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The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However,
using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic
and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3

are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the
phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied
by means of density functional theory and directab initio force constant approach. The calculated electronic
structures, phonon density of states, and thermodynamic functionsfincludingSsTd andHsTd−Hs0dg for the three
hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but
positive free energies of formation. This conclusion is the same as that made by Wolvertonet al. for the
hexagonal AlH3 fPhys. Rev. B69, 144109s2004dg. The thermodynamic properties indicate that the ortho-
rhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3.
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I. INTRODUCTION

Aluminum hydride AlH3 is a very important material
since it has application as an energetic component in rocket
propellants, a reducing agent in alkali batteries and polymer-
ization catalysts, and a possible hydrogen source for fuel
cells.1,2 For the purpose of hydrogen storage, this material
could be an excellent candidate if it can be cheaply pro-
duced, since it has a total capacity of 10 wt. % hydrogen, and
hydrogen can be released upon heating to a little over
100 °C.1 There are at least five AlH3 phases found in the
experiment.2 Except for the hexagonal AlH3, the crystal
structures for the other phases are unknown. The experiment
shows that both the thermal stability and ease of preparation
of AlH 3 are strongly dependent on purity.2 The hexagonal
AlH 3 is the most stable structure so far isolated
experimentally.2 In addition, this hydride has been reported
to be unstable in the presence of moisture or air, which may
cause the structure to change or transform with time.3 Ac-
cording to these reports, it seems that the presence of impu-
rity or moisture affects the thermal stability of the hydrides
significantly; therefore, it is natural to suspect that the hex-
agonal AlH3 may be not a real ground-state structure. To
explore this interesting problem, we chose some related com-
pounds as the initial structures for this hydride, and then
fully optimized them. Indeed, the orthorhombic and cubic
AlH 3 are found to be more stable than the hexagonal AlH3 in
the present study.

Theoretically, only two references related to the alumi-
num hydride AlH3 can be found so far.4,5 In Ref. 4, the
electronic structure for the hexagonal AlH3 was discussed. In
Ref. 5, the calculations show that this hydride has a small
negative enthalpy of formation, but a large positive free en-
ergy of formation atT=300 K. Since the crystal structures
for the other phases are unknown in experiment, to our best
knowledge, there is no theoretical research on the properties

of the orthorhombic and cubic AlH3. In the current study, the
orthorhombic and cubic AlH3 have been identified, and have
been found to be more stable than the hexagonal AlH3. The
enthalpy and free energy of formation among these three
hydrides will be calculated in the temperature range from
0 to 500 K.

II. THEORETICAL METHODS

The quantum-mechanical calculations have been per-
formed in the frame of density functional theory using the
generalized gradient approximationsGGAd,6,7 as imple-
mented in the VASP code.8,9 The interaction between the ion
and electron is described by the projector augmented wave
method.10 The cutoff energy for plane waves in our calcula-
tions is 600 eV. The configurations Al 3s23p1 and H 1s1 are
treated as the valence electrons. Brillouin-zone integrations
are performed on the Monkhorst-Packk-point mesh.11 For
each supercell, a high densek-point mesh sspacing of
k-points ,0.3/Åd and a high plane wave cutoff energy of
600 eV are used. The total energy convergence within
0.5 meV per formula unitsf.u.d is well achieved. For ex-
ample, for a supercell of,6.5 Å3 ,6.5 Å3 ,6.6 Å
sorthorhombic symmetryd a 53534 mesh is used. The total
energy convergence within 0.3 meV/f.u. is achieved com-
pared with either a more dense mesh of 1131139 or a
higher plane wave cutoff energy of 800 eV. Note that
Wolverton et al. have demonstrated that the GGA is very
suitable for the calculations of AlH3.

5 Therefore, the GGA is
used in our study.

In order to obtain the thermodynamic properties, one
needs to know the phonon density of statessDOSd. To cal-
culate the phonon DOS, we use a directab initio force-
constant approach implemented by Parlinski.12 In this
method a specific atom is displaced to induce the forces to
act on the surrounding atoms, which are calculated via the

PHYSICAL REVIEW B 71, 184107s2005d

1098-0121/2005/71s18d/184107s7d/$23.00 ©2005 The American Physical Society184107-1



Hellmann-Feynman theorem. The forces are collected to
construct the force-constant matrices. The dynamical matri-
ces are then solved to obtain phonon frequencies. It should
be noted that all anharmonic effects are omitted in this
method. To check whether the anharmonicity is significant or
not, we used two different displacements of 0.03 and 0.06 Å,
and found that the results between these two cases are almost
the same. For example, for the cubic AlH3 the zero-point
energy sZPd difference between the two cases is within
1.5 mev/ f.u., which is quite small. This indicates that the
harmonic approximation is valid for these hydridessat least
for low temperaturesd.

