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Prediction of ground-state structures and order-disorder phase transitions in II-III spinel oxides:
A combined cluster-expansion method and first-principles study
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Ground-state structures of six II-III spinel oxides are predicted by combining the cluster expansion method
and first principles calculations. The ground states of MgGa2O4 and MgIn2O4 are found to be inverse spinels
with a tetragonal lattice, whereas those of MgAl2O4, ZnAl2O4, ZnGa2O4, and ZnIn2O4 are normal spinels with
a cubic lattice. Order-disorder transition behaviors are examined using Monte Carlo simulations. The order-
disorder transition to exchange octahedral and tetrahedral cations takes place as commonly accepted. In inverse
spinels, a new kind of transition to exchange II and III cations in octahedral sites can be recognized, which has
not been reported experimentally. Their transition temperatures are evaluated.
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I. INTRODUCTION

Spinel oxides have been of great interest for many scien-
tists not only due to their electronic and magnetic properties
but also from mineralogical viewpoints. The spinel oxides
have a general formula AB2O4. Cations A occupy one-eighth
of fourfold-coordinated tetrahedral sites in a face-centered-
cubic close-packed oxygen sublattice and cations B occupy
half of sixfold-coordinated octahedral sites in normal struc-
ture. Barth et al. found that some spinels have inverse
configurations, which are represented by a formula of
B�AB�O4.1 Intermediate configurations �A1−xBx��AB2−x�O4

also exist, where round and square brackets denote the tetra-
hedral and octahedral sites, respectively. The degree of inver-
sion x ranges from 0 �normal spinel� to 1 �inverse spinel�. As
temperature increases, spinels, in particular MgAl2O4, were
reported to show disordering to exchange tetrahedral and oc-
tahedral sites using various experimental techniques.2–10

Many studies have been performed to categorize spinels into
normal and inverse structures. Site preference of specific cat-
ions has been examined as well. Experimentally, the ground
states of many spinels, especially the inverse spinels, have
not yet been clarified because thermal equilibrium conditions
are difficult to attain at low temperatures due to very low
diffusion rates. For example, reported structure of MgGa2O4
scatters in a wide range of x values, i.e., 0.67,11 0.75,12

0.81,13 0.84–0.90,14 and 1.1 Additionally, it is often assumed
that the symmetry of MgGa2O4 is the same as that of the
normal spinels, i.e., cubic, but actual symmetry can be dif-
ferent considering a large degree of inversion. From a theo-
retical approach using an empirical model of electrostatic
energy, II-III spinels with a larger internal parameter were
estimated to have lower Madelung energy.15 Larger cations
were thought to prefer the tetrahedral site. The site prefer-
ence depending on the number of d electrons in transition
metal spinels were also discussed within the ligand field
theory.16,17 These classical calculations have indicated that
the structure of the spinels is determined by the balance of
many contributions such as the Madelung energy, the Born
repulsive energy, ordering energy of cations, site preference
energy, and polarization energy. The complexity renders
quantitative determination of structural properties difficult.
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Recent progress in first principles techniques makes it
possible to predict material properties even in complicated
systems quantitatively and systematically. For instance,
structural properties of 18 compounds of II-III and IV-II
spinels with normal and inverse structures were
investigated18 with the special quasirandom structure �SQS�
models.19 However, information obtained by a simple first
principles calculation is limited to zero temperature for fixed
alloy structures. Ground state structures are difficult to
achieve in general due to the limitation in the size and num-
ber of models considered. An elaborate approach is neces-
sary to elucidate them. We used the cluster expansion
method,20–22 which is often applied for phase diagram
calculations.23–25 Effective Ising Hamiltonian, which is de-
pendent on lattice configuration, can be made from first prin-
ciples total energies. Once the Hamiltonian is constructed,
the ground state can be determined by searching the mini-
mum energy in lattice configurations. Combining statistical
mechanics methods such as Monte Carlo simulations or
mean field approximations with the cluster expansion, the
order-disorder phase transition can also be evaluated. In our
previous study of MgAl2O4,26 the ground state and order-
disorder transition behavior were quantitatively reproduced
using this combined approach. In the present paper, we re-
port a systematic study on ground states and phase transition
behavior of six II-III spinel oxides, MgAl2O4, MgGa2O4,
MgIn2O4, ZnAl2O4, ZnGa2O4, and hypothetical ZnIn2O4.

