Title
Lepton flavor violation with supersymmetric Higgs triplets in the TeV region for neutrino masses and leptogenesis

Author(s)
Senami, M; Yamamoto, K

Citation
PHYSICAL REVIEW D (2004), 69(3)

Issue Date
2004-02-01

URL
http://hdl.handle.net/2433/39897

Copyright 2004 American Physical Society

Type
Journal Article

Textversion
publisher
Lepton flavor violation with supersymmetric Higgs triplets in the TeV region for neutrino masses and leptogenesis

Masato Senami* and Katsuji Yamamoto†
Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan
(Received 20 May 2003; published 23 February 2004)

Lepton flavor violating processes such as $\mu \rightarrow 3e$ and $\mu \rightarrow e \gamma$ are investigated with a supersymmetric Higgs triplet pair $\Delta$ and $\bar{\Delta}$ in light of neutrino masses and experimentally verifiable leptogenesis. The Higgs triplet mass $M_\Delta$ is expected to be in the range of $1–100$ TeV. The branching ratios of these charged lepton decays are evaluated in terms of $M_\Delta$ and the coupling $fL\Delta L$ of the Higgs triplet $\Delta$ with lepton doublet pairs $LL$, which is proportional to the neutrino mass matrix. They may be reached in future collider experiments. In particular, the $\mu \rightarrow 3e$ decay would be observed indicating the existence of Higgs triplets with $M_\Delta \sim 1–100$ TeV for $|f| \sim 0.1–1$, while the $\mu \rightarrow e \gamma$ decay can be significant irrespective of $M_\Delta$ in the supersymmetric model due to the flavor violation in the slepton mass matrices induced by the renormalization effects.

DOI: 10.1103/PhysRevD.69.035004  PACS number(s): 14.80.Cp, 13.35.–r, 14.60.Pq, 98.80.Cq

I. INTRODUCTION

The neutrino masses may be generated naturally by introducing the electroweak Higgs triplet $\Delta$ [1]. The effective higher-dimensional operators $L_iL_jH_uH_u$ of the lepton and Higgs doublets (with indices $i,j$ to denote the generations) are indeed provided by the exchange of a Higgs triplet, as well as the right-handed neutrinos in the usual seesaw mechanism. The lepton number violation with a Higgs triplet or right-handed neutrinos may further realize the generation of lepton number asymmetry, leptogenesis, in the early Universe. Then, the sufficient baryon-to-entropy ratio can be provided from the lepton number asymmetry through the electroweak anomalous effect [2].

Leptogenesis has been investigated extensively in the literature in connection with neutrino mass generation. In most scenarios of leptogenesis via lepton number nonconserving decays the relevant particles such as right-handed neutrinos and Higgs triplets are supposed to be much heavier than the electroweak scale. On the phenomenological point of view, however, these particles are expected to be alive in the TeV region. In this respect, it is interesting that the leptogenesis can be realized with supersymmetric Higgs triplets via multiscalar coherent evolution after the inflation [3,4]. While the Higgs triplet mass $M_\Delta$ was originally supposed to be in the range $10^9–10^{14}$ GeV [3], it has been found by reanalyzing this leptogenesis scenario that the successful leptogenesis is possible even with the Higgs triplet mass in the TeV region $M_\Delta \sim 1–100$ TeV [5]. That is, just after the inflation the lepton number asymmetry appears via multiscalar coherent motion on the flat manifold of a pair of Higgs triplets $\Delta, \bar{\Delta}$ and the antilepton $\bar{e}^c$ in the manner of Affleck-Dine mechanism [6,7]. Then, the lepton number asymmetry is fluctuating during some period, and it is fixed to some significant value due to the effect of the Higgs triplet mass terms. It is here essential for fixing the lepton number asymmetry that the Higgs triplet mass terms should prevail over the negative thermal log term, requiring a condition on $M_\Delta$. This condition can really be satisfied for $M_\Delta \gtrsim 1$ TeV depending on the reheating temperature of the universe $T_R < 10^9$ GeV and the mass scale $\lambda M/\log r \sim 10^{20}–10^{23}$ GeV of the nonrenormalizable superpotential terms for leptogenesis.

In this paper, we present the supersymmetric Higgs triplet model, and describe the neutrino mass generation, discussing how the Higgs triplets in the TeV region can develop naturally the desired tiny vacuum expectation values. In Sec. III, we examine the lepton flavor violating processes and the muon flavor violating terms provided with the Higgs triplets in the light of neutrino masses and experimentally verifiable leptogenesis. The Higgs triplet model will be tested in the feasible experiments, as investigated in the literature for the nonsupersymmetric model with $M_\Delta \sim 100$ GeV–1 TeV [10,11] and the supersymmetric model with $M_\Delta \sim 10^{11}–10^{14}$ GeV through the renormalization effects on the slepton masses [17].

