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The formation energies and electronic structure of native defects in tin monoxide are investigated by
first-principles calculations. Equilibrium defect concentrations, which are obtained using the calculated forma-
tion energies and charge neutrality, indicate that the tin vacancy is the dominant defect under oxygen-rich
conditions. It forms shallow acceptor states, suggesting that the p-type conductivity of tin monoxide originates
from the tin vacancy. The equilibrium concentration of the oxygen interstitial is comparable with the tin
vacancy at elevated temperatures. However, it is hardly ionized and therefore not expected to contribute to the
conductivity. The concentrations of donorlike defects such as the tin interstitial and the oxygen vacancy are low
enough not to compensate holes generated by the tin vacancy.
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I. INTRODUCTION

Tin oxides have two well-known forms: tin monoxide
�SnO� and tin dioxide �SnO2�. SnO2 is a prototypical func-
tional material with a wide variety of applications including
gas sensors and n-type transparent conductive layers, render-
ing it a target of many researches. In contrast, the physical
properties of SnO have not been well explored. SnO has a
specific electronic structure associated with the presence of
divalent tin, Sn�II�, in a layered crystal structure. The unit
cell of SnO is shown in Fig. 1. It is constructed by layered
pyramids which are faced and engage each other alternately.
The pyramid contains one Sn atom on the top of the squared
four O atoms. Electrons spread into the open space between
the layers, which are often called lone pairs.1,2 The presence
of a lone pair is expected to generate characteristic physical
properties.

Recently, Pan and Fu reported the formation of epitaxial
thin films of SnO by electron-beam deposition.3 The films
show p-type conductivity, and the electrical resistance is
18 � cm, in a stark contrast to the n-type behavior of SnO2.
These results are of interest in view of the fact that most
wide-gap oxides with high p-type conductivities thus far re-
ported are based on cupper oxide compounds.4 The native
p-type conductivity of SnO indicates the formation of a sub-
stantial amount of native acceptors. Two candidates can be
considered for native-acceptor-like defects: the Sn vacancy
and the O interstitial. While cation vacancies form more eas-
ily than O interstitials in most metal oxides with densely
packed structures, the layered structure of SnO with the open
spaces surrounded by Sn�II� may facilitate the formation of
O interstitials. There are several reports on the off-
stoichiometry of SnO,3,5 but the defect species relevant to the
off-stoichiometry and/or p-type conductivity are not well un-
derstood. Moreno et al. reported, in their powder crystal
study, that SnO contains a cation deficiency.5 Pan and Fu
also reported the relation between the p-type conductivity
and the degree of the off-stoichiometry in their epitaxial thin
films.3

In the present study, we investigate the origin of p-type
conductivity from the viewpoint of point-defect formation.
Employing first-principles calculations with the supercell ap-
proach, defect formation energies are obtained as functions
of atomic and electronic chemical potentials. We consider the
O interstitial �Oi�, the O vacancy �VO�, the Sn interstitial
�Sni�, the Sn vacancy �VSn�, and the associations of Oi and
VSn in relevant charge states, and determine their thermal
equilibrium concentrations. The electronic structures of the
defects are discussed using one-electronic band structures,
local partial density of states, and squared eigenfunctions.

II. METHOD OF CALCULATION

A. Defect formation energy and transition energy

The formation energy of a defect in a charge state q is
given by6

�Ef�defect,q� = ET�defect,q� − ET�perfect,q�

+ nSn�Sn + nO�O + q��F + EVBM� , �1�

where ET�defect,q� is the total energy of a supercell with a
defect in a charge state q and ET�perfect,q� is the total en-
ergy of a perfect supercell in a charge state q. nSn and nO are
the numbers of Sn and O atoms being transferred to �from�
atomic reservoir to form a defect, and �Sn and �O are the
atomic chemical potentials of Sn and O, respectively. �F is
the Fermi level measured from the valence-band maximum
�VBM�. If q�0 �q�0�, �q� electrons are transferred from
�to� an electron reservoir. The energy at the VBM �EVBM� in
a defective supercell is in general different from EVBM in a
perfect supercell when we use finite size supercells with de-
fects under periodic boundary conditions.7 Especially, the
difference becomes large when the defective model contains
highly charged defects. Therefore, it is necessary to line up
EVBM between the perfect and defective supercells. For this
purpose, average potentials in the perfect supercell �Vav

