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Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force
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A unidirectional flow of a rarefied gas between two parallel plates driven by a uniform external force is
investigated on the basis of kinetic theory with special interest in the behavior in the near continuum regime.
The Bhatnagar-Gross-KroolBGK) model of the Boltzmann equation and the diffuse reflection boundary
condition are employed as the basic system. First, a systematic asymptotic analysis of the basic system for
small Knudsen numbers is carried out, and a system of fluid-dynamic-type equations and their boundary
conditions are derived up to the second order in the Knudsen number. Then, an accurate numerical analysis of
the original BGK system is performed for a wide range of the Knudsen number by means of a finite-difference
method. The behavior of the gas, such as the non-Navier-Stokes effects in the near continuum regime, is
clarified on the basis of the fluid-dynamic-type system as well as the numerical solution of the BGK system.
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[. INTRODUCTION numbers as well as a direct numerical analysis on the basis of
kinetic theory. To avoid the complexity in the asymptotic
Let us consider an ideal gas between two parallel infiniteanalysis and to perform very accurate numerical computa-
plates at rest with a common uniform temperature. When th&on, we utilize the BGK model rather than the Boltzmann
gas is subject to a uniform external force in the directionequation. But the asymptotic analysis for the latter equation
parallel to the plates, a steady unidirectional flow of the gagan be carried out in a similar way. In the case where there is

is caused between the plates. If one considers this problefiP external force, a fluid-dynamic description of rarefied gas
on the basis of the Navier-Stokes equation, it is a simpldlows in the near continuum regime has been established for

one-dimensional example. general geometry by Sone and co-workdrs—19 by means

This classical problem was revisited rather recently in theof a systematic asymptotic analysis of the Boltzmann system.
framework of kinetic theory. Esposito, Lebowitz, and MarraIn the present paper, we carry out our asymptotic analysis
[1] studied its mathematical aspect, that is, they proved théllowing the asymptotic theorj11-19.
convergence of the solution of the Boltzmann equation to The paper is organized as follows. We first give the for-
that of the Navier-Stokes equation in the limit where themulation of the problentSec. 1), and then, after setting the
Knudsen number vanishdthe continuum limit when the —appropriate parameter relation that gives the Navier-Stokes
external force is weak. Here, the Knudsen number is the ratigquation in the continuum limit, we carry out a systematic
of the mean free path of the gas molecules to the distanc@symptotic analysis for small Knudsen numbers to derive a
between the plates. They also clarified the mathematicatystem of fluid-dynamic-type equations and their appropriate
structure of the higher-order terms in the Knudsen numbefpoundary conditiongSec. Ill). Here, we show that the bimo-
On the other hand, the physical aspect of the problem ha@al shape of the temperature profile mentioned above is at-
been studied by various authors by means of a variety offibuted to the higher-order correction to the Navier-Stokes
approximate and numerical methods-7]. The main inter- ~ solution. An accurate numerical analysis of the original BGK
est of these works is to clarify the phenomena in the neapystem by a finite-difference method is also carried out for
continuum case that cannot be described by the Naviesmall Knudsen numbers, and the result is compared with that
Stokes equation. One of such phenomena is a bimodal shagéthe asymptotic analysis. In Sec. IV, we carry out the same
of the temperature profile with a slight hollow at the centernumerical analysis for a wide range of the Knudsen number
between the plates. This effect was first pointed out by Malela@nd clarify its effect on the physical quantities. A discussion
Mansour, Baras, and Garcﬂa] on the basis of a numerical about the result is given in Sec. V, where it is shown that an
result obtained by the direct simulation Monte Carlo methodnfinitesimally weak external force can cause a flow of a
and of an explicit perturbation solution derived earlier by Tij finite Mach number in the continuum limit.
and Santos[2] using the Bhatnagar-Gross-KrodiBGK)
model [8—10. However, the previous attempts to describe Il. FORMULATION OF THE PROBLEM
such non-Navier-Stokes effects by macroscopic equations
are not satisfactory because no systematic asymptotic analy-
sis has been made for a complete kinetic system containing Let us consider a rarefied gas between two parallel infinite
the boundary condition. plates at rest located &t =L/2 and—L/2 and kept at tem-

In the present paper, we investigate this problem byperatureT,, whereX; is the rectangular space coordinate
means of a systematic asymptotic analysis for small Knudsesystem. The gas is subject to a uniform external force in the

X, direction, i.e., in the direction parallel to the plates. There
is no pressure gradient in tié direction. We investigate the
*Electronic address: kaoki2@ip.media.kyoto-u.ac.jp steady flow of the gas caused by the external force on the

A. Problem
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basis of kinetic theory for a wide range of the Knudsen num-gas. Therefore, it follows from Egél)—(5) thatf is symmet-
ber, paying special attention to the behavior for small Knud+ic with respect to theX, axis, i.e.,

sen numbers. Our basic assumptions are as foll6wThe
behavior of the gas is described by the BGK mod@e}10]
of the Boltzmann equationji) the gas molecules are re-
flected diffusely on the plates.

B. Basic equation

The BGK model of the Boltzmann equation in the present

problem is written a$17,20

glaa—):l+ana—§2:Acp(fe—f), D
ffmem{—%), @
p:J fdé, (3a

Ui:%f £ dé (3b
T:%J (&—v))%f dg, (30)

where & is the molecular velocity,dé=d¢&;dé,dés,
f(X4,&) is the velocity distribution function of the gas mol-
ecules,F;=(0,F,,0) is a uniform external force in th¥,
direction acting on the gas per unit mag$X,) is the den-
sity of the gasp;(X,) is its flow velocity, T(X;) is its tem-
perature,R is the gas constant per unit mass, akhdis a
constant(A.p is the collision frequency of a gas molecule,
which is independent of the molecular spgédthe domain of
integration with respect td; in Egs.(3a—(3c) and in Egs.
(7a—(7¢) below is its whole space. The BGK modd)) is
consistent with the Boltzmann equation for {lcaitoff) Max-
wellian moleculegsee footnote 21 in Ref21)).

The boundary condition on the plateX,& *=L/2) is
written as follows[17,20:

p

w I

at X]_: + L/2, (4)

2

RT, 5

1/2
pw= I( f &f(+L/2,6)dé,
+£<0

where the upper signs correspond to the conditioXat
—L/2, and the lower signs to that A =L/2.
Now we assume thdtis even iné;, so thatv;=0. The

f(X1,61,62,&3)=F(—X1,—£1,62.63). (6)

The pressure(X,), stress tensop;;(X;), and heat-flow

vectorq;(X,) are expressed in terms bhs

1
p=RpT=§J (&—v)*f dg (7a)
pijZJ (§i—vi)(§—vfdé (7b)
1
Qizzf (&—vi)(&—v)?fdE (70)

In addition to v;=v3=0, the relationspi3(=p3)=p23
(=p32)=0 andqg3=0 follow from the assumption in the
preceding paragraph.