We here investigate these lepton flavor violating effects of the supersymmetric Higgs triplets in the light of neutrino masses and experimentally verifiable leptogenesis. The Higgs triplet mass is expected to be $M_\Delta \sim 1–100$ TeV. This paper is organized as follows. In Sec. II, we present the supersymmetric Higgs triplet model, and describe the neutrino mass generation, discussing how the Higgs triplets in the TeV region can develop naturally the desired tiny vacuum expectation values. In Sec. III, we examine the lepton flavor violating terms provided with the Higgs triplets, including the renormalization effects. In Sec. IV, we investigate the lepton flavor violating processes and the muon anomalous magnetic moment, which are related to each other

---

*Email address: senami@nucleng.kyoto-u.ac.jp
†Email address: yamamoto@nucleng.kyoto-u.ac.jp
through the neutrino mass matrix. Section V is devoted to the summary. The one-loop contributions of supersymmetric Higgs triplets to the charged lepton radiative decay amplitudes are calculated in the Appendix.

II. NEUTRINOS WITH HIGGS TRIPLETS

We investigate an extension of the minimal supersymmetric standard model by introducing a pair of Higgs triplets $\Delta$ and $\Delta$, which are specified in terms of $SU(3)_C \times SU(2)_L \times U(1)_Y$ as

$$\Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^0 & \Delta^-/\sqrt{2} \\ \Delta^0 & \Delta^+ & \Delta^-/\sqrt{2} \\ \Delta^-/\sqrt{2} & -\Delta^+ & -\Delta^-/\sqrt{2} \end{pmatrix} \sim (1,3,1),$$

$$\bar{\Delta} = \begin{pmatrix} \bar{\Delta}^-/\sqrt{2} & \bar{\Delta}^0 & \bar{\Delta}^+/\sqrt{2} \\ \bar{\Delta}^0 & \bar{\Delta}^- & \bar{\Delta}^+/\sqrt{2} \\ \bar{\Delta}^+/\sqrt{2} & -\bar{\Delta}^- & -\bar{\Delta}^+/\sqrt{2} \end{pmatrix} \sim (1,3,-1).$$

The lepton doublets $L_i = (\nu_i, l_i)$, antilepton singlets $\bar{l}_i^c$ ($i = e, \mu, \tau$), and the Higgs doublets $H_u, H_d$ are given as usual. The generic lepton number conserving superpotential for the leptons and Higgs fields is given by

$$W_0 = h_{ij} L_i H_d^j + \mu H_u H_d + \frac{1}{\sqrt{2}} f_{ij} L_i \Delta L_j + M_\Delta \Delta \bar{\Delta},$$

where the lepton basis is taken at the electroweak scale $M_W$ with the diagonal Yukawa coupling $h$, and the dilepton coupling is given by a symmetric matrix $f = f^T$. The lepton numbers are assigned to the Higgs triplets as

$$Q_L(\Delta) = -2, \quad Q_L(\bar{\Delta}) = 2.$$ (4)

Then, the lepton number violating terms may also be included in the superpotential as

$$W_{LV} = \xi_1 H_u \Delta H_u + \xi_2 H_d \Delta H_d.$$ (5)

The Higgs triplets are $R$-parity even, and we here do not consider the $R$-parity violation for definiteness.

The Higgs triplets develop nonzero vacuum expectation values (VEVs) due to the effects of $W_{LV}$ as

$$\langle \Delta^0 \rangle = -c_1 \frac{\langle H_u \rangle^2}{M_\Delta}, \quad \langle \bar{\Delta}^0 \rangle = -c_2 \frac{\langle H_d \rangle^2}{M_\Delta}.$$ (6)

The factors $c_1, c_2 \sim 1$ for $\xi_1 \sim \xi_2$ are determined precisely by minimizing the scalar potential including the soft supersymmetry breaking terms with the mass scale $m_0 \sim 10^3$ GeV ($c_1 = c_2 = 1$ in the limit of $\mu, m_0 \approx 0$). It should be noted here that these VEV’s are induced by the $\xi_1$ and $\xi_2$ couplings explicitly violating the lepton number conservation. Hence the so-called triplet Majoron does not appear from the $\Delta$ and $\bar{\Delta}$ fields, which rather acquire masses $= M_\Delta$. The slepton fields $\tilde{L}_i, \tilde{l}_i^c$ do not develop VEV’s since the $R$-parity is still preserved by the VEV’s of Higgs triplets.

The neutrino mass matrix is provided by the VEV of the Higgs triplet as

$$M_\nu = f \sqrt{2} \langle \Delta^0 \rangle,$$ (7)

which is diagonalized with a unitary matrix $U$ as

$$U^T M_\nu U = \text{diag}(m_1, m_2, m_3).$$ (8)

The charged lepton mass matrix is also given as

$$M_\ell = h \langle H_d \rangle = \text{diag}(m_e, m_\mu, m_\tau).$$ (9)

Here, the flavor structure of leptons is described at $M_W$ by the $f$ coupling with the diagonal $h$ coupling. This neutrino mass matrix (7) should reproduce the masses and mixing angles inferred from the data of neutrino experiments [13–16]. Then, by considering Eqs. (6) and (7) with $m_i \leq 10^{-1}$ eV, a constraint on the magnitude of $f$ coupling is placed roughly as

$$|f| \leq 10^{-1} \left( \frac{\xi}{10^{-10}} \right)^{-1} \left( \frac{M_\Delta}{10^3 \text{ GeV}} \right).$$ (10)