perfect�
and a bulklike environment which is far from a defect in
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defective supercells �Vav
defect� are used as references.8–10 EVBM

of a defective supercell is written as

EVBM = EVBM
defect = EVBM

perfect + Vav
defect − Vav

perfect, �2�

where EVBM
perfect was obtained by

EVBM
perfect = ET�perfect,0� − ET�perfect, + 1� . �3�

�Sn and �O in Eq. �1� are not independent, but vary between
the Sn-rich and O-rich limits under a constraint by the equi-
librium condition of SnO. The Sn-rich limit corresponds to
the upper limit of �Sn and also the lower limit of �O. It is
assumed to be determined by solid �-Sn—i.e., �Sn=�Sn

�-Sn,
where �Sn

�-Sn denotes the chemical potential of �-Sn. The
O-rich limit should be given by the equilibrium condition
between SnO and SnO2. Therefore �Sn=2�SnO−�SnO2

and
�O=�SnO2

−�SnO, where �SnO and �SnO2
are defined as the

chemical potentials of SnO and SnO2, respectively. The total
energies of �-Sn, SnO, and SnO2 obtained from separate
calculations are used to determine �Sn

�-Sn, �SnO, and �SnO2
. As

a result, �Sn varies by 0.23 eV from the Sn-rich limit to the
O-rich limit, which is calculated by �Sn

�-Sn−2�SnO−�SnO2
.

The formation energies of SnO and SnO2 are calculated as
−2.72 and −5.21 eV, while the values reported by Kılıç and
Zunger with the local density approximation �LDA� are
−3.21 and −6.29 eV.11 The discrepancies can be attributed to
the difference in exchange-correlation potential.

The Fermi level �F in Eq. �1� changes its position within
the band gap. It is determined by the charge neutrality be-
tween concentrations of electrons and holes and charged de-
fects. When we consider the Fermi level as a variable, the
defect transition energy ��q /q�� is described by the Fermi
level where the formation energy for a charge state q equals
to that for another charge state q�—i.e.,

��q/q�� = ��Ef
VBM�defect;q�� − �Ef

VBM�defect;q��/�q − q�� ,

�4�

where �Ef
VBM�defect;q� is the defect formation energy for a

charge state q when �F is at the VBM. Since the band gap
energy Eg is represented by the energy difference between
the VBM and the conduction-band minimum �CBM�, Eg is
written as

Eg = ECBM − EVBM, �5�

where ECBM=ET�perfect,−1�−ET�perfect,0�. The band gap
of the perfect supercell obtained in this way is 0.29 eV,
which corresponds to the one-electron energy gap between
the � and M points in the unit cell, 0.37 eV, as will be
detailed in Sec. III.

B. Computational details

First-principles calculations were performed in the frame-
work of density functional theory within the generalized gra-
dient approximation12 �GGA-PW91� and using plane-wave
projector augmented-wave13 �PAW� method as implemented
in the VASP code.14–16 The radial cutoff for the Sn PAW po-
tential is 1.59 Å and that for the O PAW potential 0.80 Å.
For Sn atoms, the 5s and 5p electrons were described as
valence, whereas for O the 2s and 2p electrons were treated
as valence. The remaining electrons were kept frozen. In
order to obtain theoretical structural parameters of SnO, we
performed geometry optimization for the unit cell. A plane-
wave energy cutoff of 500 eV was chosen. The Brillouin
zone was sampled by a 5	5	4 k-point mesh generated
according to the Monkhorst-Pack �MP� scheme.17 The calcu-
lated structural parameters are listed in Table I along with the
experimental values. The calculated and experimental lattice
constants and the reduced coordinate of Sn atom in the c
direction �u� are in agreement within errors of 3%. For SnO2,
which contains two Sn atoms and four O atoms in the unit
cell, and �−Sn, which contains two Sn atoms in the unit cell,
the same plane-wave energy cutoff with SnO was used. The
Brillouin zones were sampled by 4	4	5 and 15	15
	15 meshes according to the MP scheme, respectively.

