Interlayer tunneling spectroscopy for deeply underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$: Spectroscopic evidence for inhomogeneous superconductivity

Yamada, Y; Suzuki, M

PHYSICAL REVIEW B (2006), 74(5)

Copyright 2006 American Physical Society

Kyoto University
Interlayer tunneling spectroscopy for deeply underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$: Spectroscopic evidence for inhomogeneous superconductivity

Yoshiharu Yamada and Minoru Suzuki

Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan

(Received 15 June 2004; revised manuscript received 17 May 2006; published 17 August 2006)

By using a small mesa structure and a short-pulse technique, we have measured the interlayer tunneling spectra of deeply underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ with a T_c of \sim40 K realized by partially substituting Sr with La. The superconducting peak observed at around 60 meV is extraordinarily small and broad, presenting a sharp contrast to the optimally doped or slightly overdoped case. The most striking feature is, however, that the tunneling conductance displays a stepwise incremental change as T decreases across T_c in the wide voltage range observed. This behavior indicates that the superconducting state in the deeply underdoped region is inhomogeneous and phase separated on a length scale of less than several tens of nm.

DOI: 10.1103/PhysRevB.74.054508

PACS number(s): 74.50.+r, 74.72.Hs, 74.25.Jb

I. INTRODUCTION

It is now well known that high-T_c superconductivity occurs when charge carriers are doped into a parent Mott-insulating cuprate. In order to elucidate the mechanism of superconductivity in cuprates, it is important to understand how electronic states evolve with the carrier doping when the system changes from a Mott insulator to a superconductor. Recent research into the vicinity of the Mott insulating state has revealed anomalous electronic properties.\cite{1,2} For example, an unexpected metallic behavior was observed in the in-plane resistivity ρ_{ab} in lightly doped La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) near room temperature, even though its magnitude is far greater than the Mott limit.\cite{1} Besides, angle-resolved photoemission spectroscopy measurements for lightly doped LSCO have revealed Fermi arcs in the zone-diagonal directions in k space,\cite{2} which partially explains the metallic behavior observed near room temperature. These anomalous features are considered to reflect a stripe structure,\cite{3} a topological inhomogeneity in the normal state. Associated with these results, we are extremely concerned with the possibility of inhomogeneous superconducting (SC) states for high-T_c cuprates. It is, however, a very difficult challenge to confirm that the SC state is inhomogeneous on a fine scale because the superconductivity makes all the sample dimension meaningless due to the disappearance of resistivity. Nonetheless, it is possible if we employ a stack of intrinsic Josephson junctions (IJJ’s),\cite{4} tunnel junctions built in a layered crystal structure itself. In this paper, we present evidence for the inhomogeneous SC state in a deeply underdoped (lightly doped) Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$(Bi2212) system based on tunneling spectroscopic experiments.

As long as surfaces are concerned the topological inhomogeneity of the SC state can be probed by the scanning tunneling spectroscopy and scanning tunneling microscopy (STS-STM) technique. As for the bulk, it can be probed by interlayer tunneling spectroscopy (ITS) technique. This technique utilizes naturally built tunnel Josephson junctions in a layered crystal structure and hence probes the bulk properties.\cite{5,6} This can be contrasted with the STS-STM technique, which probes only into the surface. We have adopted the ITS technique to study the SC state of deeply underdoped Bi2212.