III. RESULTS AND DISCUSSION

In this section, the geometric and electronic structuressin
Sec. III Ad, the phonon density of statessin Sec. III Bd, the
thermodynamic functionssin Sec. III Cd, and the enthalpy
and Gibbs free energy of formationsin Sec. III Dd for the
hexagonal, orthorhombic, and cubic AlH3 will be presented.

A. Geometric and electronic structures

To explore the crystal structure of aluminum hydride
AlH 3, 60 types of the potential structures have been consid-

ered. They include: BF3 fspace groups,P1̄ ssee Ref. 13d and
P21/c ssee Ref. 14dg, BI3 fspace groupP63/m ssee Ref.

15dg, AlF3 fspace groupsCmcm,16 P4/nmm,17 R3̄H,18

P321,19 and R32 ssee Ref. 20dg, AlI 3 fspace groupPna21

ssee Ref. 21dg, GaF3 fspace groupR3̄c ssee Ref. 22dg, InF3

fspace groupR3̄c ssee Ref. 23dg, TiF3 fspace groupsR3̄mr

ssee Ref. 24d and R3̄c ssee Ref. 25dg, BiF3 fspace group

Fm3̄m ssee Ref. 26dg, YH3 fspace groupP3̄c1 ssee Ref. 21dg,
HoH3 fspace group,P3̄c1 ssee Ref. 27dg, andAB3 sA=F and
I; B=Y, Fe, Re, etc.d. For each structure, the cell volume and
shape, and the atomic coordinates are fully optimized until
the forces are less than 0.0001 eV/Å per atom. With these
efforts, indeed, we found that the orthorhombic and cubic
AlH 3 are more stable than the hexagonal AlH3. The crystal
structures for the hexagonal, orthorhombic, and cubic AlH3
are shown in Fig. 1, and the lattice constants and coordinates
are compiled in Table I. Figure 1 shows that the orthorhom-
bic and cubic AlH3 are more stable than the hexagonal AlH3
by ,20 meV/f.u.. Note that this result is obtained on the
basis of their equilibrium structures, and it may be slightly
changed as the quasiharmonic approximation is adopted in
the latter section. Also it should be noted that this result is
obtained at the temperature 0 K. It is still not sure whether
this is true at elevated temperature. We will discuss this issue
by investigating thermodynamic properties in the latter sec-
tion. For the hexagonal AlH3, Table I shows that the calcu-
lated lattice constants area=4.489 Å and c=11.820 Å,
which are in very good agreement with the experimental val-
uessa=4.449 Å andc=11.804 Å in Ref. 28d as well as the
previous GGA calculationssa=4.42 Å andc=11.80 Å in
Ref. 5d. We do not find the experimental lattice constants for
the other two hydrides.

The calculated electronic total and partial DOS for the
hexagonal, orthorhombic, and cubic AlH3 are presented in
Figs. 2sad–2scd, respectively. For the orthorhombic AlH3,
there are four nonequivalent hydrogen atomssand two non-
equivalent Al atomsd in the unit cell. Only one type of atom
is plotted here since they differ only slightly. For the hexago-
nal AlH3, the current total and partialsfor hydrogend DOS
are similar to those recently calculated by Aguayo and
Singh.4 Overall, the total and partial DOS among these three
hydrides are similar; i.e., the valence band of Al 3p character
is almost the same level as that of H 1s sthe curve shapes are
also similard. This indicates that there may be a strongly
covalent interaction between the Al and H atoms. However,
some authors suggest that the bonding is mainly ionic in the
hexagonal AlH3.