Here, the magnitude of the lepton number violating couplings $\xi_1, \xi_2$ inducing the VEV’s of Higgs triplets may be explained as follows [3]. Suppose that the lepton number/$R$-parity violation originates in the Planck scale physics. Then, it may be provided with certain higher-order effective superpotential terms as

$$W_{LV}' = \xi_1 \frac{\bar{S} H_u \Delta \bar{H}_u}{M_p} + \xi_2 \frac{S H_d \Delta \bar{H}_d}{M_p}$$ (11)

with the reduced Planck mass $M_p = m_p / \sqrt{8 \pi} = 2.4 \times 10^{38}$ GeV. Here, some singlet superfields $S$ and $\bar{S}$ of $R$-parity odd with $Q_L = -1$, respectively, are also considered. The lepton number/$R$-parity violating terms $S H_u H_d$ and $S \Delta \bar{\Delta}$ are hence excluded. These singlet fields may have the lepton number/$R$ preserving superpotential terms,

$$W_S = M_S S \bar{S} + \lambda_S \frac{S S \bar{S} \bar{S}}{M_p},$$ (12)

where the Higgs singlet mass is assumed to be $M_S \sim 10^3$ GeV as well as the Higgs triplet mass $M_\Delta \sim 10^3$ GeV. Without cubic terms for the Higgs singlets, they are considered as flatons [18], and may develop large VEV’s with vanishing $F$ terms $|F_S|, |F_{\bar{S}}| \approx 0$ as

$$\langle S \rangle \sim \langle \bar{S} \rangle \sim \sqrt{M_S M_p} \sim 10^{10} \text{ GeV.}$$ (13)

Then, the lepton number violating couplings $\xi_1$ and $\xi_2$ are derived effectively as

$$\xi_1 = \xi_1' \langle \bar{S} \rangle / M_p, \xi_2 = \xi_2' \langle S \rangle / M_p$$ (14)

with the tiny factor desired for $\xi$ in Eq. (10),

$$\langle S \rangle / M_p, \langle \bar{S} \rangle / M_p \sim \sqrt{M_S / M_p} \sim 10^{-8}.$$ (15)
It is also notable that the smallness of the Higgs triplet VEV’s may be explained elegantly in the context of large extra dimensions [9].

III. LEPTON FLAVOR VIOLATION

We here examine the lepton flavor violating couplings provided with Higgs triplets, including the renormalization-group effects.

A. Yukawa couplings

The lepton basis is taken with the diagonal Yukawa coupling $h$ at $M_W$ in Eqs. (3) and (9):

$$h_{ij} = h_i \delta_{ij} , \quad (16)$$

(Henceforth $M_W$ is omitted for the quantities at the electroweak scale.) Then, the lepton flavor violation, which is provided by the $f$ coupling at $M_W$, is linked directly to the neutrino mass matrix, as seen in Eq. (7) [10,11,17]. This is a very interesting feature of Higgs triplet model. Specifically, the $f$ coupling is given in terms of the neutrino masses ($m_i$), mixing angles ($\theta_{ij}$), and CP violating phases ($\delta, \alpha_1, \alpha_2$) as

$$f_{ij} = |f| \sum_k U^*_{ik} U^*_{jk} (m_k / m_{atm}) , \quad (17)$$

where $m_{atm} = \sqrt{\Delta m^2_{atm}}$ with $\Delta m^2_{atm} \sim 3 \times 10^{-3}$ eV$^2$. The explicit form of the Maki-Nakagawa-Sakata (MNS) matrix $U$ (lepton mixing matrix) [19] is given in a review by the Particle Data Group [20]. The mean magnitude of the $f$ coupling is given suitably by

$$|f| = m_{atm} / \sqrt{\Delta^0} , \quad (18)$$

which is constrained, as seen in Eq. (10), with $\Delta^0$ in terms of $\xi$ and $M_\Delta$.

The flavor violation appears in the $h$ coupling at a certain unification scale $M_G$, such as the grand unification or gravitational scale through the renormalization effects. In the bottom-up view point $M_W \rightarrow M_G$, the relevant couplings at $M_G$ are evaluated with those at $M_W$ as

$$h_{ij}(M_G) = c_h h_i \delta_{ij} + (\Delta h)_{ij} , \quad (19)$$

$$f_{ij}(M_G) = c_{fij} f_{ij} + (\Delta f)_{ij} , \quad (20)$$

where the sum is not taken over $i,j$. The factors $c_h, c_{fij} \sim 1$ are provided by the gauge and $h$ couplings. The remaining terms provided by the $f$ coupling are calculated in the leading-log approximation as

