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The effects of lattice vibration on Cu nucleation in Fe-Cu alloys have been investigated by a first-principles
technique. We find that the vibrational effect is comparable ��36% � to the configurational entropy. Lattice
vibration increases the activation barrier of Cu precipitates by 0.53 eV, where the resulting activation barrier is
estimated to be 0.62 eV at critical number n* of 12 atoms, which is in satisfactory agreement with the previous
experimental prediction. Within the description of classical treatment, this increase is interpreted in terms of the
associated decrease of driving force due to lattice vibration.
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I. INTRODUCTION

Nucleation plays a significant role in the early stage of the
structural growth, and it is required to understand and control
the formation of nanoscale structures. For accurate prediction
of nucleation and its growth, the utilization of the first-
principles techniques has been attempted: mixed-space clus-
ter expansion,1 the cluster variation method,2,3 and further
combination of atomic-level simulations with continuum
theory.4 These techniques are applied to large precipitates
rather than the nucleus, and require the cluster expansion or
other effective interaction extracted from the first-principles’
results.

Recently, a treatment of the nucleation free energy calcu-
lation in alloy systems was proposed by Seko et al.5 This
technique directly applied the first-principles calculation to
Fe-Cu binary and Ni-doped Fe-Cu ternary alloys. The most
advantageous point in this treatment is the elimination of the
ambiguity of the interface energy in the classical treatment.
The static contribution to the enthalpy change and the con-
figurational entropy change for cluster formation are accu-
rately estimated, while the effect of lattice vibrations on the
free energy change is neglected in the treatment. On the con-
trary, the importance of vibrational effects on phase stability
have been actively examined both experimentally6–9 and
theoretically.10–13 For the Al2Cu system, the vibrational en-
tropy contribution is shown to be essential in reversing the
stability of � and �� phases.13

In order to investigate the vibrational effects on the nucle-
ation free energy for Cu precipitates in the Fe-Cu system, the
quasi-harmonic �QH� treatment14,15 has been applied;16 vi-
brational effects have been considered negligible under the
assumption that the bond stiffness of unlike-atom pairs is
equal to the arithmetic mean of those of like-atom pairs.
Using the interatomic force constants, the model calculation
of the vibrational contribution to nucleation was examined in
terms of the interatomic force constants.17 This study re-
vealed that the effect of lattice vibration on nucleation free
energy can be drastic and the above assumption of bond

stiffness for unlike-atom pairs can yield incorrect estima-
tions. Therefore, in order to confirm how the lattice vibration
affects the nucleation free energy, further investigation
avoiding such assumptions should be performed.

In the present study, we first rewrite the expression of
nucleation free energy change, which allows for the inclu-
sion of the effects of lattice vibration. The thermal expansion
effect induced by lattice vibration is also examined, and fi-
nally, the effects of lattice vibration on Cu nucleation free
energy in the Fe-Cu system are quantitatively investigated by
utilizing the first-principles techniques.

II. METHODOLOGY

A. Basic idea of calculational treatment

1. Nucleation free energy

We show schematic illustrations of the initial and final
states describing the Cu nucleation process in the Fe-Cu sys-
tem in Fig. 1. As shown, changes in cluster energy are cal-
culated from the total energy changes between the initial
states described as the sum of the isolated solute atoms, cor-
responding to the dilution limit, and the final state of the
n-size Cu cluster.

FIG. 1. Schematic illustration of the nucleation process. Gray
spheres represent the solvent Fe atoms, and black ones the solute
Cu atoms.
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Including the vibrational contributions, the total nucle-
ation free energy change �Ftot can be divided into the fol-
lowing three terms:

�Ftot = �Fconfig + �Fvib + �Fexpand. �1�

The first term, �Fconfig, is the configurational free energy
change for a rigid lattice. The second term represents the
vibrational free energy change in equilibrium volume V0 at
temperature T=0 K, and the third the free energy change due
to thermal expansion induced by lattice vibration. The vibra-
tional contributions of �Fvib and �Fexpand can be calculated
from the vibrational free energy differences between initial
and final states of Fig. 1, whose treatment are discussed in
detail in Sec. III.