C. Dimensionless variables

Let us now introduce the following dimensionless vari-
ables:

X & i (ZRTo)slzf
T STER™ T
a_ P A Uj _'I\__ T
P o T (2RTYT To'

8
p= p b= Pij
RpaTo ’ I RpaTo ’
Qi

4= (D (2RT) T

where p,, is the average density of the gas between the
plates, ando;=03;=0 [see the paragraph below E)].
Then, the BGK equation, Eq$1)—(3¢), is written in the
following dimensionless form:

of .ot 2 1.

gl&_lerFa_gz:\/_;ﬁp(fe_f)’

(©)

analysis below can be performed consistently with this as-

sumption. Further, the integration of E{.) with respect to
&, over its whole space leads j = const. Sincepv,;=0

on the boundary because of the diffuse reflection condition

[Egs. (4) and (5)], it turns out thatv ;=0 identically in the

f= {3 eX[{—§§+(§2_A62)2+§§), 0
(7TT)3/2 T
1 R
52:rf {of dg, (11b)
p
. 2 , Y
TZ@J [{1+ (L= 02)+ 51T dE (119
F=F,L(2RTy) %, (123
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Kn=2(2RTo/m) Y Acpal) *=I0/L, (12b) (14) for small Knudsen numbers, following Refd1-19, in
particular Ref[12], as a guideline. To begin with, we assume

wheredZ=d{,d{>dZ3, Kn is the Knudsen numbeli is the  that the parametef for the external force is also small and
mean free path of the gas molecules in the equllbrlum statgf the order of the Knudsen number: that is, we put
at rest with temperaturd, and densityp,,, andF is the
inverse of the Froude number and is a measure of the F=aKn=(2\m)ae, e=(Jm2)Kn<l, (18
strength of the external fordé, is related to the correspond-
ing viscosity po and thermal conductivityhy as ug  wherea is a given constant, andis a small parametg(of
=(2/5R)\ o= (74 p[2RTo) Y4, for the BGK mode].  the order of Kn that is mainly used in the following
The domain of integration with respect tpin Egs.(113—  asymptotic analysis. It is known that, in the present problem,
(110 and in what follows is its whole space unless otherwisethis setting of the parameters leads to lwtempressible
specified. On the other hand, the dimensionless form of th&lavier-Stokes equation with a uniform external-force term in
boundary conditior{4) and(5) is given by the continuum limit where Krfor €) vanisheq1].

f=m"9%,exp(—¢7) for +{,>0 at x;=F1/2, 13 A. Moderately varying solution
(13 First, putting aside the boundary conditi@tB) and (14),

a1 A we look for a moderately varying solution, to Eqgs.(9)—
pw=+2m L§1<0§1f(+1/2’§i)d€’ (14 (110 satisfying df,/dx,=O(fy) in the form of a power
series ofe:
where the uppefor lowern signs correspond to the condition
atx;=—1/2 (or x;=1/2). The boundary-value problem, Egs. fu=Tfuot+ furet frpe?+---. (19)
(9)-(110), (13), and(14), is characterized by the two dimen-
sionless parametefs and Kn. This f, is called the Hilbert solution or expansion. Let
The dimensionless forms of Eqg’a—(7c) are given by p, Ty, ,6,y,... be themacroscopic quantitie$,T,o5,...
. corresponding to the Hilbert solution. Then, they are also
p=pT, (158 expanded as
= 24 ...
py=2 [ (60059t az (15b) M=o RasectRige™--, 20

where h representsh, d,, T, p, pij, or § . The explicit
Qi:f (§i—ﬁi)(§j—f)j)2f de. (150 expre§siqns ohy, in terms ofme are obtained by substi-

tuting f=f, andh=hy in Egs.(1189—(110 and(1539—(150
and by equating the coefficients of the same power[obte

Note thato1=03=0, Pp13=P23=0, and§;=0. N )
v1=03=", P1a= Pas Ya thathy,, other tharnp,, also include the lower-order macro-

If we integrate Eq(9) multiplied by {4, {,, or gjz over i o X R )
the whole space of; and further integrate each result with SCOPIC quantitie$pyn, O21n, Thn, etc. withn<m) because
respect tax;, then we are led to the following relations: ~ the relation betweeh andf in Eqgs.(11b), (110, and(158—

(150 is nonlineat. The explicit expressions Gfm, 021m >

P11=const, (163 T, Pum, Pijim » and@inm for m=0, 1, and 2 are given in
(e Appendix A. Now let us denote b?yeH the IE)caI Maxwellian
@12=2FL pdxy, (16b  corresponding to the Hilbert solution, i.€, with p=/py,
0,=0,4, andT=Ty. Then, .y is also expanded as
~ XlA daz ~ ~ ~ N 5
1= o plZd_dexlv (169 fern="ferot ferr€t foppe™+---. (21)

The explicit form of the coefficientb,,, for m=0, 1, and 2
is given in Appendix B. Lew,(r=0,...,4) stand for the col-

f(leil,é’zyis):f(—Xl,—51,§2,§3), (17) lision invariants, i.e.,

which leads top;,(0)=§,(0)=0, has been taken into ac- Wo=1, Wi=¢ (=129, ¥,={. (22
count.

where the symmetry of the problem, i.e.,

Since
IIl. ASYMPTOTIC ANALYSIS FOR SMALL KNUDSEN
NUMBERS f ¥ (fy—fend=0, (23

In this section we carry out a systematic asymptotic
analysis of the boundary-value problé®—(110), (13), and  holds, we have
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. - . db 4
V. (fum—fenmdé=0 (m=0,1,..). (24 2HO) ,
J riTHm™ TeH dx; Tho dx, + \/;‘IPHO 0, (31b
If we substitute the expansiof9)—(21) into Eq.(9) with N ~ )
Eq. (18), we obtain the following expression 6f;: 5d T dTho 47 do2no -0 (310
' " 4dx; | "9dx, HO| ~dx, ’
fro=tero, (29 e a
) PHo= Pro/ THo, (319
~ ~ 1 &fHO T
fhi=fern—=—041 ; (26) i & Eii T @ -
PHO &Xl Xm pH2+ 2 ﬁHO Xm THO Xm 01 (326)
& d (. db dé 4
F.oo=F —_ L (F _f - U2H1 | = U2Ho A
me feHm+ ﬁHO 521 PHs(feHm—s me—s) d_XJ_(THOd—Xl Hld—Xl + \/—;a’le:O, (32b)
1 ( Mumer 2 Ifumes . .
-~ gl— —— (mBZ) 5 d N dTHl A~ dTHO N di}ZHO daZHl
IX Jd - - <ny
Pro ' Vm 2 4 dx, THo dx, *Th dx, F2THo dx, dxg
2
- +7 daz“")z—o 32
Equation(24) gives the following compatibility conditions Al dx, | 7 (329
for Egs.(26) and (27):
R PH1= (PH1 = PHOTHL) THo, (320
fno
f q,rgla_xldg_o' (28) d N 31 d _,I\_ dTHl ~ dTHO
ax pH3+§M dxg | O TR
Ifum-1 2 It pme2 - 2
= — = d (. dT
/ ‘I’r(gl R e |0 (MER) —ﬂ—(THo—“) ]=o, (338
(29) Pro dxq dxq
These conditions are essentially the same as the conservation — | Tho +Th1 Ho
equations that led to Eq§16a—(160); but in the procedure X dx, dx, dx,
of the Hilbert expansion, we put aside the original conserva- 56 45 2 4
tion equations. If we use in Eqé28) and (29) the explicit L2 Ai( ;’)Z(Ho) 4 ap=0,  (33b)
forms of fy, (n=0,1,...) in terms ofpys, Dons, aNd Tys J Pro 1 N
(s=n), which are obtained successively from E@85)— R R R
(27), we obtain a set of ordinary differential equa:[ions for the§ i 5 dTy, i dTy; i dTho L3 doopg)?
macroscopic quantitiepy, (Or Pun), Donn, and Ty, (the 4 dx, |\ MO dx H1 dx H2 qx HOl " dx,

fluid-dynamic-type equationsMore specifically, the equa-
tion for pyo follows from Eq.(28) with r=1 (¥;=¢;) [note

doopo dons doopo dion2

+ 2T a0 — 20

that Eq.(28) with r=2 and 4 does not add any new equa- Hl dx, dx HO dx,  dxg
tion]; the set for @Hnﬂ,f)ZHn,?Hn)(n;O) follows from Eq. 4 2 79% . Idp 4