$$(\Delta h)_{ij} = (3/2) h_i (f^j f)_{ij} t_G , \quad (21)$$

$$(\Delta f)_{ij} = 3 (f^i f)_{ij} t_G , \quad (22)$$

where

$$t_G = (1/8 \pi^2) \ln (M_G / M_W) - 0.4 . \quad (23)$$

B. Slepion mass terms

The flavor violation also appears in the soft supersymmetry breaking terms. We may assume the universality of the soft supersymmetry breaking terms at the unification scale $M_G$, i.e., the soft masses of scalar fields are given by the common mass $m_0$, and the $A$ terms are given by $a_i m_0 \bar{a}$ with $a_0 \sim 1$. Then, in the top-down view point $M_G \rightarrow M_W$ the soft mass terms at $M_W$ are calculated particularly for the left-handed slepton doublets $\bar{L}$ and the right-handed charged slepton singlets $\bar{T}$ [17] as

$$(M^2_L)_{ij} = c_{\xi L} m^2_0 \delta_{ij} + (\Delta_{h L} M^2_L)_{ij} , \quad (24)$$

$$(M^2_R)_{ij} = c_{\xi R} m^2_0 \delta_{ij} + (\Delta_{h R} M^2_R)_{ij} . \quad (25)$$

Here, the contributions of the gauge couplings are included in the factors $c_{\xi L}, c_{\xi R} \sim 1$, and those of the $h$ and $f$ couplings are given by

$$\Delta_{h L} M^2_L := - m_0^2 (3 + a_0^2) h^\dagger (M_G) h(M_G)$$

$$- (9 + 3a_0^2) f^\dagger (M_G) f(M_G) t G , \quad (26)$$

$$\Delta_{h R} M^2_R := - m_0^2 (6 + 2a_0^2) h^\dagger (M_G) h(M_G) t G . \quad (27)$$

The $A_{h L}$ term of the $h$ coupling is also given at $M_W$ by

$$(A_{h L})_{ij} = a_h m_0 h_{ij}(M_G) + (\Delta A_{h L})_{ij} \quad (28)$$

with $a_h-a_0$ including the effects of gauge couplings and

$$\Delta A_{h L} = - (9/2) a_h m_0 (M_G) [h^\dagger (M_G) h(M_G)] + f^\dagger (M_G) f(M_G) t G . \quad (29)$$

The charged slepton mass matrix is given in the basis of $\{ \bar{T}, \bar{L}, \bar{R} \}$ by

$$\mathcal{M}_{\xi} = \begin{pmatrix} M^2_{\bar{L}LL} & M^2_{\bar{L}LR} \\ M^2_{\bar{L}RL} & M^2_{\bar{L}RR} \end{pmatrix} , \quad (30)$$

where the submatrices are given by

$$M^2_{\bar{L}LL} = M^2_{\bar{L}LL} + M^2_{\xi} , \quad (31)$$

$$M^2_{\bar{L}RR} = M^2_{\bar{L}RR} + M^2_{\xi} , \quad (32)$$

$$M^2_{\bar{L}LR} = M^2_{\bar{L}LR} = (H_d) A_{h L} + \tan \beta \mu M_{1 L} , \quad (33)$$

with $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$. The sneutrino mass matrix is also given by

$$\mathcal{M}_{\nu}^2 = M^2_{\nu \bar{L}} , \quad (34)$$

where the tiny lepton number violating term related to the Majorana neutrino mass matrix is neglected in a good ap-
proximation. The flavor changing components are particularly calculated in the leading order of $|f|^2$ as

$$\left(\frac{M_{i,j,L,L}}{m_0}\right) = -3(3 + a_0^2)(1 + c_h h^2 G) \Gamma_G (f^i f)_ij,$$

(35)

$$\left(\frac{M_{i,j,L,R}}{m_0}\right) = -6(3 + a_0^2)c_h h^2 G (f^i f)_ij,$$

(36)

$$\left(\frac{M_{i,j,L,R}}{m_0}\right) = -3(3 + a_0^2)(1 + c_h h^2 G) \Gamma_G (f^i f)_ij,$$

(37)

where the values of $f$ and $h$ couplings are taken at $M_W$. It is noticed that these leading contributions of flavor violation are determined essentially by $\Gamma_G (f^i f)_ij$ ($i \neq j$) [17] with the significant log factor $\Gamma_G \sim 0.4$ in the present scheme of $M_\Delta \sim 10^3$ GeV.

IV. CHARGED LEPTON PROCESSES

We investigate the charged lepton processes in order, to which the supersymmetric Higgs triplets in the TeV region may provide significant contributions. Such effects are expected to show the evidence of Higgs triplets particularly related to the neutrino masses and mixings.

A. $\mu \to 3e$ and $\tau \to 3\mu$

The leading contribution to the $\mu \to 3e$ decay is provided at the tree level mediated by the Higgs triplet. The supersymmetric contributions, on the other hand, appear at the one-loop level through the flavor violation in the slepton sectors [21]. They are, however, negligible compared to the tree-level contribution for $M_\Delta \sim 10^3$ GeV. The branching ratio is calculated [22] as

$$\text{Br}(\mu \to 3e) = \frac{|f_{ee} f_{\mu e}|^2}{8 \cdot 4} \left(\frac{M_W}{m_\Delta}\right)^4$$

$$\times 3 \times 10^{-13} \left(\frac{1 \text{ TeV}}{m_\Delta}\right)^4 \left(\frac{|I_{\mu \to 3e}|}{0.01}\right)^2 \left(\frac{|f|}{0.1}\right)^4,$$