In the classical treatment, the effect of lattice vibration is
typically neglected, and the free energy change is described
by the sum of the negative driving force �Fv and the positive
interface energy Hs, namely,

�Fconfig = �Fv + Hs. �2�

The main ambiguities in this treatment are the two assump-
tions that �i� the interface energy for a bulk cluster can be
applied to a small precipitated cluster and �ii� the interface
energy is isotropic. These problems can be successfully
solved by using the following modification of the nucleation
treatment.5 The driving force, �Fv, is divided into two com-
ponents of enthalpy change �Hv and entropy change
−T�Sconfig. Therefore Eq. �2� can be rewritten as

�Fconfig = ��Hv + Hs� − T�Sconfig. �3�

The first term, �Hv�n�+Hs�n�, which is called the cluster
energy change including both enthalpy change for the cluster
from isolated atoms and interface energy, can be directly
obtained through the first-principles calculation; the interface
energy between cluster and matrix is automatically included
in this procedure. The second term of Eq. �3� mainly repre-
sents entropy loss due to cluster formation. This term is es-
timated within the Bragg-Williams approximation �see Ap-
pendix A� as

�Sconfig�n� = kB��n − 1�ln x − n +
3

2
ln n +

1

2
ln�2��� , �4�

where kB represents the Boltzmann constant, x the initial
solute concentration, and n the number of atoms in the pre-
cipitate cluster. We employ the above procedure to estimate
the configurational part, �Fconfig.

2. Vibrational free energy

The vibrational free energies in the defect lattices are well
treated by the effective medium approximation in the real-
space calculation. The general expression of eigenequations
for the lattice vibration within the harmonic approximation is
given by

D · B = �2B , �5�

where � denotes the angular frequency of the harmonic os-
cillator, and B the polarization vector. D is the 3N�3N �N is

the number of atoms in the system� dynamical matrix de-
scribed as

D = M−�1/2��M−�1/2�, �6�

where M is the atomic mass tensor and � is the interatomic
force constant matrix. For a crystal, determination of the
eigenstates of Eq. �5� is considerably simplified by the trans-
lational symmetry of the system. Let l denote the number of
atoms per unit cell and k denote a point in the first Brillouin
zone; then the problem of diagonalizing the 3N�3N matrix
D is reduced to the problem of diagonalizing the 3l�3l ma-
trix D�k�.18 This operation, the root-sampling method, is
typically used to obtain the vibrational density of states
�VDOS� and associated thermodynamic properties such as
vibrational free energy.19–22

Other techniques to calculate the vibrational free energy
have been developed in order to alleviate the diagonalization
of dynamical matrix: �i� describing vibrational free energy
Fvib in terms of the determinant of dynamical matrix, which
provides a good approximation for exact values,23 and �ii�
local harmonic approximation24 which models the VDOS as
� functions in terms of the second moment of VDOS. The
latter approach reduces 3N�3N to N�3�3� diagonalization
by neglecting off-diagonal 3�3 block matrices, and pro-
vides a reasonable agreement with QH approximation.25 An-
other approach based on the second moment assumes the
functional form for VDOS, which has been proposed by
Sutton.26 These techniques, which assume different form of
VDOS, result in a different vibrational free energy itself;
however, these differences typically cancel out for defect en-
ergy calculation.25 In the supercell calculation, we only use
diagonal elements of the dynamical matrix to estimate vibra-
tional free energy, since an accurate estimation of the off-
diagonal element of the dynamical matrix requires a much
bigger supercell.27 Therefore, latter approaches based on the
second moment would be rather compatible with our calcu-
lation.