(29 with m=n+2 and r=1, 2, and 4 ¥,={,,V, +T0, w) +_TH°( UZHO)
={,,¥,={?). Equations(28) and (29 with r=0 and 3 dxq 25 pio | dxq

(Vy=1,3=¢,) are automatically satisfied because we are

considering a solutiorf that givesi;=0 and is an even
function of {; [see the paragraph after E¢)]. The set of

282 Tho d%0on0 256
_ L o0
57  PHo dxf

a’=0, (330

ko

fluid-dynamic-type equations thus obtained is summarized in

the following:
dPro
dPH1
ax, =0, (319

(33d

where Eqs(31d), (32d), and (33d), which give the expres-
sions ofpyg, pu1, @andpy,, respectively, are the equation of
state[see Eqgs(Ald), (A2d), and(A3d)]. Here, some of the
equations are not in the form directly corresponding to Egs.
(28) and(29) because they have been simplified with the aid
of other equations of the same stage and of the previous

PH2= (f)HZ_i)HO-ArHZ_i)Hl:rHl)/:rHO:
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stages. In order to obtain Eq&339—(330, we neede3
though the explicit form of .3 is not given in Appendix B.
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(39

In the practical calculations, however, we do not need thevith

explicit form of .., because the momerftep (&) fopndy,
where ¢(¢;) is an arbitrary function of;, can be obtained
more easily by calculating’¢(§i)feHd§ first and then ex-
panding the result ir.

Substituting the explicit form off,,,, (m=0,1,...) into
Egs.(Ale), (Alf), (A2e), (A2f), (A3e), and(A3f), we obtain
the expressions of the coefficienf§n, and §iym, of the
Hilbert expansion of the stress tenspf and that of the
heat-flow vectoKy; in terms ofpy, (O pun), Trn, andd oun
(n=m). The results fom=0, 1, and 2 are summarized in
Appendix C. Corresponding to Eq838—(330), we can also
obtain pj; 3 and g3, but we omit the result because they
are rather lengthy.

B. Knudsen-layer correction and slip boundary condition

(36)

Here, f is the correction to the Hilbert solutioh, appre-
ciable only in the thin layers of thickness of the ordeedbr
of the mean free path in the dimensiongl variable adja-
cent to the walls(Knudsen layens The expansior(36) is

started frome order becausé,,, could satisfy the boundary
condition.

The Knudsen layer at;=—1/2 and that ak,;=1/2 are
symmetric with respect to the, axis. To analyze these two
Knudsen layers in a unified way, we introduce the following
variables:

In the preceding section, we derived the moderately vary-

ing solution putting aside the boundary condition, E4S)
and (14). Now we try to construct a solution satisfying the
boundary condition. As will be seen, this procedure provide

the appropriate boundary conditions for the fluid-dynamic-

type equation$30)—(33d).
We first consider the leading-order terfmo, which is a
local Maxwellian given by Egs(25) and (B1a). Let us sup-

pose that ,.o and T in fiyo take the following values on
the walls:

Don0=0, Tho=1, atx;==1/2. (34)
Then, it is easily verified that,y, with an arbitrarypy,,
satisfies the boundary condition, E¢E3) and(14). The con-

dition (34) gives the consistent boundary condition for Egs.

(31b—(31d.
We next consider the first-order terf, given by Eq.
(26). By the substitution of Eq925), (Bla), and (B1b) in

Eq. (26), it is seen thaf,; is of the form off ., multiplied
by a polynomial of{;, the highest-order term of which is

1 dT

dxy

2
16j -

A 2D
ProTHo

In order for f,4; to fit to the boundary condition, all the

coefficients of the polynomial, except the constant term,
should vanish on the boundary. However, these constraints Nrn=(hpn)e+

lead to the additional conditionslz";ZHO/dx1:d'AI'HO/dx1
=0 on the walls. These conditions and E84) are too many

for Egs.(31b—(310d) to be solvable. ThereforéHl does not

y=x1+1/2, n=yle, {,=1{1, (37
near the wall ak,;=—1/2 and
y:1/2_X1! 7]:)’/6- gy:_gla (38)

Jear the wall atx;=1/2. Here,y is the normal coordinate

measured from the wall toward the gag,is the stretched
normal coordinate, ang, is the component of; in the posi-
tive y direction. We suppose that the length scale of variation

of fx is ¢ i.e.,

f=Tx(mey.L2.09), (39)
or 9t 1ap=0(f«), and thatf, vanishes rapidly as— .
Corresponding to Eq$35) and(36), the macroscopic quan-

tity h, wherehrepresent$, v,, T, p, p;;, org; as before, is
expressed as

h:hH+hK1 (40)

hK:hKl€+hK2€2+”' . (41)
The expressions ohy,, (M=1,2,...) in terms offy,, are
obtained as follows. We first substitute E§5) [with Egs.
(19 and (36)] and Eq.(40) [with Egs. (20) and (41)] into
Egs.(118a—(110 and (1539—(150 and express the integrals
of iy, in terms ofhy, (N<m) using the relationgAla)—
(A3f). We then expand eadhy, in the Taylor series around
the boundary y=0) as
1
"2

thn
dy

where () indicates the value on the wdli.e., aty=0 or

thHn) -
€ + ,
dy2 B”

(42)

ne
B

contain the freedom to satisfy the boundary condition. The7=0). If we equate the coefficients of the same powee,of

situation is the same for the higher-order terrfis,

(m=2). To obtain the solution satisfying the boundary con-

we obtain the desired expression. The explicit formpgf,,

Dokms Tkms Pijkm, andGixm for m=1 and 2 is given in

dition, therefore, we need to introduce the so-called KnudseAPpendix D.

layers.
Let us seek the solution in the form

Now we insert Eqs(35) into Egs.(9)—(110 with Eq. (18)
and take into consideration the length scale of variatio?kof
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as well as the fact thaﬁH is a solution of Eqs(9)—(110.