(39)

where

$$f_{ee} f_{\mu e} = I_{\mu \to 3e} |f|^2,$$

(40)

and the mass of scalar Higgs triplet is given including the contribution of soft supersymmetry breaking ($c_\Delta \sim 1$) by

$$m_\Delta = \sqrt{M_\Delta^2 + c_\Delta m_0^2}.$$

(41)

FIG. 1. A typical estimate of the branching ratio of $\mu \to 3e$ is shown depending on the Higgs triplet mass $m_\Delta$ for $|f|=1$ and $|f|=0.1$. The experimental bound is, on the other hand, placed as $\text{Br}(\mu \to 3e) < 1.0 \times 10^{-12}$ [23]. The flavor changing factor $|I_{\mu \to 3e}|=0.01$ is taken in Eq. (39) as a reference value. Its value is evaluated precisely from Eq. (17) with the neutrino masses and MNS matrix $U$, which are inferred from the data of neutrino experiments [13–16]. Numerically, we have $|I_{\mu \to 3e}| \leq 0.3$ (IH), $\leq 0.06$ (DG), and $\leq 0.2$ (IH), respectively, for the hierarchical (HI) case $m_1 \ll m_2 \ll m_3$, the degenerate (DG) case $m_1 \sim m_2 \sim m_3$, and the inverted-hierarchical (IH) case $m_1 \sim m_2 \gg m_3$.

A detailed estimate of $\text{Br}(\mu \to 3e)$ is presented in Fig. 1 depending on the Higgs triplet mass $m_\Delta$. Typical values of the neutrino masses and mixings are taken in the HI case as

$$(m_1,m_2,m_3)=(10^{-3} \text{ eV},8 \times 10^{-3} \text{ eV},5 \times 10^{-2} \text{ eV}),$$

$$\sin \theta_{12}, \sin \theta_{23}, \sin \theta_{13} = (1/2,1/\sqrt{2},0.1),$$

and the zero CP violating phases, which provides

$$I_{\mu \to 3e}=0.7 \times 10^{-2}.$$

The upper and lower solid lines represent the results for $|f|=1$ and $|f|=0.1$, respectively. The present experimental bound $1.0 \times 10^{-12}$ and a future sensitivity $\sim 10^{-15}$ achieved by proposed experiments [24] are also shown with the upper and lower dashed lines, respectively. It is interesting here that the $\mu \to 3e$ decay evidence of Higgs triplets may be seen up to the mass $M_\Delta=m_\Delta=100$ TeV for $|f| \sim 1$. This will be promising especially for obtaining the experimental evidence of lepto genesis in TeV region with the supersymmetric Higgs triplets. On the other hand, as discussed later, the Higgs triplet contributions to the $\mu \to e \gamma$ decay are significant even for $M_\Delta \gg 100$ TeV through renormalization effects.

The branching ratio of $\tau \to 3\mu$ is also estimated as

$$\text{Br}(\tau \to 3\mu) = 2 \times 10^{-13} \left(\frac{1 \text{ TeV}}{m_\Delta}\right)^4 \left(\frac{|I_{\tau \to 3\mu}|}{0.2}\right)^2 \left(\frac{|f|}{0.1}\right)^4,$$

(42)

where
\[ f_{\mu\mu}^\gamma f_{\tau\tau} = I_{\tau-3\mu} |f|^2. \] (43)

We have numerically \(|I_{\tau-3\mu}| \approx 0.1-0.3\) (HI), \(\approx 0.1-0.2\) (DG), and \(\approx 0.1-0.3\) (IH), respectively. This Higgs triplet contribution to the \(\tau \to 3\mu\) decay is far below the experimental bound \(\text{Br}(\tau \to 3\mu) < 3.8 \times 10^{-7}\) [25] for \(m_\Delta \sim 1\) TeV and \(|f| \approx 0.1\). Similar estimates are made for the leptonic three-body decays, \(\tau \to e\mu\mu\), and so on [11].

### B. \(\mu \to e\gamma\) and \(\tau \to \mu\gamma\)

The flavor changing radiative decays such as \(\mu \to e\gamma\) and \(\tau \to \mu\gamma\) are induced by the one-loop diagrams. In the Higgs triplet model, the nonsupersymmetric contribution is given by the \(L-\Delta\) loop, which is almost independent of the mass of the internal lepton for \(m_\ell < m_\Delta\) [10,11]. The supersymmetric partner of this contribution is given by the \(\bar{L}-\bar{\Delta}\) loop. The flavor violation appears even in the internal slepton line through the renormalization effects, though it is suppressed due to the contribution of the \(L-\Delta\) loop. The flavor violation in the slepton mass matrices also provides the supersymmetric contributions of the \(T\chi^0\) (neutralino) and the \(\nu\chi^-\) (chargino) loop, as in the minimal supersymmetric standard model [21]. For the case of very large Higgs triplet mass such as \(M_\Delta \sim 10^{11}-10^{14}\) GeV, the \(T\chi^0\) and \(\nu\chi^-\) contributions are negligible due to the suppression factor \((m_0/M_\Delta)^2\).