II. EXPERIMENTS

The single crystals used for the ITS measurements were grown by the CuO self-flux method. The starting composition was Bi$_{2+y}$Sr$_{1.98}$La$_{0.02}$CaCu$_2$O$_{8+\delta}$ and the analytical composition of the crystals grown was Bi$_{2+0.01}$Sr$_{1.79}$La$_{0.38}$Ca$_{0.65}$Cu$_{1.92}$O$_{8+\delta}$ by energy-dispersive x-ray analysis. The discrepancy between the nominal and actual compositions is similar to the case of Y-substituted Bi2212 crystals.\cite{6} X-ray diffraction analysis of a single crystal reinforced the absence of impurity phases. The T dependence of the ab-plane resistivity ρ_{ab} for these crystals showed a broad SC transition; in many cases, ρ_{ab} started to drop rapidly at 90 K and the temperature at which ρ_{ab} becomes zero ranged from 30 K to 80 K from crystal to crystal. However, for a number of small mesa samples fabricated from these crystals, a rather sharp resistive transition was observed at a T_c ranging from 30 K to 90 K, which implies that a homogeneous underdoped region is eventually extracted on the scale of the mesa dimension of 10 μm.

Small and thin mesa structures were engraved on a cleaved crystal surface by the standard photolithograph and Ar-ion-milling technique. The thickness of a mesa is approximately 15 nm and the lateral dimensions are 10 \times 10 μm2 typically. After the Ar ion milling, a 350-nm-thick SiO insulating layer was deposited by the self-alignment
method. A 350-nm Au upper electrode was finally deposited and patterned by the lift-off method. The schematic of a mesa structure is shown in the inset in Fig. 1. The c-axis resistivity ρ_c was determined from the mesa resistance R_c using the mesa dimensions. ITS measurements were carried out by the short-pulse method. Employing short pulses is requisite to reduce the self-heating effect sufficiently. The voltage values acquired were smoothed to give numerical differential $dI/dV-V$ curves.

III. RESULTS

A. c-axis resistivity ρ_c: Zero-bias tunneling conductance

Figure 1 shows the ρ_c-T characteristics for three typical samples (samples A–C) with different T_c’s fabricated from La-doped Bi2212 crystals. The semiconductive T dependence, which is due to the pseudogap development, is seen in the whole T range above T_c. These samples exhibit a sharp resistive transition at 35 K, 44 K, and 52 K. The scatter of T_c values is probably caused by the variation of the amount of La substitution among these mesas. For the doping level p for these samples, the parabolic formula

$$T_c/T_c^{\text{max}} = 1 - 82.6(p-0.16)^2$$

is applied with $T_c^{\text{max}} = 95$ K to provide an estimate of p ranging from ~ 0.07 to ~ 0.09. The residual resistance seen below T_c represents the contact resistance R_{cont} between the upper electrode and the mesa structure. Since the influence of R_{cont} on the magnitude of the energy gap is estimated to be less than 10%, R_{cont} is neglected in the analysis which follows.

Figure 2 shows oscilloscope images of the current-voltage ($I-V$) characteristics at 7 K for the samples in Fig. 1. From these $I-V$ characteristics, the maximum Josephson current densities J_c at 7 K for samples A, B, and C are evaluated to be 100 A/cm2, 240 A/cm2, and 300 A/cm2, respectively. These values are one order of magnitude smaller than that for an optimally doped sample. It is also seen that the maximum Josephson current tends to decrease as T_c decreases from sample C to sample A in the La-substituted Bi2212 system. This result is consistent with previous observations that J_c decreases with decreasing doping level in the Bi2212 system. All the samples show $I-V$ curves with hysteretic branches; each branch corresponds to the voltage state of a constituent IJJ in the mesa. For each sample, the critical current magnitude and the voltage spacing for all the branches are almost the same, indicating uniformity of the junctions within a mesa. This rather homogeneous Josephson current together with its increase with increasing T_c reflects that the resistive SC transition observed is not caused by an accidental microshort. This is reinforced by the fact that these characteristics were observed reproducibly for different samples. This uniformity of the Josephson current for the constituent junctions is crucially important in relation to the inhomogeneity length scale, which is discussed later. The number of IJJ’s, N, in each mesa is also found from these $I-V$ characteristics to be $N=8$, 7, and 11 for samples A–C.