Then, we obtain the following equation fdi [here, the
expansiong19) and(36) have not been used yet

EBGK<¢>>=f [1428,0,+3(2-3)(%-9)]

X $(n',Ly,l2,{a)E()AL— ¢, (48)

ofe 2 of . .. — o
gyTK —a62(9—‘<=(;)H+;3K)[(fe)H+K—feH—fK] with §2=2+ 5+ 23 andd{=d{,d{,dZ;. The explicit ex-
N &2 pressions of the termils,, andJ,, are given by
+pr(Fer— ), 43 1,=0, (493
where (o)« stands AforfeA[Eq. (10)] with p=py+px. 5 ool . 1. s
Do=0op+ 0ok, andT=T,+ Tk . If we substitute the expan- 12=2> =5 || (annet y + 50k |Tka
sions (19) (with the explicit form of f,,,), (20), (36), and B
(41) and use Eq(42) as well as the corresponding expan- , 5| - '"rHo 1. |
sions for thex, derivatives ofh,,, then we obtain the se- +285| - 5) (Th1)e ™t ay 7'+ 5 Tka [Vaka
quence of equations fd,. B
On the other hand, the boundary condition fgrfollows _ A g N dogno| , 1. |,
from Egs.(13) and (14) with Eg. (35), that is, 3(§ £2)| (Ozn1)e dy’ 7T lak1|l2k1
(foe=m"3%, exp— 3 —(fy)s for ¢,>0, 15 dTho 1. |.
’ (449 +| =58+ (Thos+ d_;: 7'+ 5Tk | Tka
B
A o 12 F; 2 PO R p ,
pw=—2m Ly<0§y[(fH)B+(fK)B]d§' (44D + Lack(P 1) (Pro)s (le)B"'(WF:O 7+ Pk1
B
on the boundary ¢=0), where voll e )(d:I'HO) Iy (dﬁZHo) PK1
€721 2 7dy |, Grole’
=043+ 8, di=dg,dLds;. (45) y Y 5] (Prole
(49b)
Then, substitution of the expansiofi9) [with the explicit
forms of f,;,, and the conditiori34) for f,,,] and(36) in Egs. D210 5 d:rHO
N 2
(449 and(44b) leads to the boundary condition fog,,. 2§y§2( ) §y< - —> dy” | (509
Now let us put B
A . 1 A
fxm=(Pro)gEPy, (M=1 and 2, J2=—5(54—5§2+4)(TH1)§_(§2_2)
(469
— 312 _ 42 L . .
E=m " exp(— &0, X(Pro)s " (Pr1)e(Th1)s—(285—1)(D211)3
y=Y'l(Prols, 7=n"/(Puo)s. (46b) 5 (PH1)
A i _252(52H1)B[(§ )(THl)B (pH—l)B +4y0 | P
Then, the equations and boundary conditionsffgrandfg, HO7B
can be summarized as follows: B _) ( d:I-Hl) (dﬁzm A 2_5)
ID dy’ 2\ dy /g 4
Zya = Laok(Pm) 1, (479 .
R , 7 dTho ,
X ) X(Th)s+285| &= 5] (02n1)8 dy +1245( ¢
Q=250 uma— (2= 2)(Tume B
5\ . doano
—2\/7_TJ &y P EdL+ I, _E)(THl)BJ"Z(Zgz 1)(02H1)B}(d—H) ]
¢,<0 y' B
(for ¢,>0, at »'=0), (470 dTho 1
-4 (z —70+ ) ay +4(§§—g§2)
®,—0 (rapidly) (as ' —x), (470
. o . dbon0| 2 dTho| (ddamo
wherem=1 and 2, andCgg is the linearized BGK collision X —| +4L| - | | =
operator defined by dy dy’ Jgl dy’ /g
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deHO 5 5 1 where lllla!¢2a!"'l(/l2d are odd in§2;:1//1aa:lzlza,-..,:¢/2d are
5l dy \/— (pHO)Bg 224y~ 1). even ing,, and B14,B2a,---,B2qd and B1a,B2a,-.-,B>q are
constants. In deriving the form of Eq&3a and (53b), we

(500 have used the fornt62a and(52b) in |, andJ,. Then, we

analyze each decomposed problem to determifng (B1a).

E.‘p}a!g'lf?)y (¢2aaﬁ2a|?]: d(‘ﬁéa ’:;Z)a)r edtcci) numegca”y byda
) ' : . inite-difference method. Oncé,; and ®, are determined,
|;ed BGK equat;]on. This p“’b'em with g(:]ne;la(l andE]m we can calculate the Knudsen-layer part of the macroscopic
[i.e. Im arngmht at :;re nfot” re;trlcted to the forms o _Eqs. variables by using EqgD1a)—(D2i). Here, we summarize
(49"’9,_(50 )] has the oflowing p_roperty. , For given the boundary conditions for Eq$32b—(32d) and (33b)—
Im(7".4y.02,45) that Ya“'Sh‘?S rapldly asy —x a”‘?‘ (33d) and the Knudsen-layer parts of the flow velocity, den-
In(Ly.£2.43), the solution®y, is determined together with gy “2nd temperature thus obtained, using the original coor-
the constantsi(,,) g @nd (er)B contained in the boundary dinatey rather thary’.
condition (47b). The boundary valuesigy;)s and (Th1)s The boundary condition for Eq§32b)—(32d) on the walls
thus determined give the boundary condition for the fluid-(y=0) is [note Eqs(37) and(38) for the relation between
dynamic-type equation@2b)—(32d), and those{,42)g and  andx, ]

(Tha)e give the boundary condition for Eq&33b)—(330). R

The property of the probler#7a—(47¢) described in the (Don1)a= 1 (dUZHO) (543
preceding paragraph is also true for the linearized Boltzmann MYB P (bo)g | dy B’
equation, i.e., EqQ479 with Lggk replaced by the linearized
Boltzmann collision operator. Grd@2] conjectured the ex- 1 dTwo
istence and unigueness of the solution and the constants in (Th)s= ,Bla( s ( d )
the boundary conditiof(? ) g and (Tm)g]. Grad's conjec- Pro y
tured theorem was later proved by Bardos, Caflisch, and -
Nicolaenko[23] for hard-sphere molecules and by Cercig- B1a=1.01619, B1,=1.30272. (540

nani[24] and by Golse and Poupal@5] for more general N ]
molecular models. The reader is referred to REES], [18],  'ne boundary condition for Eq§330)—(33d) on the walls is

[19] for further discussions about the theorem. . .
dU2H1) n (le)B(dUZHO)
B B

1[dTh0\° 2
"2l dy

The problem(479—(47¢ for ®,, is a one-dimensional
boundary-value problerthalf-space problejnof the linear-

(54b)

In the actual calculation, we can obtain the solution to (Do112)5= B2 (
Egs.(47a—(470 in the form *(pro)s | dy