In the present article, we employ the effective medium
approximation of the second moment expansion of Green’s
function, which have an explicit functional form of VDOS.
The VDOS in this approximation is given by �see Appendix
B�

gj	��2� =
2

��
 j	
�1��2��
 j	

�1��2 − ��2 − 
 j	
�1��2�1/2, �7�

where j denotes the atom site, 	 the Cartesian coordinates,
and 
 j	

�1� equals the diagonal element D j	j	. The form of
VDOS in Eq. �7� is quite similar to that of Sutton,26 where
we treats VDOS on mode basis, while Sutton treats per atom.
Note that �i� Eq. �7� satisfies that VDOS is proportional to �2

at lower band edge, which is a desirable behavior of real
DOS, and �ii� gj	��2� has a bandwidth of 2
 j	

�1� despite using
only the diagonal element. In this description of VDOS, vi-
brational free energy Fj	 becomes

YUGE et al. PHYSICAL REVIEW B 72, 174201 �2005�

174201-2



Fj	 = kBT�
0

�

2�gj	��2�ln	2 sinh
 ��

2kBT
��d�,

=
16kBT

�
�

0

1

y2�1 − y2�1/2ln	2 sinh
 cj	y

2
��dy , �8�

where

cj	 =
��2
 j	

�1��1/2

kBT
, y =

�

�2
 j	
�1��1/2 . �9�

In order to assess the applicability of this approximation,
we have compared the vibrational free energy of bcc-Fe at
lattice parameter a=2.813, 2.833, and 2.853 Å, using an ef-
fective medium approximation with that using more accurate
approximation, the root-sampling method; the free energy
differences between two approximations are always
�4 �meV/atom� at T=773 K, which indicates that the effec-
tive medium approximation provides reasonable description
of vibrational free energy. The above error would become
rather small in the nucleation free energy calculation due to
cancellation of errors when taking energy differences.

B. Computational details

The spin-polarized calculations were carried out using the
Vienna Ab initio Simulation Package �VASP�28,29 code. The
interaction between the ions and valence electrons was de-
scribed by a projector augmented-wave �PAW� method.30,31

A plane-wave basis set with a cutoff of 290 eV was used.
Sums over occupied electronic states are performed on
Monkhorst and Pack’s scheme,32 on a 2�2�2 set of the
k-point mesh. To deal with the possible convergence prob-
lems for metals, the Methfessel-Paxton scheme33 with the
smearing parameter 
 set to 0.2 was used. The exchange-
correlation functional was described by the generalized gra-
dient approximation �GGA� of the Perdew-Wang91 form.34

The cluster energy has been calculated with 128 atoms
�4�4�4 unit cells� under the structure relaxation condition.
The calculated equilibrium lattice constants of bcc ferromag-
netic Fe and bcc Cu are 2.833 Å and 2.880 Å, respectively.
Cluster models were constructed by replacing some Fe sites
with Cu atoms. Seko et al. determined the configurations of
the Cu precipitate clusters, each of which has the minimum
energy among all possible configurations.5 Following their
work, we construct supercells including specific Cu cluster
configurations 
4 ,
10, and 
15, as shown in Fig. 2, where the

subscript represents the number of Cu atoms in the cluster.
The contribution to the vibrational free energy from spe-

cific atoms is obtained using Eq. �8�. The diagonal elements
of dynamical matrix Di	i	 are determined by the direct
method.35 First, we moved a chosen atom i from its equilib-
rium position along direction 	 by amplitude of 0.028 Å;
then the corresponding Hellman-Feynman force36 is esti-
mated through first-principles calculation. For one direction
	, atom i should be moved both in the positive and negative
directions, then the Hellman-Feynman forces are arithmeti-
cally averaged in order to diminish the third-order anhar-
monic effects. Thus we can obtain the diagonal element Di	i	
within the harmonic approximation and corresponding vibra-
tional contribution to the free energy Fi	.