The supercells for defect calculations were constructed
from the 48 �4	4	3� unit cells, which correspond to 192
atoms in the case of perfect crystal. Geometry optimization
was performed in fixed lattice constants of a=b=15.42 Å
and c=14.95 Å which were based on the optimized unit-cell
geometry. A plane-wave energy cutoff of 500 eV was chosen
and the k point was sampled only at the � point. The total
energies and the forces were converged to less than 10−5 eV

FIG. 1. �Color online� The crystal structure of SnO. Sn and O
atoms are depicted by the deep gray circles and the light gray �red�
circles, respectively. Four O atoms and one Sn atom form a pyramid
structure on both sides of each layer alternately. The layers are also
stacked alternately.

TABLE I. The lattice constants of SnO and the reduced coordi-
nate of the Sn atom in the c direction.

a �Å� c �Å� u

Calculated 3.885 4.983 0.2326

Experimentala 3.7986 4.8408 0.2369

aReference 18.
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and 0.05 eV/Å, respectively. For charged defects, a jellium
background was employed to neutralize the supercells. The
following charge states were considered: −2 to +4 for Sni, −2
to 0 for VSn and Oi, and 0 to +2 for VO.

III. RESULTS AND DISCUSSION

A. Electronic structure of SnO perfect crystal

The electronic structure of the perfect crystal is investi-
gated as the basis of the subsequent discussion about the
native defects in SnO. Figure 2 shows the calculated band
structure and projected density of states �PDOS� of the per-
fect crystal. The PDOS was obtained by projecting the eigen-
functions onto spherical harmonics around each atom. The
states were normalized by a Sn atom and an O atom. The
integration was made inside each PAW augmentation region
whose radius was approximately equivalent to that of each
PAW potential. The valence electrons outside the spheres
were not considered in the calculations. The Brillouin zone
of the unit cell was sampled by a 15	15	12 k-point mesh
according to the MP scheme, and the eigenvalues were inter-
polated using the improved tetrahedron method.19

As shown in Fig. 2 �left�, SnO has an indirect band struc-
ture. The VBM is located in between the � and M points and
the CBM is located at the M point. In the valence band, the
energy at the � point is very close to the energy of the high-
est occupied point. Experimentally, the optical band gap is
reported to be 2.5–3.4 eV.20,21 In the present calculation, the
smallest direct gap is given at the � point, which is approxi-
mately 2.0 eV. Although the experimental values scatter in a
wide range, a comparison indicates that the present calcula-
tion underestimates the gap by 0.5–1.4 eV, most likely due
to the GGA error.

The PDOS shows that the valence band includes three
characters. The lower-energy region �−9 to −6 eV�, marked

by the blue shadow in the figure, is mainly composed of Sn
5s and O 2p, while Sn 5p and O 2p mainly constitute the
middle region �−6 to −2 eV� shaded in green color. The
higher-energy region �−2 to 0 eV� indicated by the yellow
shadow contains Sn 5s and 5p and O 2p components nearly
equally, but very near the VBM, the contributions of Sn 5s
and O 2p are predominant. In the conduction band, the O 2p
component is relatively small. The states near the CBM are
mainly formed by Sn 5p. These features in band structure are
in a good contrast to SnO2 which has O 2p around the VBM
and Sn 5s around the CBM as major components. Near the
VBM, a large difference in the curvature is recognized be-
tween the �-X, �-M, and �-Z directions. The effective hole
mass in the Z direction near the � point is smaller than in the
M and X directions, suggesting that the p-type conductivity
of SnO is anisotropic. Holes may hop easier via lone pairs in
the interlayer than in the intralayer region.