Zb(ﬁHo)é dy
O =d+Dp, (5D 1 (daZHO) (dTHO) a
+ - + Bog—,
. . . . , ﬁzc(PHo)ZB dy /g \ dy /g BZd(PHo)B
where®}, is odd in¢,, and®g, is even ing,. In view of the
explicit form of I, andJ,,, we can put (553
®9 Unal( d02n0 1 (d:rHl) ~ (ﬁHl)B(d:rHo)
= T
(Gor)s | Pia c2a  (Te=Pagz 5o gy Py 7| gy
®F dT, + - ( ) + - ( ,
{A ' }={~"/’13( “,°> , (52b) Pacp 2| Tdy 5 P 37\ Tdy 5
(Th)e] [ Bral\ dY' /g
(55b
o . R -
A@Z _ ¢2a (dv—2|;|1> + ¢2b (’l\)Hl)B(dvzl;lO) BZa:ﬁlal B2b2_1016 19’ ﬁ2C2_083103,
(O2n2)8] [B2all dy’ |5 [Ban](puols | dy' /g
i . Bog=1.72942,
[¢2c (dU2H0> (dTHO) ['ﬁza a
+ ! ! + ~ 1 ~ ~ ~ ~
Bacl\ dy" |\ dy" |5 [Bad](Prols Boa=B1a: Bon=—1.30271, Bp.=—1.39317,
(53a ~
Boy=1.16172. (550
o ~ N - . -
A(DZ :[ibza (dTm) +{‘f2b (le)B<M) The Knudsen-layer parts of the flow velocity, density, and
(Th2)e) | B2al\ dY' /g | Bap) (PHo)B temperature are given by
lﬂzc}(d:ﬂﬁo) ['ﬂzd( 2H0)2 . 1 (dﬁzHo)
—1| , (53b , 56
Bac B LBad B (530 baa=Yal 7 )(PHO)B dy /g (569
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TABLE |. Knudsen-layer functions.
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7' Qq -0, =Y, -0y Oy D —Q; O Ye Qg -6y —Yq
0.0 0.34772 0.44921 0.30909-0.00002 0.44919 0.30908 1.30535 0.95699 0.52759 0.09225 0.44900 1.23620
0.05 0.29177 0.38521 0.25727 0.036 77 0.42883 0.29197 1.27715 0.93587 0.52043 0.06483 0.40595 1.08591
0.1 0.26121 0.34842 0.22828 0.05174 0.41160 0.27757 1.25659 0.91330 0.50879 0.04999 0.37616 0.99211
0.2 0.21987 0.29704 0.18878 0.06732 0.38215 0.25319 1.21836 0.86935 0.48398 0.03073 0.33065 0.85479
0.3 0.19096 0.26006 0.16114 0.07500 0.35702 0.23269 1.18114 0.82752 0.45938 0.01822 0.29556 0.75207
0.4 0.16877 0.23114 0.14003 0.07897 0.33493 0.21492 1.14438 0.78779 0.43566 0.00941 0.26690 0.66978
0.5 0.15091 0.20752 0.12316 0.08086 0.31515 0.19923 1.10807 0.75006 0.41302 0.00297 0.24277 0.60146
0.6 0.13610 0.18770 0.10929 0.08146 0.29724 0.18523 1.07230 0.71422 0.39D5W182 0.22204 0.54345
0.7 0.12355 0.17075 0.09764 0.08123 0.28088 0.17262 1.03715 0.68015 0.37D0W542 0.20398 0.49344
0.8 0.11275 0.15606 0.08772 0.08043 0.26584 0.16118 1.00272 0.64776 0.35DM812 0.18808 0.44980
0.9 0.10334 0.14318 0.07918 0.07925 0.25195 0.15076 0.96905 0.61696 0.3394B015 0.17395 0.41139
1.0 0.09506 0.13180 0.07174 0.07779 0.23907 0.14122 0.93620 0.58765 0.31®1P1165 0.16132 0.37732
1.2 0.08117 0.11257 0.05947 0.07440 0.21589 0.12439 0.87304 0.53320 0.28902mM349 0.13967 0.31968
1.4 0.06998 0.09699 0.04982 0.07067 0.19560 0.11002 0.81336 0.48384 0.25M6P1427 0.12183 0.27295
1.6 0.06079 0.08415 0.04208 0.06683 0.17769 0.09765 0.75719 0.43906 0.23@0P1438 0.10692 0.23453
1.8 0.05314 0.07343 0.03579 0.06301 0.16179 0.08693 0.70446 0.39841 0.260071406 0.09432 0.20258
2.0 0.04670 0.06439 0.03062 0.05929 0.14760 0.07759 0.65506 0.36150 0.18®3M347 0.08356 0.17577
25 0.03441 0.04716 0.02117 0.05064 0.11815 0.05892 0.54526 0.28331 0.143811146 0.06270 0.12524
3.0 0.02587 0.03519 0.01497 0.04306 0.09533 0.04523 0.45304 0.22169 0.130120930 0.04788 0.09086
3.5 0.01973 0.02665 0.01077 0.03654 0.07739 0.03501 0.37594 0.17309 0.08®@®733 0.03706 0.066 86
4.0 0.01523 0.02041 0.007 87 0.03097 0.06313 0.02728 0.31168 0.13474 0.06®M0D567 0.02899 0.04976
5.0 0.00931 0.01230 0.00433 0.02222 0.04252 0.01685 0.21381 0.08064 0.0402W324 0.01818 0.028 32
6.0 0.00584 0.00762 0.00247 0.01595 0.02900 0.01059 0.14640 0.04710 0.020410174 0.01169 0.01658
8.0 0.00243 0.00310 0.00086 0.00825 0.01386 0.00435 0.06834 0.01391 0.069AWO38 0.00509 0.00605
10.0 0.00107 0.00133 0.00032 0.00429 0.00681 0.00186 0.03171 0.00211 0.00330 0.00001 0.00232 0.00234
Pl (Prods] [Qu(n)] 1 (dTho where n' .[Eq. (46b)] rather thany is used as th(_e variable of
s = [ 0u(7) | (ro) dy |’ (56b) t_he functlgnsYa, Qa_, O,, etc. These are universal func-
K1 a PHo)s B tions of »' only, which we call Knudsen-layer functions.
These functions are shown in Table I. The relatighg=
1 (dby (Pris)e [ B a0 —Bap, and B1,=—PBay, are likely to hold; the differences
Uok2=Ya(n') = ( ) +Yp(7n') ﬁ( ) would be attributed to the numerical error. But the corre-
(Prols | dy B (Pros !\ dy B sponding Knudsen-layer functions are different.
. - Some of the slip coefficients, Eq&4c¢ and (55¢), and
FYo(7') — 1 . ( dUZHO) ( dTHO) the Knudsen-layer fum_:tions occurring in Eq56a—(57b)
(Pro)g\ dy /gl dy /, are those obtained earligt1,12,26—29(see also Ref§17—
19)]). For instance,
’
Y G e G781, Ya(x)]=[k1.81(0] (Ref[12])
=[—Kkg,— Yo(X)] (Refs.[17-19 and [29]),
pr2!/(pnods| [Qa(n')] 1 (dTHl) (583
Tk Oa(7")](Prols | dy B ~
A [Ba.Q2a(X),02(x)]=[a1,024(x),0,(x)] (Ref[12])
1 a
T Qb(ﬂ/) (FHl)B(dTHO> =[d1,Q1(x),01(X)]
1O6(7) | (pro)s | dy /4
(Refs.[17-19 and [29]), (58b
[04(7)] 1 [dTho|’ . .
+ 07| G2 | whgre the variablex is commonly useq as the mdepende_nt
LYe PHo)B Y /g variable of the Knudsen-layer functions. In these earlier
y(7)] 1 5 o110 2 works, the Knudsen-layer_ problems, repre_sented b)_/ the form
+ N ( ) , (57  of Egs. (479—(470), are first transformed into the integral
1Oa(7)](pro)s | dy B equations for the Knudsen-layer parts of the macroscopic
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quantitiesd xm, Pkm. andTm. This transformation can be
made by writing Lggk(P ) in terms of 0oxm, Pkm, and
?Km [see Egs(D1a—(D1c) and (D2a—(D2c)], by integrat-
ing Eq. (473 formally under Eqs(47b) and (470, and then
by substituting the resultin@,,, into the definition oft 5k,

PKm s and'TKm. The integral equations are then solved by a
moment method devised by Sof26,27] and improved by
Sone and OnisHi28,29. However, since the direct numeri-
cal solution of Egs.(473—(47¢0 by a finite-difference
method is rather easy nowadays, we made use of this method
here (see the last paragraph in Sec. IV.Ancidentally,

(B1a,Ya) and (B14,Q,,0,) are obtained also for a hard-
sphere gas by means of an accurate finite-difference method
for the linearized Boltzmann equationfBi,,Ya(X)]

=[Ba,S(x)] in Ref. [30] and [Bia,Q2a(X),04(X)]
=[8,Q(x),0(x)] in Ref.[31].