On the other hand, for the case of \(M_\Delta \sim m_0 \sim 1\) TeV, as motivated for the direct detection of Higgs triplet, these contributions may be comparable.

In this interesting case of \(M_\Delta \sim m_0 \sim 1\) TeV, we investigate the charged lepton radiative decays and their intimate relation to the leptonic three-body decays of charged leptons through the neutrino mass matrix proportional to the \(f\) coupling. In particular, the supersymmetric contributions of the \(T\chi^0\) and \(\nu\chi^-\) loops may become most significant for a certain range of the model parameters, while those of the \(\bar{L}-\bar{\Delta}\) loop are comparable to or even larger than their nonsupersymmetric partners of the \(L-\Delta\) loop for \(M_\Delta = M_\Delta < m_\Delta\) and \(m_\Delta \sim m_0 \sim 1\) TeV. Then, the relations between the decays \(\mu \to 3e\), etc., and the decays \(\mu \to e\gamma\), etc., as found in the nonsupersymmetric case [10,11], may be modified to some extent, since the radiative decays are enhanced due to the supersymmetric contributions [17] with the log factor \(\log \Delta \approx 0.4\).

We now estimate the branching ratio of the \(\mu \to e\gamma\) decay. The decay amplitude is generally given by

\[
T(\mu \to e\gamma) = e^{\alpha\beta} \bar{u}_\mu [i\sigma_{\alpha\beta}q^\beta(A_L P_L + A_R P_R)] u_\mu .
\] (44)

Then, the decay rate is given by

\[
\Gamma(\mu \to e\gamma) = \frac{e^2}{16\pi} m_\mu^3 (|A_L|^2 + |A_R|^2),
\] (45)

and the branching ratio is calculated by

\[
\text{Br}(\mu \to e\gamma) = \frac{\Gamma(\mu \to e\gamma)}{G_F m_\mu^2 / 192\pi^3}.
\] (46)

The left-handed and right-handed decay amplitudes are calculated in the leading order by combining the one-loop contributions:

\[
A_{L,R} = A^0_{L,R} + A^\Delta_{L,R} + A^\Delta_{L,R}.
\] (47)

The formulas for calculating the contributions \(A^0_{L,R}\) and \(A^\Delta_{L,R}\) of the neutralinos and charginos are presented in the literature [21]. The contributions \(A^\Delta_{L,R}\) of the supersymmetric Higgs triplets are calculated in the Appendix. Then, the decay amplitudes are given specifically as

\[
A_L = \frac{m_\mu}{32\pi^2} |I_{\mu \to e\gamma}| |f|^2 \left[ \frac{G_L^1}{m_0^2} + \frac{G_L^\Delta}{m_\Delta^2} \right],
\] (48)

\[
A_R = \frac{m_\mu}{32\pi^2} |I_{\mu \to e\gamma}| |f|^2 \left[ \frac{G_R^1}{m_0^2} + \frac{G_R^\Delta}{m_\Delta^2} \right],
\] (49)

where

\[
\sum_k f_{\text{eff}}^{\mu k} = |I_{\mu \to e\gamma}| |f|^2.
\] (50)

These leading contributions to the decay amplitudes are proportional to the flavor changing factor \((f^f)_{e\mu} = \sum_{\ell \neq e} f_{\ell e} f_{\mu \ell}\) (for \(f = f^f\)), as seen in Eq. (50). This is realized for the \(T\chi^0\) and \(\nu\chi^-\) loops by using the mass-insertion method with the flavor changing elements of slepton mass matrices in Eqs. (35)–(38). As for the \(L-\Delta\) loops, the flavor dependence of the mass of intermediate states can be neglected in a good approximation. Then, the factor \((f^f)_{e\mu}\) is extracted from the two vertices in the loop diagram (see also the Appendix for details). It should, however, be remarked that the renormalization effects on the \(T\) and \(\nu\) masses by the Yukawa coupling \(h_{\tau}\) become significant especially for the \(\tau\chi^0\) and \(\nu\chi^-\) loops.

Furthermore, the renormalization effects may modify significantly the flavor structure of these amplitudes for the large \(f^f\) coupling as \(|f| \sim 0.5–1\). At present, there is no strong motivation to pursue such special cases.

As a typical example, the factors \(G_L^1, G_R^1, G_L^\Delta, G_R^\Delta\) are evaluated numerically as

\[
G_L^1 = 0.20, \quad G_R^1 = 0.8 \times 10^{-3}, \quad G_L^\Delta = 1.0 \times 10^{-3},
\]

\[
G_R^\Delta = 1.35, \quad G_R^1 = 0.17, \quad G_R^\Delta = 0.21
\] (51)

by taking the parameters as \(M_\Delta = M_\Delta = 700\) GeV, \(m_\Delta = 1000\) GeV, \(m_0 = 700\) GeV, \(a_0 = 1\), \(\tan \beta = 3\), \(\mu = 1000\) GeV, \(M_1 = 300\) GeV, and \(M_2 = 600\) GeV [\(M_1\) and \(M_2\) are the gaugino masses of U(1) and SU(2) respectively].