II. METHODOLOGY

Within the cluster expansion formalism, configurational
states are characterized by pseudospin configuration valu-
ables �i for respective lattice sites i. Any function of the
discrete configuration variables � can be expanded in poly-
nomials called cluster functions ��. The cluster function ��

is simply defined as the product of configuration valuables �i
which form a cluster �,

�� = �
i��

�i, �1�

in addition to the empty cluster function �0=1. The configu-

rational energy E can be expanded in cluster functions, and
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by averaging them, one can obtain the equation of

E = �
�

v����� , �2�

where the coefficients v� are called effective cluster interac-
tion �ECI� with clusters �. The volume V can be also ex-
panded as

V = �
�

V����� , �3�

where V� are coefficients of the cluster functions ��. In the
present study, the oxygen atoms were not included explicitly
in the cluster expansion, and we defined the up and down
spins as the divalent and trivalent cations, respectively. The
ECI can be determined by least-square fitting of Eq. �2� or
Eq. �3� to the total energies or volumes of ordered structures
obtained by the first-principles technique.

For the calculation of the total energies, we used the pro-
jector augmented-wave �PAW� method27,28 within the local
density approximation �LDA�29,30 as implemented in the Vi-
enna ab initio simulation package �VASP�.31–33 We calcu-
lated the total energies of 138 ordered structures selected
randomly for each compound of the spinels. The Ga-d and
In-4d states were treated as the part of valence. k points were
sampled on the basis of the Monkhorst-Pack scheme34 with
2�2�2 grids. The plane-wave cutoff energy was set at
500 eV. Atomic positions and lattice constants were relaxed
until the residual forces became less than 0.005 eV/Å.

In the cluster expansion, the cross-validation score
�CV�35,25 can be a criterion of the judgment whether a se-
lected set of ECI reproduces the physical properties well.
Focused on a cluster expansion for configurational energy,
the CV is expressed as the root mean square of differences
between those calculated from first principles and the ener-
gies predicted from the cluster expansion,

�CV�2 =
1

N
�
m=1

N

�ÊCE
�m� − EFP

�m��2, �4�

where EFP
�m� indicates the energy of an order structure m cal-

culated from first principles, and ÊCE
�m� is the energy of the

structure m predicted from the cluster expansion without us-
ing first-principles calculated energy of the structure m. A set
of clusters should be selected so that the CV is minimized. In
this work, we employed a genetic algorithm �GA�,36,37 where
the information of candidate cluster expansion is lined up as
genetic information. This makes it possible to optimize a set
of correlated clusters to provide the minimum value of the
CV rapidly and precisely. In this study, the mutation rate and
the population size were set at 0.05 and 25, respectively. We
selected 24 clusters from 94 clusters up to quadruplet that are
possible within the unit cell. The CV reached less than
1.5 meV/cation for all the compounds of spinels. Once the
best ECI are known, one can calculate finite temperature
thermodynamic properties using statistical mechanics meth-
ods.

Finite temperature thermodynamic properties were evalu-
ated using canonical Monte Carlo �MC� simulations with the

38
Metropolis algorithm. Supercells for the MC simulations
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were constructed by 10�10�10 expansion of the unit cell,
which contain 24 000 cations. We performed the simulation
on 8000 MC steps per cation up to 2000 K to calculate ther-
modynamic averages after equilibration.