C. Flow properties at small Knudsen numbers

In the preceding sections, we have derived the fluid-
dynamic-type equation§30)—(33d), their boundary condi-
tions (34) and (5439—(55¢), and the Knudsen-layer correc-
tions (56a—(57b) for the macroscopic quantities. In this
section, we discuss the flow properties for small Knudsen
numbers on the basis of these results.

We first compare the fluid-dynamic-type equatid86)—

(33d) with the (compressibleNavier-Stokes equations, more
precisely, the equations obtained from the Navier-Stokes
equations by means of the expansion corresponding to Eq.
(19 [note that the viscosityy=(T/Ty) o and the thermal
conductivity A =(T/Tg)\, which correspond to the BGK
model (see the first paragraph in Sec. Il C fag and \y),
should be used together with the relatid8)]. Equation(30)

is the degenerated Euler equation, and E§%3—(31d) are

the same as the Navier-Stokes equations. The next-order
equations(32b)—(32d) are also the same as the correspond-
ing Navier-Stokes equations, whereas the second term in the
square brackets in E323 is not contained in the Navier-
Stokes equations. In Eq$339—(330, many non-Navier-
Stokes terms appear, i.e., the terms other than the first term in
the curly brackets of Eq:333a, the term with the coefficient
56// in Eq. (33b), and the terms with the coefficients 72/
25, —282/5/7, and —256/r in Eq. (330).

In Figs. 1-3, we show the solutiops,, d21m, andTym

(m=0, 1, and 2 of the fluid-dynamic systems for several
values of« [cf. Eq. (18)]. More specifically, the solution to
Egs.(30) and(31b—(31d) with the nonslip conditior{34) is
shown in Fig. 1, that to Eq$313 and(32b)—(32d) with the
slip condition(54a—(540 in Fig. 2, and that to Eq9323
and (33b)—(33d) with the slip condition(5539—(550 in Fig.
3. Since these solutions are symmetric with respect toathe
axis, the right half (6=x,=0.5) is shown in the figures. The
results shown in the figures are the numerical solutions.
Here, the density is normalized as follows. If we use Egs.
(40), (20), and(41) with h=p in the definition ofp,,, i.e.,

1 (L2 2
Pav:_f PXmZZPaVJ' paxy, (59)
LJ-ve 0
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FIG. 1. The solutiotbyg, 020, and Ty, for variousa. (@) pro,
(b) DoHos (€©) Tho-

and recall thapy is the function ofz, then we have

2 1
f PHodX1:§1 (608
0
12
f pH1dx:=0, (60b
0
12 w“
fo PHdelz_fo pr1d 7. (600

These are the normalization conditions.
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FIG. 2. The solutiotpy, d,n1, andTy, for variousa. (@) py;,

R o FIG. 3. The solutiofby,, don», and Ty, for variousa. (@) puy2,
(b) Dop1, (©) Ty PH2, U2H2 H2 PH2

(b) Doz, (0) :er-

Figures 4—6 show the profiles of the densityflow ve-  is appreciable in the figures at k0.1, though their relative
locity v,, and temperaturd for a=1, 2, and 3(i.e., F difference is still smallless than one percenfThere are two
=Kn, 2Kn, and 3Kn in the right half (0<X,;/L<0.5) of reasons for this discrepancy. First, far=2, the second-
the gap. Here, the solid line indicates the asymptotic solutiomrder Hilbert solution shown in Fig. 3 becomes large in mag-
up to the order ofe? (or Kn?), i.e., h=hyo+ (hy+hg)e  nitude compared with the leading and first-order solutions
+ (hya+hyo) €2 with h=p, 0,, or T, whereas the dashed shown in Figs. 1 and 2. Second, the decay of the second-
line the corresponding numerical solution of the originalorder Knudsen-layer functions is rather sl¢see Table ),
BGK model obtained by means of a finite-difference methodand further the magnitude of the second-order Knudsen-layer
on which we will comment in the next section. The dimen-corrections in Eqs(578 and (57b) becomes large because
sional variables rather than the dimensionless counterpart§€y contain the square terms ofdi(o/dy)s and
are used in Figs. 4—6cf. Eq. (8)]. For =2 and 3, the (dT.,/dy)g, which are large for larger. Therefore, the
discrepancy between the asymptotic and numerical solution§nudsen layer, which should be confined near the wall theo-
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1.16

1.12

T/T,

1.08-

1.04

1 | | ) | 1 | | | |
0 0.5
0 X./L 0.5 X,/L
(© ©
FIG. 5. The profiles of the density, flow velocity v,, and

temperaturel for Kn=0.02, 0.05, and 0.1 in the case @f 2 [cf.
Eq. (18)]. (@) p, (b) v,, (c) T. See the caption of Fig. 4.

FIG. 4. The profiles of the density flow velocity v,, and
temperaturel for Kn=0.02, 0.05, and 0.1 in the case @& 1 [cf.
Eq. (18)]. (@ p, (b) v,, (c) T. The solid line indicates the
asymptotic solution up to the order of Knand the dashed line the
numerical solution of the original BGK system. These two lines arebimodal shape is not observed in the solution up to the first
indistinguishable for Kr=0.02. order, i.e.T=Tyo+(Thi+ Tko) €. Therefore, it is a second-

) order effect. The presence of the local minimumXat=0
retically, almost reaches the center of the gap a&=Rrl.  can be shown analytically. Because of the symmetry of the
These two facts restrict the validity of the asymptotic expantjow field with respect to thes, axis [Eq. (17)], we have
sion to rather small values of Kn. d2+ 15 Jd2K = g2k 1T @ l=0 at x.=0 (k

The numerical data corresponding to the temperature pro- 2Hm_ "1 Hm 571 1
R o . . =0,1,...). Therefore, Eq931b), (310 and (320 give, re-
file in Figs. 4—6 show that it is of a bimodal shape with a ! o 5 R A
very slight local minimum at the center of the gap,( SPectively, d UZHO/dxl)XfOZ_(4/\/;)“PH0(0)/TH0(O)v
=0). This fact has been discussed in earlier wdiks7] (dZ’rHo/dx'f)Xl:O:O, and (jZ'ArHl/dxi)Xl:O:o_ Then, it
(see Sec.)l To see this more clearly, we show in Fig. 7 22 2
magnified figures of the temperature profile in the centraFO"OWS fropw Bg. (330 that ( THzldxl)Xfo
part of the gap in the case of Fig(ch (i.e., «=3). Such a  =608a%/257T;5(0). In summary, we have

026315-11
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v/ (2RT,)V/?

0 .XI/L 0.5
(©

FIG. 6. The profiles of the density, flow velocity v,, and
temperaturel for Kn=0.02, 0.05, and 0.1 in the case @f 3 [cf.
Eqg. (18)]. (@) p, (b) v,, (c) T. See the caption of Fig. 4.