4,29 To get a better understanding of this in-
teraction, the bond overlap populationsBOPd values are cal-
culated on the basis of the Mulliken population. The BOP
can provide useful information about the bonding property
between the two atoms. A high BOP value indicates a strong
covalent bond, while a low BOP value indicates an ionic
interaction. The calculated results are compiled in Table II.
Table II shows that the BOP values for the H–Al bonds
among the three hydrides are 0.41–0.51. These values are
greater than thats0.39d for the ionic H–Na bond in NaH, but
smaller than those for the covalent H–Al bonds in NaAlH4
s0.88d and Na3AlH 6 s0.62,0.64d.30 Therefore, the H–Al
bonds for these three hydrides are between the ionic and
covalent interaction, and more close to ionic interaction to
some extent. Since the bonding property and the bond length
among these three hydrides are similarssee Table II for the
bond lengthd, their vibrational properties may be similar.

B. Phonon density of states (DOS)

The calculated phonon DOS for the hexagonal, ortho-
rhombic and cubic AlH3 are shown in Fig. 3. The solid,
dashed, and dotted lines represent the DOS for the hexago-

FIG. 1. sColor onlined Crystal structures for the hexagonalson
the left sided, orthorhombicsin the middled, and cubicson the right
sided AlH 3. Etot and Ezp represent the total energy and the zero-
point energy of the optimized structure, respectively.Etot and Ezp

for the hexagonal AlH3 are chosen as the zero reference energy.
Small white balls represent hydrogen atoms, and Al atoms are lo-
cated in the center of the cages.
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nal, or thorhombic, and cubic AlH3, respectively. For the
hexagonal AlH3, the current result is in good agreement with
the previous calculations.5 Since the mass of H atom is much
smaller than that of Al atom, the high-frequency modes
sabove 12 THzd are dominated by the H atom, and the low-
frequency modessbelow 12 THzd are dominated by Al at-
oms. As a whole, the calculated phonon DOS among the
three hydrides are similar. This indicates that their thermo-
dynamic functions may not differ much.

C. Thermodynamic functions

The thermodynamic functions including the vibrational
entropy fSsTdg and the internal energyfEsTdg are evaluated
from the above calculated phonon DOS.EsTd is calculated by

EsTd =
1

2
rE

0

`

"vgsvdcothS "v

2kBT
Ddv, s1d

wheregsvd is the phonon DOS of the lattice,r is the number
of degrees of freedom in the unit cell," is the Planck con-
stant,kB is the Boltzmann constant, andT is the temperature.
In the low-temperature limit, the internal energy is equal to
the ZP energy:

Ezp= lim
T→0

EsTd =
1

2
rE

0

`

"vgsvddv. s2d

The Helmholtz free energyfFsTdg is calculated by,

FsTd = Eelec+ EsTd − TSsTd, s3d

where Eelec is the electronic energy of the lattice obtained
from the total-energy calculation. To obtain these functions,
in practice, we use the quasiharmonic approximation,31 i.e.,
the phonons are harmonic, but they are volume dependent. In
detail, the cell volumes are expanded or compressed. For
each volume, the cell shape and the atomic coordinates are
fully optimized until the forces are less than 0.0001 eV/Å
per atom. After that, the Helmholtz free energy is computed
as a function of volume. The equilibrium volume at the tem-
peratureT can be obtained by minimizing the free energy.

Once theSsTd andEsTd values are known, the enthalpyfHsTdg
and the Gibbs free energyfGsTdg can be obtained by

HsTd = Eelec+ EsTd + pV, s4d

GsTd = HsTd − TSsTd, s5d

where Eelec is the electronic energy of the lattice obtained
from the total-energy calculation, andp is the pressure
s1 atmd, andV is the volume.

The calculated entropyfSsTdg and enthalpyfHsTd−Hs0dg for
the hexagonal, orthorhombic, and cubic AlH3 are shown in
Figs. 4sad and 4sbd, respectively. For the hexagonal AlH3,
both Figs. 4sad and 4sbd show that the calculated data are in
excellent agreement with the measured values.32,33 For the
hexagonal AlH3, it is interesting to compare the current re-
sults with the previous calculationsssee Ref. 5d. Our calcu-
lated zero point for the AlH3 s0.660 eV/ f.u.d is good agree-
ment with the previous results0.644 eV/ f.u.d, and our
calculated thermodynamic functions are also in good agree-
ment with the previous calculations. As a whole, the calcu-
lated thermodynamic functions among the three hydrides are
similar although the entropy for the orthorhombic AlH3 is
slightly greater than those for the hexagonal and cubic AlH3.