III. RESULTS AND DISCUSSION

A. Thermal expansion effects on Cu nucleation free energy
change

The vibrational motion induces thermal expansion, which
affects the static energy and the free energy determined by
the interatomic forces at slightly expanded volume. Thus
substantial calculational effort is required to obtain the pre-
cise value of the free energy. However, a few simple assump-
tions lead to reasonably reliable estimation of the thermal
expansion effect on the free energy.18 Here, we will examine
the volume dependence of the free energy at a specific tem-
perature. The contribution of thermal expansion to the free
energy, Ftherm, in equilibrium volume V at finite temperature
T can be formally divided into

Ftherm�V� = �Estat
therm�V� + �Fvib

therm�V�

= 
Estat�V� − Estat�V0�� + 
Fvib�V� − Fvib�V0�� ,

�10�

where V0 denotes the equilibrium volume at T=0 K, and
�Estat

therm�V� and �Fvib
therm�V� are the static and vibrational con-

tributions to the free energy due to thermal expansion, re-
spectively. We make two simple assumptions. �i� The
changes in static energy are quadratic in volume as follows:

�Estat
therm�V� =

B0

2V0
��V�2, �11�

where B0 is the bulk modulus at volume V0 and �V=V−V0.
�ii� For the volume dependence of the vibrational free en-
ergy, only the linear term is considered. Applying these two
assumptions, we can rewrite Eq. �10� as

Ftherm�V� = � B0

2V0
��V�2 +

�Fvib

�V
�

V=V0

�V . �12�

The solution of minimizing Eq. �12� with respect to �V
yields

�V = −
V0

B0
� �Fvib

�V
�

V=V0

. �13�

By substituting Eq. �13� into Eq. �12�, the contribution of
thermal expansion to the free energy is finally given by

FIG. 2. �Color online� Atomic configurations for the Cu precipi-
tate clusters.
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Ftherm�V� = −
1

2

V0

B0

� �Fvib

�V
�

V=V0

�2

. �14�

The last term in Eq. �14� is identical to the negative of
�Estat

therm in Eq. �11�. Thus it results in the surprising revela-
tion that the thermal expansion effects on the free energy can
be described only by the negative value of the static energy
change.

In order to apply this derivation to Cu nucleation free
energy, we assume that the linear thermal expansions of
Fe-Cu cluster models are identical to those of bulk bcc-Fe
due to the coherency of the precipitated Cu cluster with ma-
trix. At 773 K, the volume thermal expansion �V /V0 is es-
timated to be 2.4% from our previous first-principles
prediction.16

Table I shows the bulk modulus B0, equilibrium volume
V0, and static energy change �Estat

therm calculated for specific
configurations 
i using Eq. �11�. Thermal expansion effects
on nucleation free energy change, �Fexpand=−�Estat

therm, then
can be given by the changes in energy measured from the
dilution limit, namely,

�Fexpand�
n� = − ��Estat
therm�
n� − �Estat

therm�
0��

+ n��Estat
therm�
1� − �Estat

therm�
0�� . �15�

Table II shows the contribution �Fexpand for specific configu-
rations 
i. �Fexpand is negligible in Cu nucleation free en-
ergy, which will be discussed in the following discussion.

B. Rough estimation of vibrational effects on nucleation free
energy change

In order to investigate the vibrational effect �Fvib of Eq.
�1� on Cu nucleation intuitively, we first assume that the
interatomic scalar force constants are simply represented by

the nearest neighbor atomic species, i.e., in the A-B binary
system, there exist three kinds of force constants, kAA ,kBB,
and kAB. This simplification implies that force constants and
associated vibrational free energy depend only on the con-
figuration of atoms, but not on the distance; we call this
dependence the “configuration-dependent” vibrational ef-
fects. For configuration-dependent vibrational effects, we re-
vealed a reasonable relationship between vibrational free en-
ergy change due to nucleation, �Fvib, and interatomic scalar
force constants in our previous study;17 �Fvib should be ap-
proximately cancelled when kAB equals �kAA+kBB� /2.