035004-5
We have numerically contributed to the with \( m \) corresponding to the external charged leptons. Then, the branching ratio is estimated as

\[
\text{Br}(\mu \to e \gamma) = 7 \times 10^{-12} \left( \frac{G}{3} \right) \left( \frac{1}{m_\Delta} \right)^4 \left( \frac{|I_{\mu-e\gamma}|}{0.1} \right)^2 \left( \frac{|f|}{0.1} \right)^4,
\]

which should be compared to the experimental bound \( \text{Br}(\mu \to e \gamma) < 1.2 \times 10^{-11} \) [20]. Here, we take \( G = 3 \) as a reference value for

\[
G = \left( \sum_{K=L,R} r_K^2 G_K^2 + r_\Delta^2 G_\Delta^2 \right)^{1/2}
\]

with \( r_\Delta = (m_\Delta/m_0)^2 \) and \( r_\Delta = (m_\Delta/M_\Delta)^2 \). This net \( G \) factor is actually calculated depending on the various parameters, as seen from Eq. (51). It is usually of \( O(1) \) for the reasonable parameter range. The weights of supersymmetric contributions are relatively enhanced in \( G \) due to \( r_\Delta, r_\Delta > 1 \) for \( m_\Delta > m_0, M_\Delta \) from Eq. (41), compared to the nonsupersymmetric ones. We have also numerically \( |I_{\mu-e\gamma}| \leq 0.2 \) (HI), \( \leq 0.1 \) (DG), and \( \leq 0.2 \) (IH), respectively. This expected branching ratio \( \text{Br}(\mu \to e \gamma) \) really becomes larger by one order or so due to the supersymmetric contributions than that of the nonsupersymmetric case [10,11]. It should also be remarked that the \( \mu \to e \gamma \) decay can be a good test to distinguish the supersymmetric Higgs triplets from the nonsupersymmetric ones. This is because in the nonsupersymmetric model the left-handed decay amplitude \( A_L^2 = A_L^2 \) is much smaller than the right-handed one \( A_R^2 = A_R^2 \) due to the suppression with \( m_e/m_\mu \).

We can have a similar estimate on the branching ratio of \( \tau \to \mu \gamma \) as

\[
\text{Br}(\tau \to \mu \gamma) = 3 \times 10^{-11} \left( \frac{G}{3} \right) \left( \frac{1}{m_\Delta} \right)^4 \left( \frac{|I_{\tau-\mu\gamma}|}{0.5} \right)^2 \left( \frac{|f|}{0.1} \right)^4,
\]

where

\[
\sum_k f_{\mu,k} f_{\mu,k} = |I_{\tau-\mu\gamma}| |f|^2.
\]

We have numerically \( |I_{\tau-\mu\gamma}| = 0.4–0.5 \) (HI), \( = 0.1–0.4 \) (DG), and \( = 0.4–0.5 \) (IH), respectively. This Higgs triplet contribution to the \( \tau \to \mu \gamma \) decay is much smaller than the experimental bound \( \text{Br}(\tau \to \mu \gamma) < 3.1 \times 10^{-7} \) [26] for \( m_\Delta \sim 1 \) TeV and \( |f| \leq 0.1 \).

### C. Muon anomalous magnetic moment

The contributions of the \( f \) coupling to the muon anomalous magnetic moment mainly appear through the \( \Delta-L \) and \( \Delta-E \) loops. The magnitude of these contributions are estimated roughly for \( M_\Delta \sim m_0 \) as

\[
|\Delta \mu_{\mu}| \sim \frac{1}{8 \pi^2} \frac{m_\mu^2}{m_\Delta^2} \sum_k |f_{\mu,k}|^2
\]

\[
\sim 10^{-12} \left( \frac{1}{m_\Delta} \right)^2 \left( \frac{|f|}{0.1} \right)^2.
\]

Hence the contributions of the \( f \) coupling to the muon anomalous magnetic moment are found to be harmlessly small.

### V. SUMMARY

We have investigated the lepton flavor violating processes such as \( \mu \to 3e \) and \( \mu \to e \gamma \) with the supersymmetric Higgs triplets in the light of neutrino masses and experimentally verifiable leptogenesis. The Higgs triplet mass \( M_\Delta \) is expected to be in the range of 1–100 TeV. The branching ratios of these charged lepton decays are evaluated in terms of \( M_\Delta \) and the coupling \( f \), \( \Delta L \) of Higgs triplet \( \Delta \) with lepton doublet pairs \( LL \), which is proportional to the neutrino mass matrix. They may be reached in the future collider experiments. In particular, the \( \mu \to 3e \) decay would be observed indicating the existence of Higgs triplets with \( M_\Delta \sim 1–100 \) TeV for \( |f| \leq 0.1 \), while \( \text{Br}(\mu \to e \gamma) \) can be significant irrespective of \( M_\Delta \) in the supersymmetric model due to the flavor violation in the sleponto mass matrices induced by the renormalization effects.