B. Defect formation energies

Defect formation energies as a function of Fermi level are
shown in Fig. 3. The Fermi level is measured from the VBM
which is set to 0 eV. The CBM—i.e., Eg—is calculated at
0.29 eV using the total energy difference as described in Eq.
�5�. In SnO, two interstitial sites are available in the open
spece between layers, which are surrounded by four and five
Sn atoms, respectively. The present calculations indicate that
the latter site at the center of the pyramid is energetically
more favorable for both Sni and Oi; therefore, those at this
site are shown in the figure.

From the Sn-rich to O-rich limits, the atomic chemical
potential varies in a small energy range of 0.23 eV. VSn, VO,
and Oi show the formation energies of similar magnitude,
and the defects with the lowest formation energy change
from VO under Sn-rich conditions to Oi and VSn under O-rich

FIG. 2. �Color online� Band structure �left� and PDOS �right� of
the unit cell of the SnO perfect crystal. The energy of the highest
occupied band at the � point is set to 0 eV. The highest occupied
state is located between the � and M points. The lowest unoccupied
state is given at the M point. The background of the band structure
and PDOS figures denotes three characteristic energy regions in the
valence band.

FIG. 3. �Color online� Formation energies as a function of Fermi
level. �a� Sn-rich limit. �b� O-rich limit. The numbers alongside the
lines designate the predominant charge states of the defects at the
Fermi level. The black circles give the defect transition energies in
the Fermi level.
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conditions. For VSn and VO, the energetically most favorable
charge states vary with on the Fermi level. The negative- and
positive-charge states indicate that these defects are acceptor
like and donor like, respectively. The defect transition ener-
gies of VSn from −2 to −1 and −1 to 0 are estimated at
�0.1 eV from the VBM, and those of VO from +2 to +1 and
+1 to 0 are at �0.2 eV. Oi shows no defect transition level in
the calculated band gap. Therefore the existence of O inter-
stitials is expected not to contribute to the electric conduc-
tivity. Sni shows both positive- and negative-charge states
near the VBM and CBM, respectively. However, the forma-
tion energy is considerably high compared with the other
defects. Sni will be out of consideration in the following
discussion since the defect concentration is expected to be
much lower than the other defects under thermal equilibrium
conditions.

We also investigated associations of Oi and VSn using su-
percells of the same size. Several possible models containing
the defect pairs are considered. The structures cut from the
supercells after geometry optimization are shown in Fig. 4.
The formation energies are summarized in Table II. Models
�a� and �b� are similar or slightly higher in formation energy
compared with isolated VSn and Oi, which are obtained inde-
pendently, and the model �c� is much higher by more than
1 eV. The model “Farthest” in Table II contains a Sn va-
cancy and an O interstitial which are configured to be far-
thest away from each other in the supercell. This model
shows nearly the same formation energy as the independent
one. Thus, the association energy between VSn and Oi is neg-
ligibly small. In the following discussion, we will focus on
isolated defects, especially their behavior at the O-rich limit
where acceptorlike defects form most easily.

C. Corrected defect formation energies

As mentioned in Sec. III A, the present calculation under-
estimates the band gap by 0.5–1.4 eV. Therefore, the forma-

tion energies of the defects may include some systematic
errors. To correct the errors in the band gap and the forma-
tion energies, ECBM was simply increased to agree with the
experimental band gap. The corrected band gap is given by

Eg�corrected� = Eg�calc� + �Eg, �6�

where Eg�calc� is the calculated gap for the supercell
�0.29 eV�. �Eg is the difference between the experimental
optical band gap and the smallest calculated direct gap
�0.5–1.4 eV�. Here we employ �Eg=1.0 eV, which results
in Eg�corrected�=1.3 eV.

