude in t
metallic region. This is the reason why its lifetime is mu
shorter than that of theB2 mode.

Let us conclude this section by giving one remark. T
dispersion relation shown in Fig. 4 is similar to that obtain

FIG. 6. The transmission spectrum in the~1,0! direction calcu-
lated by the Pendry-MacKinnon method. The abscissa denote
normalized frequency. The same parameters as for Fig. 4 were
for numerical calculation except thatg was set to be zero. The
number of the lattice layers was assumed to be eight.

FIG. 7. The transmission spectrum in the~1,1! direction calcu-
lated by the Pendry-MacKinnon method. The abscissa denote
normalized frequency. The same parameters as for Fig. 6 were
for numerical calculation.
04511
d

f

t-

e
us

y

e
d

by the plane-wave expansion method,6 since the radiationa
eigenmodes for theE polarization are essentially modifie
plane waves as we mentioned previously and their desc
tion by the linear combination of plane waves was a go
approximation. However, this feature cannot be expecte
more general cases. As a matter of fact, theH polarization of
the two-dimensional metallic system is a typical example,
which the localized nature of surface plasmons brings ab
a completely different feature that is difficult to deal with b
the plane-wave expansion. This problem will be treated
Paper II.21

IV. CONCLUSION

The dispersion relation, the field distribution, and the lif
time of the radiational eigenmodes in the two-dimensio
photonic crystals composed of metallic cylinders were cal
lated by means of the numerical simulation of the dipo
radiation based on the FDTD method. The CPU time for t
method is proportional to the number of the representa
points on the spatial mesh used for the discretization of M
well’s equations, which is in marked contrast to the case
the plane-wave expansion method for which the CPU tim
proportional to thecubeof the number of the plane waves
So, the present method is superior to the plane-wave ex
sion method when large and/or complicated systems are
lyzed. This feature was demonstrated by the photonic b
calculation for a simple cubic crystal composed of dielect
spheres.

FIG. 8. The lifetime of the lowest five eigenmodes of crystal
The same parameters as for Fig. 4 were used for numerical ca
lation. The ordinate denotes the normalized lifetime in a logarithm
scale.

TABLE II. Comparison between the band structure and
transmission spectra.

Direction Band gap B mode Opaque range

G-X 0.814–1.028 0.811–1.032
1.260–1.280 1.275–1.286

1.474 1.483
G-M 0.873–1.090 0.871–1.093

1.415–1.458 1.415–1.454
Cutoff 0.745 0.752
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KAZUAKI SAKODA et al. PHYSICAL REVIEW B 64 045116
The dispersion relation for theE polarization obtained by
the present work was similar to that reported previously
Kuzmiak et al. The symmetry of the eigenmodes was co
sistent with the prediction from group theory consideratio
that was obtained by the reduction procedure starting fr
the plane-wave representation of the unperturbed wave fu
tions, which implies that the eigenmodes for theE polariza-
tion are essentially modified plane waves. The opaque
quency ranges in the transmission spectra calculated by
Pendry-MacKinnon method corresponded quite well to
band gaps and the frequency ranges of the antisymmetric~B!
modes. The cutoff frequencies coincided with the lon
wavelength approximation of Maxwell’s equations as we

FIG. 9. The dispersion relation of the two-dimensional squ
photonic crystal composed of metallic cylinders~crystal 2! for theE
polarization calculated by means of the numerical simulation of
dipole radiation. The same parameters as for Fig. 4 were used
numerical calculation except thatr m /a50.0564 (f 50.01).
e
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The curious observation reported by Kuzmiaket al. that
some eigenmodes had zero amplitudes was denied by e
ining the field distribution of the related eigenmodes. W
found that the lifetime of the eigenmodes depends stron
on the field distribution, and its variation of more than thr
orders of magnitude was observed.
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