In the Fe-Cu system, the relationship among interatomic
force constants is examined using bulk modulus B for con-
figurations 
i, obtained through first-principles calculation,
as shown in Fig. 3. The broken line corresponds to kAB
= �kAA+kBB� /2. For the Fe-Cu system, the interatomic spring
constants satisfy

kFeCu �
kFeFe + kCuCu

2
. �16�

This relationship straightforwardly indicates that lattice vi-
bration increases the Cu nucleation free energy change in the
Fe-Cu system; in the process of Cu nucleation, the number of
softer bonds between Fe and Cu, kFeCu, rather than �kFeFe

+kCuCu� /2, decreases due to the clustering of solute Cu at-
oms. Thus within the configuration-dependent vibrational ef-
fects, Cu nucleation free energy is increased by lattice vibra-
tion.

C. Precise estimation of vibrational effects

Second, we proceed to a more quantitative estimation of
the vibrational effects via the first-principles technique. We
have calculated the vibrational free energy Fvib of all the
atoms, including inside the Cu cluster, the interface between
cluster and matrix, and the Fe matrix, for each configuration

i at T=773 K according to the procedure of Sec. II B �see
Fig. 4�. Note that Fvib for atoms located at the boundary
between supercells have not been calculated, because during
the structure optimization, relaxation of atoms on periodic

TABLE I. Calculated bulk modulus B0, equilibrium volume V0,
and static energy change �Estat

therm for specific configurations 
i.

B0 V0 �Estat
therm

�meV/Å3� �Å3� �meV�


0 1170 1453.1 490


1 1153 1454.9 483


4 1062 1460.3 447


10 985 1470.2 417


15 958 1472.6 406

TABLE II. Calculated thermal expansion effects on Cu nucle-
ation free energy �Fexpand for specific configurations 
i.

�Fexpand

�meV�


4 16


10 6


15 −17

FIG. 3. Calculated bulk modulus for configurations 
i as a func-
tion of number of Cu atoms n in a supercell of 128 atomic sites.
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boundary are constrained by the symmetry: Fvib for these
atoms should thus be omitted when taking vibrational free
energy differences. The total vibrational free energy of a sys-
tem in configuration 
i is thus given by the sum of the vi-
brational contribution to the free energy from each atom.

The vibrational contribution to the nucleation free energy
can be estimated in a similar way of evaluating �Fexpand of
Eq. �15� by the vibrational free energy of the final state mea-
sured from the dilution limit which corresponds to the initial
states illustrated in Fig. 1, namely,

�Fvib�
n,T� = �Fvib�
n,T� − Fvib�
0,T�� − n�Fvib�
1,T�

− Fvib�
0,T�� . �17�

The static contribution �H=�Hv+Hs can be estimated in the
same way, namely

�H�
n,T� = �H�
n,T� − H�
0,T�� − n�H�
1,T� − H�
0,T�� .

�18�

Thus we can obtain the total free energy change due to
nucleation, �Ftot, from the sum of the static contribution
�Hv+Hs, the vibrational contribution �Fvib, and the configu-
rational entropy change −T�Sconfig, as shown in Fig. 5. The
entropy change is estimated at the temperature of 773 K and
the concentration of 0.014 Cu, for comparison with the pre-
vious experimental results.37,38 In order to interpret our re-
sults within the classical treatment, we assumed the interface
energy to be constant and isotropic. Under this assumption,
the cluster energy changes with and without vibrational free
energy are, respectively, described by

�H + Hs = an + bn2/3, �19�

�H + Hs + �Fvib = a�n + b�n2/3. �20�

The first term of the right-hand sides of Eqs. �19� and �20�
represents the driving force without configurational entropy,
and correspond to the dilution limit measured from the aver-
age static energy Have and that from the average vibrational

free energy Fave
vib, respectively. Here, Have and Fave

vib are defined
as the line segment between the static and vibrational free
energy for pure bcc-Fe and that for pure bcc-Cu, respec-
tively. Coefficients a and a� are explicitly given by