Figure 3 shows ρ_c-T characteristics under various magnetic fields parallel to the c axis for a mesa with almost the same T_c as that of sample B at a current density of 1 A/cm2. It is seen that the resistive transition exhibits a notable broad-
enening even in a weak magnetic field of 0.02 T and the mesa is in the resistive state at 0.1 T even at relatively low temperatures. This is anomalous when the present result is compared with the case for a slightly overdoped sample, in which only a small broadening is observed close to \(T_c \). This implies that the interlayer phase coherence is rapidly diminished to a level of a vortex liquid state in the presence of a very weak magnetic field of 0.02 T. The abrupt disappearance of the phase coherence in a weak magnetic field is not simply attributed to the thermodynamic fluctuation effect. Rather, it is likely to be related to a topological inhomogeneity that is observed in granular superconductors. At high fields for \(B > 6 \) T, \(\rho_\perp \) decreases with increasing \(B \), indicating that \(\rho_\perp \) has negative magnetoresistance component. This is related to the pseudogap that leads to the semiconductive \(T \) dependence for \(\rho_\perp \).

B. Tunneling spectra

Figures 4(a) and 4(b) show the \(I-V \) characteristics for sample \(B \) measured by the 300-ns-time-scale short-pulse method at various temperatures above and below \(T_c \), respectively. In this figure, the abscissa scale represents the single-junction voltage. Above \(T_c \), the nonlinearity of the \(I-V \) curve becomes gradually enhanced with decreasing \(T \), reflecting the evolution of the pseudogap. Below \(T_c \), on the other hand, it is seen in Fig. 4(b) that the quasiparticle current at a fixed \(V \) increases with decreasing \(T \) in the whole \(V \) range observed. This behavior is clearly at variance with the usual behavior in which the current decreases below \(T_c \) since the gap structure develops at low \(T \) (Refs. 12 and 13).

Figure 5 shows \(dl/dV \)-\(V \) curves numerically obtained from the data in Fig. 4 at various temperatures. The abscissa scale also indicates the single-junction voltage. In these tunneling spectra, a sharp SC peak is not seen even at low \(T \) unlike the case for optimally doped or slightly overdoped samples; instead, a broad shoulder structure is seen at around 60 mV at 5 K. Since this structure diminishes as \(T \) increases and disappears near \(T_c \), it is accepted that this shoulder structure reflects the SC peak of \(2\Delta \approx 60 \) meV. The \(V \)-shaped background structure represents the pseudogap. If the pseudogap peak is located outside the range observed, the pseudogap magnitude defined as half the peak separation is much greater than 280 meV. This result clearly excludes the possibility that the pseudogap is a precursor of the SC gap. This feature presents a sharp contrast to those observed in the Bi2212 system near the optimal doping level. Moreover, the zero-bias conductance of about 0.01 S seems to decrease very little or remains almost unchanged when \(T \) falls even below \(T_c \). This value is about 20\% of the normal-state conductance at 240 K. When we take into account that we are dealing with IJJ’s in single crystals, it is difficult to ascribe the undiminished zero-bias conductance to imperfections involved in junctions. Rather, it is very likely that these characteristics are attributable to the nature intrinsic to deeply underdoped crystals.

Furthermore, the tunneling characteristics in Fig. 5 display a totally unknown behavior in that \(dl/dV \) increases significantly with decreasing \(T \) in an extended \(V \) range. Figure 5(c) shows the \(T \) dependence of \(dl/dV \) at \(V=100 \) mV and 200 mV, representing a stepwise increase below \(T_c \). These features observed for deeply underdoped mesas are difficult to understand in terms of a homogeneous tunnel Josephson junction and homogeneous superconductivity in CuO\(_2\) planes.