For the fcc Al lattice, its thermodynamic functions are
calculated also on the basis of the quasiharmonic approxima-
tion. The calculated enthalpy and Gibbs free energy for the
Al lattice are shown in Figs. 5sad and 5sbd, respectively. The
solid and dotted lines represent the calculated and measured
results, respectively. Both Figs. 5sad and 5sbd show that the
calculated data agree well with the experimental results.34

For the zero-point energy, the current results0.037 eV/atomd
is in good agreement with the previous calculation
s0.040 eV/atom in Ref. 5d.

For the H2 gas molecule, the vibrations can not be treated
directly from the phonon calculations because the phonon
approach always considers the system as a solidslatticed, and
thus neglects the translational and rotational vibrational
modes. To obtain the thermodynamic functions of the H2, we
use the same procedure as that of Ref. 5. In detail, the H2

TABLE I. Calculated lattice constants and fractional coordinates for the hexagonal, orthorhombic and
cubic AlH3. For the hexagonal AlH3, the lattice constants area=b=4.489 Å,c=11.820 Å, andg=120°, and
the fractional coordinates are Als0, 0, 0d and H s0.6234, 0, 0.25d. For the orthorhombic and cubic AlH3,
a=b=g=90°, and their coordinates are listed.

Orthorhombic AlH3 sAlF3 typed
sa=6.523 Å,b=11.139 Å,c=6.604 Åd

Cubic AlH3 sFeF3 typed
sa=9.064 Åd

Atom Sitea x y z Atom Sitea x y z

Al1 4a 0 0 0 Al 16d 0.5 0 0

Al2 8d 0.2500 0.2500 0.0000 H 48f 0.4306 0.1250 0.1250

H1 8f 0.0000 0.2862 0.9453

H2 16h 0.1906 0.1024 0.0492

H3 4c 0.0000 0.9571 0.2500

H4 8g 0.2071 0.2853 0.2500

aWyckoff position.
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molecule is modeled by putting a H2 dimer in a simple cubic
supercell with a lattice constant 10 Å. The Gibbs free energy
fGsTdsH2dg of the H2 is calculated by combining both the
calculations and the experimental results:

GsTdsH2d = EelecsH2d + EzpsH2d + DGsTdsH2d, s6d

where EelecsH2d is the electronic energy of a H2 molecule
obtained from the total-energy calculations,EzpsH2d is the
zero-point energy of a H2 molecule obtained from the pho-
non calculations, and the termDGsTdsH2d is the temperature-
dependent Gibbs free energy with respect to the temperature
of 0 K. As a common procedure,35 the DGsTdsH2d can be
calculated by

DGsTdsH2d = fHsTdsH2d − Hs0dsH2dg − T

3fSsTdsH2d − Ss0dsH2dg, s7d

whereHsTdsH2d andHs0dsH2d are the enthalpies of the H2 at
theT and 0 K, respectively, andSsTdsH2d andSs0dsH2d are the
entropies of the H2 at the T and 0 K, respectively. These
values fincluding HsTdsH2d and SsTdsH2dg can be obtained
from the thermochemical data.36

FIG. 2. Calculated electronic total and partial DOS for the hex-
agonalsad, orthorhombicsbd, and cubicscd AlH 3. For the ortho-
rhombic AlH3, there are four nonequivalent hydrogen atoms in the
unit cell. Only one type of atom is plotted here since they differ
only slightly. The valence band maximumsVBM d is denoted as the
dotted line.

TABLE II. Calculated bond overlap populationsBOPd and total
charges for the hexagonal, orthorhombic, and cubic AlH3.

Properties
Hexagonal

AlH 3

Orthorhombic
AlH 3

Cubic
AlH 3

Bond length of H–Al 1.719sÅd 1.718–1.720sÅd 1.721sÅd
BOP of H–Al 0.41 0.49–0.51 0.48

Total charge of Al atom 1.64 1.63 1.68

Total charge of H atom 1.45 1.45–1.48 1.44

FIG. 3. Calculated phonon DOS for the hexagonal, orthorhom-
bic, and cubic AlH3. The solid, dashed, and dotted lines represent
the DOS for the hexagonal, orthorhombic, and cubic AlH3, respec-
tively. The high-frequency modessabove 12 THzd are dominated by
the H atom, and the low-frequency modessbelow 12 THzd are
dominated by Al atoms.
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D. The enthalpy and Gibbs free energy of formation