− a = H�
1,T� − Have�n = 1,T� , �21�

− a� = 
H�
1,T� + Fvib�
1,T�� − 
Have�n = 1,T� + Fvib
ave�n

= 1,T�� . �22�

The latter terms on the right-hand sides of Eqs. �21� and �22�
correspond to the segregation limit of enthalpy and free en-
ergy at n=1 respectively. The second terms b and b� are
fitting parameters for �Fconfig and �Ftot, and can be related to
the interface energy, namely,

− b = Hs�3V�2/3�4��1/3, �23�

− b� = �Hs + �Fvib
s ��3V�2/3�4��1/3, �24�

where V is the volume which one atom occupies in the cell,
and �Fvib

s represents the vibrational contribution to the inter-
face energy. We should restate one important point here that
the lattice vibration contributes both to the driving force and
the interface energy through Eqs. �22� and �24�, respectively.

Table III shows the calculated static, vibrational, and con-
figurational entropy contribution. It is obvious that the vibra-
tional contribution �Fvib is comparable ��36% � to the con-
figurational entropy term −T�Sconfig, which cannot be
neglected in the nucleation free energy change, as clearly
seen in Fig. 5. On the contrary, the thermal expansion con-
tribution �Fexpand shown in Table II is proved to be negli-
gible in the Cu nucleation free energy.

Table IV shows the calculated activation free energy, criti-
cal number, driving force without configurational entropy
obtained through Eqs. �21� and �22�, and interface energy

FIG. 4. Distribution of the vibrational free energy Fvib per atom
for configurations 
i. FIG. 5. Total free energy change �Ftot of Cu precipitate nucle-

ation in Fe-Cu system at T=773 K and the Cu concentration of
0.014. To see the impact of lattice vibration, the purely configura-
tional contribution �Fconfig of Eq. �3� is also shown.
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obtained through Eqs. �23� and �24�. The resulting activation
barrier of Cu nucleation is estimated to be 0.62 eV at critical
number n* of 12, which is in satisfactory agreement with the
experimentally predicted diameter d�10 Å.37,38 The inclu-
sion of vibrational effects explicitly increases the activation
barrier of Cu nucleation �F* by 0.53 eV. Within the classical
treatment, this can be interpreted in terms of the driving
force FD, rather than the interface energy, decreased by lat-
tice vibration, as shown in Table IV, being the dominant
contribution to the increase of the activation barrier of Cu
nucleation.

IV. CONCLUSIONS

We have investigated the vibrational contribution to the
Cu nucleation free energy in the Fe-Cu system. When the
dependence of the thermal expansion of a precipitated bcc
Cu cluster on temperature is assumed to be identical to that
of matrix bcc Fe, the thermal expansion effect of static and
vibrational contributions to Cu nucleation free energy is neg-
ligible under a simple anharmonic model. This allows the
total free energy change to be calculated at finite temperature
T, and, in the equilibrium lattice volume V0, at T=0. The
utilization of the effective medium approximation with the
first-principles technique reveals that the vibrational effect is
comparable ��36% � to the configurational entropy, which
increases the activation barrier of Cu nucleation by 0.53 eV.
In the Fe-Cu system, this increase can also be predicted by
applying our previous model of lattice vibration to the fact
that the number of softer bonds between Fe and Cu, kFeCu,
rather than �kFeFe+kCuCu� /2, should decrease due to the clus-
tering of solute Cu. We estimated the activation barrier �F*

to be 0.62 eV at critical number n* of 12, which is in satis-
factory agreement with the experimental prediction.