We assume that the defect transition energy is shifted up-
ward following ECBM when the defect state is composed of
atomic orbitals similar to those of the CBM. Usually, in such
a case, the defect transition energy appears near the CBM
since the eigenfunction of the defect transition state hybrid-
izes with the conduction band. Applying this band-gap cor-
rection, the defect formation energy is increased by m �Eg,
where m is the number of electrons at the defect state.22,23

Among the considered defects, we applied this formation
energy correction only to VO since the transition energies are
close to the CBM and the orbital character of the state is
similar to that of the CBM as will be shown in Sec. III E.
The corrected formation energies at the O-rich limit are
shown in Fig. 5. Compared with the results without the cor-
rection as given in Fig. 3, the energy difference between VSn,
VO, and Oi increases with an increase in the Fermi level.

D. Defect concentrations

Using the corrected formation energies, concentrations of
the defects are determined by charge neutrality under ther-
modynamic equilibrium condition. The concentration C of a
defect can be obtained by

C = N exp�− �Hf/kBT� , �7�

where N is the number of sublattice sites per unit volume.
The electron concentration n and the hole concentration p are
approximated from the calculated DOS and the statistics dis-
tribution functions, as follows:

FIG. 4. �Color online� Three possible models containing VSn

-Oi pairs. These structures are cut from the supercells. The Sn and
O atoms are shown as the black and gray �red� circles, respectively.
The Sn vacancy position is depicted as the dashed white circle, and
the O interstitial position is shown in the open space between the
layers in the bottom unit cell.

TABLE II. Formation energies of VSn−Oi pairs with charge
states 0 and −2. They are calculated with the Fermi level at the
VBM. �a�, �b�, and �c� correspond to those in Fig. 4. The “Farthest”
gives the supercell structure containing the defect pair whose de-
fects are configured to be farthest away from each other in the
supercell. The “Independent” gives the sum of the formation ener-
gies of VSn

0 and Oi
0 for the charge state 0 and VSn

2− and Oi
0 for the

charge state 2−.

Charge state

Formation energy �eV�

�a� �b� �c� Farthest Independent

0 2.3 2.3 3.9 2.4 2.3

−2 2.4 2.5 3.5 2.5 2.3
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n = �
ECBM




D���fed�, p = �
−


EVBM

D���fhd� , �8�

where D��� is the DOS. For fe and fh, we used the Fermi-
Dirac distribution as a function of the Fermi level for elec-
trons and holes, respectively. To substitute the sum of values
on a k-point mesh for the integral, we sampled the Brillouin
zone of the unit cell by a 30	30	30 k-point mesh at even
intervals. Then the equations are rewritten as

n = �
i=unoccupied

fe��i,�F� , �9�

p = �
i=occupied

fh��i,�F� , �10�

where �i are the calculated one-electron energies and the in-
dex i is shorthand for the occupied bands for n and the un-
occupied bands for p and the k points on the k-point mesh.
The sum is normalized by the density of the k point and the
volume of the Brillouin zone. The Fermi level �F is consid-
ered as a variable here. The charge-neutrality relation among
C, n, and p is given as

�
�

q�C� − n + p = 0, �11�

where q� and C� give the charge state and concentration of a
defect �, respectively. � denotes one of VSn, VO, and Oi.

In Fig. 6, we show the computed defect concentrations as
a function of temperature at the O-rich limit. In the tempera-
ture range of 300–1000 K, the major defect is VSn

2− and the
Fermi level is mainly determined by the hole and VSn

2− con-
centrations. The electron and VO concentrations are relatively
low and do not affect the Fermi-level position significantly.
Increasing the temperature, the Fermi level goes toward the
VBM, as shown in the shaded region of Fig. 5, and the Oi
concentration becomes comparable with VSn in the high-
temperature region. However, Oi generates no excess holes
or electrons in this Fermi-level range. These results indicate
that the p-type conductivity of SnO originates from VSn.