III. RESULTS AND DISCUSSION

A. Ground states

Once the ECI are obtained, the ground state of each com-
pound of the spinels can be predicted in a straightforward
manner. The ground state corresponds to the structure having
the minimum formation energy. In A�II�B�III�2O4 spinel, the
formation energy measured from the energy of the normal
structure is expressed as

�E = E�A1−xBx��AxB2−x�O4
− EAB2O4

, �5�

where E�A1−xBx��AxB2−x�O4
is the energy of a cation-exchanged

spinel and EAB2O4
is the energy of the normal structure. Fig-

ure 1 shows the formation energies for all possible configu-
rations within the unit cell of 56 atoms using the effective
Hamiltonian constructed by the ECI in the six spinels. The
ground states of the spinels obtained from the formation

FIG. 1. Predicted formation energies using the ECI for all pos-
sible configurations within the 56 atom-unit cell in the six spinels.
energies are summarized in Table I. MgAl2O4, ZnAl2O4,
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ZnGa2O4, and ZnIn2O4 are predicted to be the normal
spinels, while for MgGa2O4 and MgIn2O4, inverse configu-
rations are obtained in consistency with experimental reports
and the previous calculation.18 We confirmed that the same
ground states appeared in the simulated annealing as will be
described later. Calculated lattice constants of the spinels are
also shown in Table I. For the inverse spinels, detailed
atomic configurations have not been determined by experi-
ments. In the present study, the inverse structures at the
ground states of MgGa2O4 and MgIn2O4 are found to be the
same, which are shown in Fig. 2 along with the normal struc-
ture. All tetrahedral sites are occupied by Ga or In cations,
and every tetrahedron which consists of nearest-neighbor oc-
tahedral sites has two Mg cations. The anisotropic distribu-
tion of divalent and trivalent cations at the octahedral sites
lowers the symmetry from cubic to tetragonal.

B. Order-disorder transition behavior

Phase transition behavior can also be examined using the
known ECI. Figure 3 shows calculated temperature depen-
dence of the degree of inversion for the six spinels. The
degrees of inversion in the normal and inverse spinels at the
ground state, obtained by simulated annealing to 0 K, corre-
spond to zero and one, respectively. The same ground-state
structures as those predicted by the ground-state searches
within the unit cell were found. As temperature increases, the

TABLE I. Predicted ground states and lattice constants of the si
lattice constants are reproduced from Ref. 39.

Formula

Ground state

Calc. Expt.

MgAl2O4 Normal �Fd3m� Normal

MgGa2O4 Inverse �P4322� Intermediat

MgIn2O4 Inverse �P4322� Inverse

ZnAl2O4 Normal �Fd3m� Normal

ZnGa2O4 Normal �Fd3m� Normal

ZnIn2O4 Normal �Fd3m�
aReported structure scatters in a wide range of the degree of invers

FIG. 2. �Color online� Crystal structures of �a� the normal spinel
and �b� the inverse spinel predicted for the ground state of
MgGa2O4 and MgIn2O4 are also shown. The symmetry of inverse
configuration is tetragonal �P4322�, where all tetrahedral sites are
occupied by trivalent cations, and every tetrahedron which consists

of nearest-neighbor octahedral sites has two divalent cations.
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degree of inversion increases and will converge to 2/3 at the
high temperature limit. Experimental data for the degree of
inversion is available only for MgAl2O4,2–10 which agrees
well to the present calculation also as shown in our previous
paper.26 For the Zn spinels with the normal structure, the
degree of inversion increases in the order of ZnAl2O4,
ZnGa2O4, and ZnGa2O4. In the case of the Mg spinels,
MgAl2O4 with the normal structure shows a degree of inver-
sion as large as ZnIn2O4. MgGa2O4 and MgIn2O4 with the
inverse structure show nearly the same degree of inversion.
This tendency suggests the preference of the tetrahedral site
is Zn� In�Ga�Mg�Al, which is not compatible with a
proposed trend that the larger ions prefer the tetrahedral
sites in II-III spinels;15 the radii of fourfold-coordinated ions
are In�0.76 Å��Zn�0.74 Å��Mg�0.71 Å��Ga�0.61 Å�
�Al�0.53 Å�.40

In these spinels, the order-disorder transitions to exchange
the tetrahedral and octahedral sites can be recognized. The
transition temperature was defined as a maximum of the spe-
cific heat. The specific heat at a constant volume Cv at a
temperature T can be calculated from the variance of the
energy obtained from the known ECI and Eq. �2�. It is ex-
pressed as

Cv = �1/kBT2���E2� − �E�2� , �6�

where kB denotes the Boltzmann constant. The angel brack-
ets indicate the average taken over MC trial steps. The left

nels along with experimental data. The experimental structures and

Lattice constant �Å�

a �Calc.� c �Calc.� a �Expt.�

8.034 8.083

8.212 8.200 8.280

8.794 8.803 8.810

8.018 8.086

8.261 8.330

8.837

s shown in Sec. I �Refs. 1 and 11–14 �.