Figure 6 shows a set of \(dl/dV \)-\(V \) curves for sample \(C \) whose \(T_c \) of 52 K is higher than sample \(B \) by 8 K. As shown...
in this figure, it is a common behavior for the La-substituted deeply underdoped Bi2212 samples that \(\frac{dI}{dV} \) increases significantly with decreasing \(T \) in an extended \(V \) range. Compared with the characteristics in Fig. 5(a), a small SC peak rather than a shoulder structure is seen at around 64 mV in the curves at 5 K and 20 K. This peak is clearly the SC peak and the SC gap magnitude determined from the peak position is 64 meV, which is larger than that of sample \(B \) by \(\sim 4 \) meV. Contrary to the optimally doped or slightly overdoped case, the SC gap magnitude appears to remain almost constant as \(T \) increases from 5 K to 20 K. Above 20 K, the peak structure is totally absent.

Figures 7 and 8 show the \(dI/dV-V \) curves under various magnetic fields \(B \) and at various temperatures for sample \(B \) and \(C \), respectively. In Figs. 7(d) and 8(d), it is clearly seen that the background pseudogap structure is independent of \(B \) for \(B \leq 9 \) T above \(T_c \). The same behavior was seen at different temperatures above \(T_c \). Therefore, we can conclude that the change brought about by applied magnetic fields in Figs. 7 and 8 is caused by the suppression of superconductivity. In Figs. 7(a) and 8(a), it is seen that the shoulder and a small peak structure gradually diminish with increasing \(B \), suggesting again that these structures result from the SC peak. On the other hand, \(dI/dV \) at \(V=0 \), the zero-bias conductance, does not change appreciably with increasing \(B \) up to 9 T. This implies that there is no magnetic-field-induced density

Fig. 5. \(dI/dV-V \) curves (a) below \(T_c \) and (b) above \(T_c \) obtained numerically from the data in Fig. 4 at various temperatures. The dashed lines indicate the curves close to \(T_c \). In contrast to an optimally doped or overdoped case, a sharp SC peak is absent even at low \(T \). (c) The \(T \) dependence of the \(dI/dV \) value at \(V=100 \) mV and 200 mV. The lines are guide to the eyes.

Fig. 6. \(dI/dV-V \) curves for sample \(C \) at various temperatures below \(T_c \). In contrast to sample \(B \), a small SC peak is observed at low \(T \).

Fig. 7. \(dI/dV-V \) curves for sample \(B \) in the presence of different magnetic fields parallel to the \(c \) axis at various temperatures. It is seen in (d) that the background pseudogap structure is independent of \(B \) for \(B \leq 9 \) T. In (a)–(c), a significant \(B \) dependence is clearly seen, presenting a sharp contrast to the overdoped case.
The stepwise increase in the dl/dV magnitude below T_c is the unique consequence of the inhomogeneous SC state in the CuO$_2$ layers. Since it is obvious that the DOS transfer associated with the SC transition is not conserved as seen in Figs. 5 and 6, the stepwise increase in dl/dV by no means reflects an increase in the quasiparticle DOS. It is attributable to inhomogeneous transport on a fine scale. When the SC state is inhomogeneous and NSC regions coexist in the CuO$_2$ planes, the local c-axis interlayer tunneling conductivity σ_t varies spatially and from layer to layer. In this case, the tunneling current in the c-axis direction is no longer uniform on a fine scale within the CuO$_2$ plane. When the doping level decreases and σ_t varies significantly in the c-axis direction, the current is forced to have lateral components to fulfill the continuity condition; i.e., the total current is forced to have lateral components that flow within the CuO$_2$ planes. The lateral current fraction is considered to increase as the fraction of the NSC region increases—i.e., as the doping level decreases profoundly. In the normal state, the current in the lateral direction is dissipative, whereas in the SC state, it flows with no dissipation. Therefore, in the normal state, the voltage drop arises both from the interlayer tunneling and from the dissipation in the CuO$_2$ planes, while in the SC state, most of it arises from the interlayer tunneling. Then, at a constant current, the voltage drop decreases below T_c, exhibiting a stepwise increase in dl/dV. Therefore, a stepwise incremental change in dl/dV below T_c is the consequence of the inhomogeneous superconductivity, and the data in Figs. 5–8 provide its evidence.