E. Local electronic structure of defects

In this subsection, qualitative recognition of local elec-
tronic structures in the vicinity of the defects is presented
using supercell band structures, squared Kohn-Sham eigen-
functions, and local PDOS �LPDOS�. These analyses give
intuitive understanding within the one-particle picture. The
results are shown in Figs. 7–9, where 0 eV is set to the VBM
of the perfect supercell and the reference energy of the de-
fective supercells is aligned with that of the perfect supercell
by means of the correction described in Sec. II A. VSn

2−,
VO

2+, Oi
0, and Sni

2+ are selected as representatives of the
respective defect species.

The band structures of the perfect and defective supercells
are shown in the left side of Figs. 7 and 8. Each band below
the band gap is filled with two electrons. The arrows in the
supercell band structures indicate eigenvalues for which the
cross sections of the squared eigenfunctions are drawn in the
right side of Figs. 7 and 8. The contour lines depict an elec-
tron density from 0.001 to 0.04 with 0.001 intervals �Å−3�,
where a squared eigenfunction is calculated so that the inte-
gral with regard to a state over a supercell volume becomes
2.

The perfect supercell band structure shown in Fig. 7�a� is
basically equivalent to that of the unit cell shown in Fig. 2;
the reciprocal space of the supercell is folded 4 times for the
a and b directions and 3 times for the c direction. The direct
band gap at the � point is narrower than that of the unit cell
since the X and M points in the unit cell come to the � point.
In the VBM squared eigenfunction, the electron lone pairs,
centered around Sn atoms, spread into the open space be-
tween the layers. O 2p orbitals polarize along the c direction.
In the CBM squared eigenfunction, Sn orbitals are delocal-
ized between Sn atoms in contrast to the VBM squared
eigenfunction. The VSn supercell band structure shown in
Fig. 7�b� is not so much different from that of the perfect
supercell. In the VSn squared eigenfunction, we can see O 2p
orbitals next to the Sn vacancy rotate by �45°. In the VO
supercell band structure shown in Fig. 8�a�, a defect-induced
band splits off from the CBM. The VO squared eigenfunction
shows that this band remains the orbital character of the con-
duction band. The vacancy site has positive potential and
collects electrons which are derived from Sn 5p orbitals. In

FIG. 5. �Color online� Formation energies as a function of the
Fermi level at the O-rich limit after the band-gap correction. The
shaded area denotes a variable range of the Fermi level at tempera-
tures between 300 K and 1000 K determined from charge
neutrality.

FIG. 6. �Color online� Defect concentrations as a function of
temperature at the O-rich limit. VSn gives the sum of VSn

2−, VSn
−,

and VSn
0. VO gives the sum of VO

2+, VO
+, and VO

0. The concentra-
tions of VSn and VO are dominated by VSn

2− and VO
2+, respectively.

FIRST-PRINCIPLES CALCULATIONS OF NATIVE… PHYSICAL REVIEW B 74, 195128 �2006�

195128-5



the Sni supercell band structure shown in Fig. 8�b�, two
defect-induced bands appear in the band gap and degenerate
at the � point. The Sni squared eigenfunction indicates strong
electron localization around the Sn interstitial. Though these
energy levels are closer to the VBM than the CBM, they are
considered as deep energy levels separated from the conduc-
tion band. The Oi supercell band structure shown in Fig. 8�c�
is similar to that of the perfect supercell. In the Oi squared
eigenfunction, we can identify that the lone pair of the
nearest-neighbor Sn atom, denoted by Sn*, disappears. Fur-
ther discussion is given below on the basis of the LPDOS.
These defective supercell band structures can be classified
into two types. VSn and Oi have no distinct defect-induced
bands inside the band gap. In this case, it is difficult to dis-
cuss the defect transition level using the band structure. In
the cases of VO and Sni, it is relatively easy to have an
intuitive understanding of the defect transition level.

The LPDOS of defective supercells were calculated by
projecting the eigenfunctions onto spherical harmonics
around each focused atom. The integration spheres are
equivalent to those written in Sec. III A. All the values ob-
tained were broadened by a Gaussian function ��=0.1 eV�.