APPENDIX A

The configurational entropy expression of Eq. �4� due to
precipitate nucleation is derived from the Bragg-Williams

approximation applying the initial and final states, as illus-
trated in Fig. 1. Let n denote the cluster size and x the con-
centration of the solute. We define the size of the system M
as

M = n/x . �A1�

Therefore, the number of arrangements in the initial states is

Winitial =
M!

�MxCu� ! �M�1 − xCu��!
. �A2�

For the final states, when rotation of the cluster is neglected
and only the translation is taken into account, the number of
arrangements is given by

Wfinal = M �A3�

because of the periodic boundary condition. Therefore,
within the Bragg-Williams approximation, configurational
entropy change due to nucleation becomes

�Sconfig

kB
= ln

�Mx� ! �M�1 − xCu��!
�M − 1�!

. �A4�

Finally, applying Stirling’s formula and Taylor expansion
around x=0 to Eq. �A4�, we obtain Eq. �4�.

APPENDIX B

The effective medium approximation of the second-order
moment expression of Eq. �7� is derived. The phonon local
density of states �LDOS� at atom j is first written as

nj	��� = −
2�

�
Im Gj	j	��2 + i0�

= −
2�

�
lim
�→0

Im�	, j�
1

��2 + i��I − D
�	, j� , �B1�

where 	 represents the direction; the Green’s function
Gj	j	��2+ i0� is the resolvent operator ��2I−D�−1 ; I is the
unit matrix; and �	 , j� is the corresponding vibrational state
vector. Green’s function Gj	j	 can be expanded as a contin-
ued fraction

Gj	j	��2� =
1

�2 − a0 −
b1

2

�2 − a1 −
b2

2

�2 − a2 − ¯

, �B2�

where coefficients 
an� and 
bn� are determined from the or-
thonormality property of the new basis with starting vector
�	 , j�. This scheme, the “excursion method,”39,40 has been
applied to the calculations of the electronic and vibrational
DOS of surface and amorphous materials.41 In terms of the
moment of lattice vibration, truncating the expansion of Eq.
�B2� up to level n corresponds to including the first 2n
moments. For instance, let �0� denote the normalized
starting state �	 , j�, and �1� the next state interacting with the

TABLE III. Calculated static, vibrational, and configurational
entropy contributions for specific configurations 
i. The unit for
energy is eV.

�H+H
 �Fvib −T�Sconfig


4 −0.81 0.33 0.92


10 −3.16 1.06 2.93


15 −5.94 1.74 4.65

TABLE IV. Calculated activation free energy �F*, critical num-
ber n*, driving force without configurational entropy FD, and inter-
face energy Fs using �Fconfig �no vib� and �Ftot �with vib�.

�F* n* FD Fs

�eV� �eV/atom� �J /m2�

�Fconfig 0.09 2 −0.68 0.49

�Ftot 0.62 12 −0.53 0.43
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previous state. Then the first coefficients a0 and b1 satisfy the
following recursion relation:

a0 = �0�D�0� ,

b1 = �1�D�0� . �B3�

Therefore, the associated second-order moment of matrix D
becomes


 j	
�2� = �0�D�0�2 + �0�D�1��1�D�0� = a0

2 + b1
2. �B4�

In the present study, we will expand Green’s function
Gj	j	��2� to the first order and then terminate, namely,

Gj	j	��2� =
1

�2 − a − b2Gj	j	��2�
. �B5�

This is the effective medium approximation of the second-
order moment expansion of Eq. �B2�. Substituting Green’s
function of Eq. �B5� into Eq. �B1� naturally leads to the
semielliptic form of the local density of states, whose center
of gravity and bandwidth are specified by coefficients a and
b, respectively.

Coefficient a is identical to the first moment 
 j	
�1�

= �0�D�0�. For a harmonic crystal, the dynamical matrix D
should have positive eigenvalues and three zero eigenvalues
at �-point associated with a rigid translation of a system.
When we determine coefficient b such that the minimum
vibrational frequency of LDOS equals zero, the expression
of LDOS becomes gj	��2� of Eq. �7�.
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