### ACKNOWLEDGMENT

This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas B (Grant No. 13135214) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

### APPENDIX: ONE-LOOP CONTRIBUTIONS OF SUPERSYMMETRIC \( \Delta \) TO \( I_j \rightarrow l_i^+ + \gamma \)

We here present the formulas for calculating the one-loop contributions of supersymmetric Higgs triplets to the decay amplitudes of \( I_j \rightarrow l_i^+ + \gamma \).

The charged slepton mass eigenstates are determined by diagonalizing the mass matrix \( M_\tilde{I}^2 \) in Eq. (30) with a unitary matrix \( U_\tilde{I}^i \):

\[
\tilde{T}_a = U_{\tilde{I} a}^i \tilde{T}_{Li} + U_{\tilde{I} a}^i \tilde{T}_{Ri} (a = 1–6),
\]

where \( \tilde{T}_{Li} = \tilde{T} \) and \( \tilde{T}_{Ri} = \tilde{T}_{Ri} \). The sneutrino mass eigenstates are determined by diagonalizing the mass matrix \( M_{\tilde{\nu}}^2 \) in Eq. (34) with a unitary matrix \( U_{\tilde{\nu}}^i \):

\[
\tilde{\nu}_b = U_{\tilde{\nu} bi}^i \tilde{\nu}_{Li} (b = 1–3),
\]

where \( \tilde{\nu}_{Li} = \tilde{\nu}_{Li} \). The interactions of bileptons with scalar Higgs triplet are given from Eq. (3) by

\[
|\Delta \mu_{\mu}| \sim \frac{1}{8 \pi^2} \frac{m_\mu^2}{m_\Delta^2} \sum_k |f_{\mu,k}|^2
\]

\[
\sim 10^{-12} \left( \frac{1}{m_\Delta} \right)^2 \left( \frac{|f|}{0.1} \right)^2.
\]
The interactions of bisleptons with Higgsino triplet are given in terms of the mass eigenstates in Eqs. (A1) and (A2) by

\[
\mathcal{L}_\Delta = - \frac{1}{\sqrt{2}} f_{ij} \bar{L}_i^\tau P_L j^{\Delta^+} + \frac{1}{\sqrt{2}} f_{ij} \bar{L}_i^\tau P_L j^{\Delta^0} + \text{H.c.} \quad (A3)
\]

where

\[
F_{ij} = (f U^\dagger)_{ia} F_{ib} = (f U^\dagger)_{ib}.
\]  

The functions \( F_{ij} \) are given by

\[
F_1(x) = \frac{1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x}{6(1-x)^4}, \quad (A8)
\]

The contributions of \( L - \Delta \) loops are calculated by using the interactions in Eq. (A3) as

\[
A^L_K = \frac{1}{32 \pi^2} \frac{m_l}{M_{\Delta^+}} \sum_k f_{ik} f_{jk} [F_1(0) + 4F_1(x_k) - 2F_2(x_k)],
\]

and

\[
A^L_K = (m_l / m_\Delta) A^L_K,
\]

where \( x_k = (m_l / m_\Delta)^2 \) with the scalar Higgs triplet mass \( m_\Delta \) in Eq. (41). The functions \( F_1 \) and \( F_2 \) are given by

\[
F_2(x) = \frac{2 + 3x - 6x^2 + x^3 + 6x \ln x}{6(1-x)^4}.
\]  

The contributions of \( L - \Delta \) loops are also calculated by using the interactions in Eq. (A4) as

\[
A^L_K = \frac{1}{32 \pi^2} \frac{m_l}{M_{\Delta^+}} \left[ \sum_a F_{ia}^+ \sum_b F_{ib}^+ \left( -2F_1(x_a) + 4F_2(x_a) \right) \right]
\]

\[
+ \sum_b F_{ib}^+ F_{ib}^+ F_2(x_b) \right],
\]

\[
A^L_K = (m_l / m_\Delta) A^L_K,
\]  

where \( x_a = (m_a / M_\Delta)^2 \) and \( x_b = (m_b / M_\Delta)^2 \), and the Higgsino triplet mass is given by \( M_\Delta = M_\Delta \).

Here, two remarks should be made. (i) The suppression factor \( m_l / m_\Delta \ll 1 \) appears in the left-handed contributions where the chirality is flipped in the final state \( l \). This is due to the fact that only the left-handed lepton doublets participate in the \( f \) coupling of bileptons and Higgs triplet. (ii) These amplitudes are approximately proportional to \( f \). In the amplitudes \( A^L_{K,R} \) we have \( F_{1,2}(x_k) = F_{1,2}(0) \) for \( x_k \ll 1 \), so that the factor \( (f f)^{ij} \) is \( \sum_i f_{ij} f_{ik} (f = f^\dagger) \) is extracted. Similarly, in the amplitudes \( A^L_{K,R} \) we may neglect the mass differences among the sleptons for small enough \( |f| \leq 0.1 \), so that the factor \( (f f)^{ij} = \sum_a f_{ia} f_{ib} f_{ia} f_{ib} \) is extracted again with unitarity of \( U^\dagger \) and \( U^\dagger \). In other words, the flavor mixing of the intermediate sleptons is actually ineffective for \( A^L_{K,R} \) in the leading order of \( |f|^2 \).