Based on the above calculated thermodynamic functions,
the enthalpy of formation and the Gibbs free energy of for-
mation can be calculated. Concerning the formation energy,
we consider the stability of AlH3 with respect to decompo-
sition into the fcc Al metal and the H2 gas, i.e., the reaction

AlH 3 → Al +
3

2
H2, s8d

where AlH3 includes the hexagonal, orthorhombic and cubic
symmetries. For convenience, we denotea1=AlH3 shexago-
nal symmetryd, a2=AlH3 sorthorhombic symmetryd, a3
=AlH3 scubic symmetryd, and b= sAl+ 3

2H2d. The symbol
DGa1−b indicates that the free energy difference between the
a1 and theb; i.e., DGa1−b=Ga1−Gb. The calculated enthalpy
and Gibbs free energy of formation for the three hydrides are
shown in Figs. 6sad and 6sbd, respectively. The solid, dashed,

and dotted lines represent the data for the hexagonal, ortho-
rhombic, and cubic AlH3, respectively. For the hexagonal
AlH 3 at theT=298 K, the calculated enthalpy and Gibbs free
energy of formation are −0.128 and 0.465 eV, respectively,
which agree well with the experiment values32

s−0.118±0.009 and 0.482±0.010 eV, respectivelyd. These
results are also in good agreement with the previous calcu-
lations s−0.072 and 0.516 eV, respectively; the GGA results
in Ref. 5d. Figure 6sbd shows that the Gibbs free energies of
formation for these three hydrides are positive in the whole
temperature range, indicating that they are unstable with re-
spect to decomposition into Al+32H2 under thermal equilib-
rium condition. On the other hand, Fig. 6sad shows that the
enthalpies of formation for these hydrides become more and
more negative as the temperature increases. This means that
the decomposition reactions are endothermic. Therefore, al-
though these hydrides are unstable, they still can be stabi-
lized kinetically. In fact, for the hexagonal AlH3 it has been
found not to decompose at an appreciable rate below the
temperature 373 Kssee Ref. 1d. In both Figs. 6sad and 6sbd,

FIG. 4. Calculated thermodynamic functions for the hexagonal
ssolid lined, orthorhombicsdashed lined, and cubicsdotted lined
AlH 3. The functions including the entropyfSsTdg and the enthalpy
fHsTd−Hs0dg are presented insad and sbd, respectively.Hs0d denotes
the enthalpy at 0 K. Dots are the measured data for the hexagonal
AlH 3 ssee Refs. 32 and 33d.

FIG. 5. Calculated and measured enthalpysad and Gibbs free
energysbd for the fcc Al lattice. The solid and dotted lines represent
the calculated and measured results, respectively. The experimental
data are from Ref. 34.
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the dashed and dotted lines are always below the solid line,
indicating that the orthorhombic and cubic AlH3 are more
stable than the hexagonal AlH3 in the whole temperature
range. Therefore, in principle, the orthorhombic and cubic
AlH 3 should be more difficult to dissociate than the hexago-
nal AlH3. This is meaningful for the purpose of hydrogen
storage.

According to Figs. 6sad and 6sbd, we can see that the
absolute values for the free energy of formation are much
larger than those for the enthalpy of formation. This is due to
the large entropy contributionsTDSd from the H2 gas. The
entropy contributions for the3

2H2 gas molecules, and the
solid AlH3 and Al lattices are shown in Fig. 7. Also for
convenience, we denotea1=AlH3 shexagonald, a2=AlH3
sorthorhombicd, a3=AlH3 scubicd, and b=Al sfcc latticed.

The term3
2TDSH2

indicates that the entropy contribution for
the 3

2H2 gas molecules. The termTDSa1−b indicates that the
entropy contribution difference between thea1 and theb;
i.e., TDSa1−b=TDSa1−TDSb. Figure 7 shows that the entropy
contributions 3

2TDSH2
d for the 3

2H2 molecules is significantly
larger than thosesTDSa−bd for the solids. Due to this large
entropy contribution, and the relatively small negative en-
thalpy of formation for AlH3 fsee Fig. 6sadg, in fact, we
found that the following reaction does not take place ever
under the conditions of high pressuresup to 10 GPad and low
temperaturesdown to 0 Kd, as

Al +
3

2
H2→

3

AlH 3, s9d

where AlH3 includes the hexagonal, orthorhombic, and cubic
symmetries. This is consistent with the experimental
observation,1 in which the experiment found that the direct
synthesis of AlH3 through Eq.s9d does not occur under the
conditions of hydrogen pressure 2.83107 Pa and low tem-
perature −196 °C or hydrogen pressure 5.73107 Pa and
room temperature.