(dT
_O,

dx

x1=0

(61)

d’T 608 1 ., _ .
— |  =————a?&+0(>0.
dx{ %, =0 257 T(0)

1.175 |

—
=3
N
©
I
1

1.215 T |

1.214
]
S
B~
1.213
\
1.212 . . ‘
X/L 0.2
(b) Kn=0.05
1.3 T T T T
&
~
B~
1.29
\
\\
128 1 | 1 1 1 \
0 Xl/L 0.3
() Kn=0.1

FIG. 7. The temperature profile in the central part of the gap for
a=3 [cf. Fig. 6(c)]. () Kn=0.02,(b) Kn=0.05,(c) Kn=0.1. The
solid line indicates the asymptotic solution up to the order of,Kn
and the dashed line the numerical solution of the original BGK
system.

The nontrivial componentp;1, P22, P33, andp;, of the
stress tensor and thogg andq, of the heat-flow vector for
a=1, 2, and 3 in the right half of the gap are shown in Figs.
8-10. As in Figs. 4—7, the solid line indicates the asymptotic
solution up to the order o&? (or Kn?), i.e., h=hyo+ (hy;
+hyy) e+ (hya+hyo)€? with h=p;; or §;, whereas the

That is, the presence of the local minimum is attributed todashed line the corresponding numerical solution of the
the solution of the second-order fluid-dynamic-type equaoriginal BGK system. The dimensional variables are used

tions (see Fig. 3. Equation(61) coincides with the result

obtained by Tij and Santd®] (see also Refl4]).

also in Figs. 8—1(cf. Eqg. (8)]. The p;; is constantEq.
(16a)], and its Knudsen-layer part vanishes identicaige
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FIG. 8. The profiles of the nontrivial components of the stress FIG. 9. The profiles of the nontrivial components of the stress
tensorp;; and the heat-flow vectay; for Kn=0.02, 0.05, and 0.1 in  tensorp;; and the heat-flow vectay; for Kn=0.02, 0.05, and 0.1 in
the case ofx=1 [cf. Eq. (18)]. (&) P11, (b) P22, (O) P33, (d) p1o,  the case otx=2 [cf. Eq.(18)]. (&) p11, (b) P22, () P33, (d) P12,

(e) g1, (f) g,. The solid line indicates the asymptotic solution up to (e) q4, (f) q,. See the caption of Fig. 8.
the order of KA, and the dashed line the numerical solution of the

original BGK system. These two lines are indistinguishable for{ne position in the gas. More specifically, it is in the direction
Kn=0.02. of the gas flow near the walls but in the opposite direction in
. the middle. Similar change of the direction of the heat flow
Appendix D). As is seen from Eq(16b), p12/RpaTo=*F  was noted in the ordinary Poiseuille flow driven by the pres-
==*aKn at X;/L==*1/2. For the Navier-Stokes equation, sure gradienf33].
the normal stresses;;1, Poy, andpss; are equal to the pres- We now give a short comment on the perturbation solu-
surep, which is uniform, and there is no heat flow in the tion by Tij and Santo$2]. We have given some of the de-
dirdectioPKp;?rarI]Iel to the vv_allsc“(z:(_)f). In CoEntraészt, in r:he rivatives of 0,1y and Ty, at x;=0 before Eq(61). In ad-
order o , the pressure is not uniforfsee , the i 2k+15 2k+1_ _ _
normal stresses [\)/vhich contain non—Ng?/ier—S?ékes)%eEﬁm dition, d PHm/cjxl ~0 holds atx}—O k=01...),
7o e and we obtain @?py,/dx?)y —o=19202py(0)/57T0(0)
terms containing o ando »o in Egs.(C3a—(C30)], are not !

isotropic, and the heat flow parallel to the walls apdeae from Eg. (323)_' These r?sults lead to the following Taylor
Eq. (C6b)]. These non-Navier-Stokes terms are of the formSeries expansions d@f,, T, andp aroundx,=0 when|x,|
contained in the Burnett approximatipd2] of the stress and =¢-
heat flow. For the shear strefs, and the heat flowg; per-
pendicular to the walls, the non-Navier-Stokes terms appear

! : : 2 p(0

in th_e _order of Kﬁ (as mentioned in the end of _Sec. _III A, _the By=0,(0)— — Q ax§+0(e3), (623
explicit expressions of;jy3 and g;y3 are omitted in this \/> %(0)

papei. These non-Navier-Stokes terms are not contained in m

the Burnett approximation. Therefore, it turns out that Eqgs.

(33b) and(33¢), which include the contribution d¥;4,3 and o 16 1 [p(0)? 57

0143, are affected by the terms beyond the Burnett approxi- T=T(0)— — —— | ——xj— — €| a®?+O(€°),
mation. As is seen from Figs(f8, 9(f), and 10f), the heat 157 7(0)| T(0) S)

flow §, parallel to the walls changes its sign depending on (62b)
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L=

1.221 Kn=0.1
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the flow between two plates is also summarized in a more
tractable form than in Ref2].

As mentioned earlier, the present analysis completely fol-
lows the procedure of the asymptotic theory by Sone and
co-workerg11-19. Esposito, Lebowitz, and Marfd] used
a similar procedure to investigate the present problem for
small € in the case of the Boltzmann equation for hard-
sphere molecules. Their aim is to clarify the mathematical
structure of the solution rather than to obtain the flow field
explicitly. They were able to obtain the estimates of the ex-
panded terms and the remainder of the velocity distribution
function and to show the convergence of the solution of the
02| . Boltzmann equation to that of the Navier-Stokes equation in
. : the continuum limite— 0.

1.2+ 0.05

118 A

1.16} 0.02

pu/Rpe,To
P/ RpaTy

1.14 L L

pSS/Rpava
p12/RpauTy
=
B
[]
[=]
—

1.18 Y o.1r 0.05 1

IV. NUMERICAL ANALYSIS FOR INTERMEDIATE
KNUDSEN NUMBERS

In Sec. lll B, we have already analyzed the Knudsen-layer
problem (479—(47¢0 numerically by a finite-difference
method. In addition, in Figs. 4—10, we have presented some
numerical solutions of the original system, E¢8)—(110),

(13), and (14), for small Knudsen numbers when the force

parametelF is scaled as Eq(18). In this section, we give
some numerical result&umerical solutions of the original
system for intermediate values of the Knudsen number in

the case wher€ is fixed. We first give a brief comment on
the numerical solution method and then give results of analy-

Sis.
FIG. 10. The profiles of the nontrivial components of the stress

tensorp;; and the heat-flow vectay; for Kn=0.02, 0.05, and 0.1 in
the case otv=3 [cf. Eq.(18)]. (8) P11, (b) P22, (C) P33, (d) P12,
(e) q;, (f) g,. See the caption of Fig. 8.

a1/(pu/2)(2RTH)*?