To confirm the above-mentioned scenario semiquantitatively, we have calculated dl/dV-V curve based on a simple model in which the lateral current component is represented by an in-plane resistance connected in series with a tunnel junction. In this model, the measured voltage is expressed as follows:

$$V = V_l(I) + R_{ab}(I)I,$$

where $V_l(I)$ is the real I-V characteristics for a tunnel junction and $R_{ab}(I)$ is the I dependent effective in-plane resistance. Here we assume for simplicity that $V_l(I)$ is independent of I below T_c, which seems reasonable since dl/dV is almost T independent for $T_c < T < 80$ K as seen in Fig. 5(b).

We assume further that $R_{ab}(I)=R_0$ at 45 K, where R_0 is a constant, and that $R_{ab}(I) = \alpha(I/I_c - 1)\theta(I/I_c - 1)$ at 5 K, where $\theta(I)$ is the step function. This reflects the fact that the in-plane transport becomes dissipative when I exceeds the critical current I_c. The $V_l(I)$ curve is obtained using the experimental I-V curve together with Eq. (1) and then the I-V curve at a lower T is calculated using $R_{ab}(I)$ at 5 K. Figure 9 shows a fit (dashed line) to the experimental dl/dV-V curve at 5 K for sample B together with the experimental data at 45 K. In the calculation, values of $R_0=43 \Omega$, $I_c=3.5$ mA, and $\alpha = 1.012 \Omega$ mA were used. It is clearly seen that the calculated curve compares with the experimental result pretty well for $V > 100$ mV. The deviation for $V < 100$ mV results from the evolution of the SC gap. Thus the experimental results are explained semiquantitatively in terms of the lateral current component model. Thus, it follows that the results in...
sume that the one-dimensional stripes with the width distance. Here we assume that carriers are confined in quasi-CuO$_2$ planes. The area of the single portion is and those which run at nearly right angles in the underlying regions is R_{ab}, which corresponds to $\sim 10\%$ of the measured resistance. Here we assume that carriers are confined in quasi-one-dimensional stripes with the width W. We further assume that the c-axis tunnel current flows only in the overlapped portions between the stripes in the CuO$_2$ planes and those which run at nearly right angles in the underlying CuO$_2$ planes. The area of the single portion is W^2. Let the average spacing of the stripes be D. Then, the in-plane resistance between the junctions is $R_{ab}=R_{c}/D/W$, where R_{c} is the sheet resistance of the CuO$_2$ bilayer. The tunneling resistance of the W^2 portion is $R_{ab}=\rho_{\text{res}} t/W^2$, where ρ_{res} takes a value somewhat smaller than the c-axis resistivity in the overdoped region and t is the interlayer spacing. Since $R_{ab}/R_{c}=0.1$, we obtain $R_{c}=D/W=0.1 \rho_{\text{res}} t/W^2$ and $\rho_c=(R_c+R_{ab})D^2/t$. If we take values of $t=1.5$ nm, $\rho_{\text{res}}=6.67$ Ω cm, $R_{c}=333$ Ω, and $\rho_c=420$ Ω cm, we obtain $W=63$ nm for the SC regions. This result implies that the length scale of the SC regions is ~ 60 nm.

As shown in Fig. 2, J_c values for IJJ’s in each mesa are relatively uniform. If the size of the SC region is of the order of 1 μm, such uniform J_c as shown in the Fig. 2 would not be expected since the SC regions are thought to be distributed randomly. Therefore, a uniform J_c implies that the length scale of the SC region should be smaller than 100 nm so as to give nearly the same expectation value for the overlapped SC area for each junction as the law of large numbers indicates. This is in agreement with the above-mentioned model calculation results. Furthermore, this seems to be reinforced by the drastic difference of the B dependence of dI/dV between the underdoped and overdoped cases.16 As seen in Fig. 7(b), the dI/dV curve at $B=9$ T approaches that of the normal state at a low T of 20 K. This implies that the vortex state changes to the liquid state under a magnetic field of less than 9 T to make the electrical transport as dissipative as in the normal state. Such an abrupt decrease in the melting point of the vortex solid is likely to occur when the SC state is inhomogeneous and the length scale of the SC regions is much smaller than the penetration depth of $\lambda \sim 200$ nm.