IV. SUMMARY

The geometric and electronic structures, the phonon, and
the thermodynamic properties for the hexagonal, cubic, and
orthorhombic AlH3 have been studied by means of density
functional theory and directab initio force constant ap-
proach.

Geometric structures. The most stable structure of alumi-

FIG. 6. Calculated enthalpy of formationsad and Gibbs free
energy of formationsbd for the hexagonalssolid lined, orthorhombic
sdashed lined, and cubicsdotted lined AlH 3 as a function of tem-
perature. For convenience, we denotea1=AlH3 shexagonal symme-
tryd, a2=AlH3 sorthorhombic symmetryd, a3=AlH3 scubic symme-
tryd, and b= sAl+ 3

2H2d. The symbol ofDGa1−b indicates that the
free energy difference between thea1 and theb; i.e., DGa1−b

=Ga1−Gb. The energy ofsAl+ 3
2H2d is chosen as the zero reference

sdenoted as a straight dashed-dotted lined. Dots are the measured
values for the hexagonal AlH3 ssee Ref. 32d.

FIG. 7. Entropy contributionssTDSd for the reaction of AlH3

→Al+ 3
2H2. The contributions plotted here include the3

2H2 gas, and
the solid AlH3 and Al lattices. For convenience, we denotea1
=AlH3 shexagonal symmetryd, a2=AlH3 sorthorhombic symme-
tryd, a3=AlH3 scubic symmetryd, andb=Al sfcc latticed. The term
3
2TDSH2

indicates the entropy contribution from the3
2H2 gas mol-

eculessdenoted as a dashed-dotted lined. The termTDSa1−b indi-
cates that the entropy contribution difference between thea1 and
the b; i.e., TDSa1−b=TDSa1−TDSb. The TDSa1−b, TDSa2−b, and
TDSa3−b are denoted as solid, dashed, and dotted lines, respectively.
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num hydride AlH3 has been believed to be a hexagonal sym-
metry. However, in this study we have identified two new,
and more stable structures for the AlH3 with the cubic and
orthorhombic symmetries. Although we cannot conclude that
the cubic and orthorhombic AlH3 are the ground-state struc-
tures, we think that our findings are interesting and funda-
mental. It may open a door for inspiring experimental efforts
to find more stable AlH3. The hexagonal AlH3 is not the end.

Electronic properties. The electronic properties of the
hexagonal, cubic, and orthorhombic AlH3 have been dis-
cussed based on the electronic DOS, and the bond overlap
population. The DOS indicates that there may be covalent
interaction between the Al and H atoms. The further exami-
nation by the BOP analysis reveals that the H–Al bond is
between the ionic and covalent interaction, and more close to
the ionic interaction to some extent.

Phonon and thermodynamic functions. The calculated
phonon DOS for the hexagonal, orthorhombic and cubic
AlH 3 do not differ much. As a result, the thermodynamic
functions for the three hydrides are almost the same. For the
hexagonal AlH3, the calculated entropy and enthalpy are in
excellent agreement with experiment.

Enthalpy and Gibbs free energy of formation. For the hex-
agonal AlH3, the calculated enthalpy and Gibbs free energy
of formation agree well with experiment as well as previous
calculations. The calculated free energies of formation for

the hexagonal AlH3 are positive in the whole temperature
range, indicating that they are unstable with respect to de-
composition into Al+3

2H2; however, the calculated enthalp-
ies of formation are negative, indicating that the decomposi-
tion reactions are endothermic. The conclusion is the same as
that in Ref. 5 for the hexagonal AlH3. For the orthorhombic
and cubic AlH3, we found that the situation is almost the
same as that for the hexagonal AlH3. As a result, although
these hydrides are unstable, they still may be kept for a pe-
riod of time because of the endothermic reactions. The cal-
culated results indicate that the orthorhombic and cubic AlH3
should be more difficult to dissociate than the hexagonal
AlH 3. This may be meaningful for the purpose of hydrogen
storage. Due to the large entropy contribution from the H2
gas molecule, and the relatively small negative enthalpy of
formation for AlH3, this causes the direct syntheses of AlH3
almost impossible even under the conditions of high pressure
and low temperature.
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