FIG. 3. Calculated temperature dependence of the degree of
x spi

ea
inversion x in six spinels.
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column of Table II shows the resultant transition temperature
for the six spinels. The transition does not happen up to
2000 K in the case of ZnAl2O4 spinel, while the others, in-
cluding both normal and inverse spinels, show order-disorder
transitions.

In similar fashion with the cluster expansion for the for-
mation energy, once the ECI for the volume are obtained, the
volume at a certain degree of inversion can be calculated
from the average cluster function over MC steps. The CV for
the volume reached less than 0.02 Å3/unit cell for all the
compounds of spinels. Figure 4 shows the dependence of the

TABLE II. Estimated transition temperatures Tc to exchange
tetrahedral and octahedral sites and to exchange octahedral and oc-
tahedral sites.

Formula Tc �tetra-octa� �K� Tc �octa-octa� �K�

MgAl2O4 860

MgGa2O4 1300 270

MgIn2O4 1100 310

ZnAl2O4 �2000

ZnGa2O4 1600

ZnIn2O4 700

FIG. 4. The dependence of volume on the degree of inversion in
�a� normal and �b� inverse spinels. The degrees of inversion at 0 K
in the normal and inverse spinels correspond to zero and one,

respectively.
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volume on the degree of inversion for the six spinels. In the
normal spinels of ZnAl2O4 and ZnGa2O4, the volume in-
creases as the degree of inversion increases. In the normal
spinels of MgAl2O4 and ZnIn2O4 and the inverse spinels of
MgGa2O4 and MgIn2O4, the volume decreases as the degree
of inversion increases. Experimental data for the dependence
of volume on the degree of inversion is available only for
MgAl2O4,4 which agrees well to the present calculation.

Another interesting phase transition unknown experimen-
tally is found at lower temperature in the inverse spinels of
MgGa2O4 and MgIn2O4, which is the order-disorder transi-
tion to exchange II and III cations in the octahedral sites. The
transition is attributed to the fact that a half of octahedral
sites are occupied by II cations and the other half of octahe-
dral sites are occupied by III cations at the ground state. The
two kinds of cations at the octahedral sites exchange above
the transition temperature. Figure 5 shows temperature de-
pendence of the Warren-Cowley short-range order �SRO�
parameter41 for the second nearest octahedral-octahedral pair
in the inverse spinels, determined by MC simulations at a
finer interval of 10 K in temperature range of 200–500 K.
The transition involves the change of the symmetry from
tetragonal to cubic. As can be seen in the insets of Fig. 4�b�,
the tetragonal to cubic transition is associated with a finite
volume gap. The right-hand column of Table II lists the tran-
sition temperatures. The transition occurs at 260 K and
310 K in MgGa2O4 and MgIn2O4, respectively, which are
much lower than the transition temperature to exchange the
tetrahedral and octahedral sites. Therefore, the phase transi-
tion to exchange the tetrahedral and octahedral sites should
occur as the transition to exchange the tetrahedral and disor-
dered octahedral sites.

IV. CONCLUSIONS

We determined the ground states of the six II-III spinel.
MgGa2O4 and MgIn2O4 have inverse configurations, of
which symmetry is found to be tetragonal. We also investi-
gated phase transition behavior in the six spinels up to

FIG. 5. Calculated temperature dependence of the Warren-
Cowley SRO parameter for the second nearest octahedron-
octahedron pair in the inverse spinels.
2000 K. The order-disorder transition to exchange tetrahe-
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dral and octahedral sites was seen in both the normal and
inverse spinels. In the inverse spinels, we found that the
phase transition occurs with two steps sequentially. They are
�1� the cation disordering to exchange octahedral sites in
conjunction to the change in symmetry from tetragonal to
cubic starting from the ground state, and �2� the transition to
exchange the tetrahedral and the disordered octahedral sites.
184117
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