The data in Figs. 3–8 and the model calculation results imply that the inhomogeneous superconductivity is a bulk nature of underdoped cuprates. There are two possible explanations for the origin of this inhomogeneity. One explanation is that the inhomogeneous SC state is a consequence of essential electronic phase separation in the underdoped region. This phase separation can be induced by a conflict between the itinerancy of the carriers and the magnetic ordering in a correlated system. The present experimental results are important in that various models are proposed theoretically for such inhomogeneity in relation to the occurrence of high-T_c superconductivity.3

The other explanation invokes microscopic chemical compositional inhomogeneity. If the La substitution causes a change in the electronic states in that local region, the inhomogeneous superconductivity can be induced. In this case, it is required that the inhomogeneous scale for a single region be less than several tens of nm, as inferred above. The change in the electronic states is considered to be brought about via a lattice deformation or local inhomogeneous charge distribution caused by La substitution in the SrO-BiO block layers. These two factors appear to be involved also in unsubstituted oxygen-reduced underdoped samples.19 Therefore, it is unlikely that the inhomogeneous superconductivity is solely brought about by the La substitution but it is rather essential in underdoped Bi2212 irrespective of the method of doping, though the doping is always accomplished by chemical doping.

Finally, we note that the present results are consistent with our previous report that J_c decreases while Δ increases in the underdoped region20 and with a recent STS surface observation of underdoped Bi2212.21 The latter revealed a granular distribution of two kinds of typically different regions. If we regard these regions as the SC and NSC regions, then in the NSC region, the peak is broad and the gap magnitude is large, reflecting the pseudogap, while in the SC region the conductance peak is sharp, reflecting the SC gap, and its magnitude Δ is 30 meV. This value is consistent with the shoulder structure at around 60 meV in Figs. 5 and 6. The size of the SC regions in the present model is larger than that of the STS results by an order of magnitude. This difference probably comes from the simpleness of the present model.
We have measured the interlayer tunneling spectra of deeply underdoped Bi2212 by partially substituting Sr with La. In the tunneling spectra of deeply underdoped Bi2212, the sharp superconducting peak is absent even at low T. Instead only a shoulder structure or a small peak is found at around 60 meV, which is consistent with the STS result. It is also found that the T dependence of the dI/dV-V curve shows a characteristic shift below T_c. All these features strongly suggest that the superconductivity in underdoped cuprates is essentially inhomogeneous as a bulk nature.

This work was partially supported by the Mitsubishi Foundation, Iketani Science and Technology Foundation, and the 21st Century COE Program Grant of Center of Excellence for Research and Education of Fundamental Technologies in Electrical and Electronic Engineering from Ministry of Education, Culture, Sports, Science and Technology. Y.Y. thanks the Japan Society for Promotion of Science for financial support.

8. I-V characteristics of R_{cont} is nonlinear like $I \propto V^n$ so that $R_{\text{cont}} \propto I^{-1+1/n}$ becomes rather small at higher currents. Moreover, the voltage drop due to the contact resistance is divided by the number of layers. Therefore, the tunneling characteristics for $I > \sim 10$ mA are subjected to little influence of the contact resistance, and hence so is the gap magnitude.
14. A large zero-bias conductance would usually imply a leaky tunnel junction. In the present case, however, it is difficult to attribute this leakage behavior to some defect structures in the tunnel junctions since they are atomically flat intrinsic tunnel junctions built in a crystal structure. Such characteristics are not seen in mesas fabricated from optimally or overdoped crystals.