The Brillouin zones of the supercells were sampled by a 5
	5	5 k-point mesh. Figure 9 gives the LPDOS of the in-
terstitial atoms and the nearest-neighbor atoms to the defect
sites. The crystal model in the right top shows the defect sites
as VSn, VO, Oi, and Sni and the nearest-neighbor sites as A, B,
and C.

In the LPDOS figures, Sn 5p and O 2p are divided into
px+ py and pz, where px and py are represented together since
they are symmetrically equivalent. The subscripts x, y, and z
in px, py, and pz correspond to a, b, and c directions, respec-
tively. The LPDOS of the perfect supercell is basically
equivalent to the PDOS shown in Fig. 2 though the LPDOS
gives more information about the orientation dependence.
The px, py, and pz states are distributed in separated energy
regions clearly. In the energy region between −2 eV and
0 eV, it looks that the O 2pz and Sn 5s and 5pz make hy-

FIG. 7. �Color online� Band structures of the perfect and defec-
tive supercells �left� and squared eigenfunctions of the energy levels
at the � point indicated by the arrows in the supercell band struc-
tures �right�. �a� Perfect crystal. �b� VSn

2−.

FIG. 8. �Color online� Band structures of the defective super-
cells �left� and squared eigenfunctions of the energy levels at the �
point indicated by the arrows in the supercell band structures
�right�. �a� VO

2+. �b� Sni
2+. �c� Oi

0.
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bridized states. In between −6 eV and −2 eV, the Sn 5px
+5py and O 2pz hybridize. With regard to the perfect SnO
electronic structure, Walsh and Watson gave detailed reports
based on first-principles calculations.2 Our calculations are
consistent to their results. The LPDOS shapes of the VSn and
VO supercells are similar to that of the perfect supercell.
However, the relative positions of the LPDOS shapes in en-
ergy shift upward for VSn and downward for VO since the
vacancies distort potentials reaching the vicinal atoms. The
states spilling out from the VBM and CBM become accep-
torlike and donorlike shallow defect states, respectively. In
the LPDOS of the Sni supercell, strongly localized Sn 5px

+5py states appear in the energy region above 0 eV. On the
contrary, the LPDOS of the nearest-neighbor Sn and O atoms
are similar to that of the perfect supercell. It is recognized
that the interstitial Sn atom does not significantly disturb the
electronic structure of the neighbors and the Sn interstitial
atom leaves itself isolated. In contrast, the insertion of an O
atom into the interstitial site affects drastically the LPDOS
shape of the nearest-neighbor Sn atom at the A site. In be-
tween −3 eV and 0 eV, the LPDOS at the interstitial site is
relatively high and that at the nearest-neighbor Sn site has
almost disappeared. The nearest-neighbor O atom at the C
site is not considerably affected. This phenomenon is also
confirmed visually by the squared eigenfunction in Fig. 8�c�.
It appears that the interstitial O atom absorbs the lone-pair
electrons around the Sn atom at the A site. In other words,
the O and Sn atoms are ionized to 2− and 4+ in formal
charge, respectively.

IV. SUMMARY

We investigated the formation energies of the native de-
fects in SnO by first-principles calculations. The equilibrium
defect concentrations were estimated from the defect forma-
tion energies. The results obtained in this study can be sum-
marized as follows.

�i� The calculations of the defect and carrier concentra-
tions indicate that the p-type conductivity of SnO originates
from Sn vacancies.

�ii� The equilibrium defect concentrations of the Sn inter-
stitial and the O vacancy are small enough not to compensate
holes generated by Sn vacancies.

�iii� The equilibrium defect concentration of the O inter-
stitial is comparable with that of the Sn vacancy at elevated
temperatures. However, it is hardly ionized and therefore it is
not expected to contribute to the conductivity.

�iv� The interstitial O atom absorbs the lone-pair electrons
of the nearest-neighbor Sn atom. In consequence, it is ex-
pected that the Sn atom becomes tetravalent in formal
charge.
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