0 ‘ Xi/L 0.5 0 X,/L 0.5
(e) 0]

A. Some comments on the numerical method

In the numerical analysis, we can take advantage of the
nice property of the BGK model that thig and{; variables

. 96 p(0) can be eliminated in spatially one-dimensional problems
p=p(0)+5—wﬁa252x§+0(e5). (620 [35]. Let us introduce the followinddimensionless mar-
(0) ginal velocity distribution functions, which are the functions
of x; and{;:
By a careful comparison, one can show that these results
coincide withu®(s)F, 1+ T@)(s)F?, and 1+ p?(s)F? in Ga Lo 1
Ref.[2], respectiveljcf. Egs.(29)—(31), (33), (36), and(37) Gy | = f f & |fdg,dis. (63
in Ref. [2]], if the higher-order terms are neglected. There- Ge el 242

fore, it is most probable that the perturbation solution by Tij

and Santos corresponds to the Taylor series expansion of the

Hilbert (or norma) solution around the center of the gap, By multiplying Eq. (9) by 1, {,, and¢5+ £3 and integrating
which is valid only in the vicinity of the center. Essentially the respective equations over the whole rangé,oénd £,

the same agreement is observed for the stress tensor as Wgl obtain the simultaneous equations &y, G,, andg..

as the heat-flow vector. They were able to obtain higherThe corresponding boundary conditions are derived by the
order terms, but their ainalysis cannot give any informatiorsgme way from Eq<€13) and(14). In summary, the resulting
about the value$,(0), T(0), andp(0) at the center. Fur- equations are given by

thermore, it should be emphasized that the Hilbert solution

can be regarded as a part of the solution of the boundary-

value problem under consideration only when it can be con- Ga 0 Gae— Ga
sistently matched with the boundary condition through the L—| G| —F| Ga |=——p| Gbe— G|, (69
Knudsen layer. In this sense, the present analysis would jus- X1 Ge 2G, JKn Geo— Ge

tify Tij and Santos’ solution as a correct local solution near
the center of the gap. They extended their analysis to the case
of a circular pipe recently in Ref34], where the result for where
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Gae A ) 1 boundary-value problems fot, and those for T{,,H,)
p — {1 were solved numerically by a finite-difference method simi-
Gpe | = 5 l/zexp( 3 e 69 ar to that used for solving Eq$64)—(68). The slip coeffi-
Good (™) 03+ T cients associated witht, (i.e., B1a, Bab, Bzc, and Bog)
were determined in the same way as in R&€)], while those

U2

A:Jm G.dz (66a  associated with X, 1) (i.e., Bia» Bap, Bac, and Byg)
p=|_ Faten were determined in the same way as in R&f].

R " B. Results of numerical analysis
02:(1/P)f_ Gpd{y, (66b)

Before presenting the results of numerical analysis, we
give the solution for the free-molecular flow (Kne), that

t=2%) | [+ 6D0a- 20,00+ 61z, G00
C -
1

7 _ 2 2
and the boundary conditions are given by f= ?,zexp< _gl_[fz_(xlii)z} _§3) (£4,>0),
(693

gl: —\/;pwexq-gl) 1 p=1, D,—®, T—ox»,
for +¢,>0 at x,=F1/2 67) Pu=Pas=1, Pr—®, Pro=2XF, (69b)

4:=0, Qp—ce.
e I AC AT - -
*{4<0 Here, we compute the macroscopic variables by integrating

) ) ) o ) over a truncated); space with—«<{;<—§ and §<{;
This system, in which the derivative term with respecto (6>0) and then taking the limit a8— 0. In this limit,
[cf. Eq.(9)] has disappeared, can be solved numerically by a

e diference metnod n he same way as i K@y 0 Tpb S0 dverse s niniy
where half-space problems of strong condensation an wveI%c}ty and temfoerature for various Knudsen numbe%s
evaporation are analyzed. Since the detailed description q 7 -

the numerical method is found there, we omit it in the Or two fixed values of the force parameter[Eq. (12a],
present paper. Because of the symmetry of the sy¢édir-  i.€., F=0.05 (Fig. 11) and F=0.5 (Fig. 12. In the former
(68) with respect to thex, axis, we carry out the actual case wheré is small, the flow speed is naturally lower, and
computation in the half range Ox;<1/2 imposing the thus the nonuniformity in the density and temperature is

specular reflection condition f@,, G,, andg; atx;=0. It smaller compared with the latter case. For 0.5 (Fig. 12),
should be noted here th@b,, P33, andd, cannot be ex- g high-speed flow is caused for small Kimote that
pressed in terms of the marginal velocity dlstr|but|_on fU”C'vzl(ZRTO)1’2= J/5/6 corresponds to the sonic spgednd
tions G, Gy, andg,. However, once these are obtained, thecorrespondingly the variation in the density and temperature
p, 0o, and T and thusf, in the original equation9) are  becomes large. For large Kn, the profiles tend to become
determined. Then, we can easily integrate E).numeri-  uniform. As Kn increases from small values, the flow speed
cally with respect to¢; under the boundary conditidid3) to  in the bulk of the gas decreases, becomes lowest at interme-
generatef. In this way, we can computp,,, a3, andg,  diate values of KiiKn=1 in Figs. 11b) and 12b)], and then
easily.[In this process, one can also get rid @f by intro-  increases. As shown in E@69b), the flow speed becomes
ducing the marginal velocity distribution functiong,  infinity as Kn—c. On the other hand, for any fixed value of
=[fd¢; and ]-‘bzfg%fdgg and using the equations and F, the flow speed increases indefinitely as Kn approaches
boundary conditions for them derived by the correspondingero. In order for the flow speed to remain finite in the limit

integrations of Eqgs(9) and(13).] Kn—0 (continuum limit, the force parametef should be

In Sec. 1lIB, we carried out a numerical analysis of the of the order of Kncf. Eq. (18)], as we have seen in Sec. lIl.
Knudsen-layer probler#7g—(47¢) to determine the slip co- The temperature in Figs. (d and 12c) also becomes low-
efficients as well as the Knudsen-layer corrections. In thisst at intermediate values of Kn, corresponding to the behav-
analysis, the elimination of, and {3 mentioned above has jor of the flow speed.
also been made. That is, we introduce three marginal velocity Figures 13 and 14 show the profiles of the nontrivial com-
distribution functionsHam, Hom, andHcp, of @y defined  ponents of the stress tensor and the heat-flow vector for vari-
respectively byG,, G,, andG; with f replaced by>E in  ous Knudsen numbers fd¥=0.05 (Fig. 13 and 0.5(Fig.
Eq. (63). Then the decompositiot51) is automatically 14). The result for Kr=10, which ranges from 4.3631 to
made, i.e.Hy,, which contains onlyby,, is decoupled from  4.7845, is omitted in Fig. 1#); and the results for Ka5
H, and H, containing only ®: . Then the resulting and 10, which range from 2.5637 to 3.1487 and from 10.762

026315-15



KAZUO AOKI, SHIGERU TAKATA, AND TOSHIYUKI NAKANISHI

1.02 T | T
Kn =0.
1.01L n =0.056 |
< 0.1
= 0.2
0.5
1
1
2,5
10,20
0.99 1 1 I 1
@)
0.4 . . T

0 X/L
(©

FIG. 11. The profiles of the density, flow velocity v,, and

temperaturel for various Kn in the case d$=0.05.(a) p, (D) vy,
(©T.

to 11.732, respectively, are omitted in Fig.(fl4 The py; is
independent ofX; [Eq. (168], and p;1»/RpaTo is almost
independent of KiiFigs. 13d) and 14d)]. Figures 18) and
14(f) show the change of the sign gh (the component of
the heat-flow vector parallel to the walllepending on the
position in the gas for small Kn, as in the case of Fig$),8
9(f), and 1@f). As Kn increases from small valueg, de-
creases, becomes smallest at intermediate values ¢KKn
=5 in Fig. 13f) and Kn=0.5 in Fig. 14f)], and then in-

creases. FoF =0.05, g, is negative in the whole gap for a

wide range of Kn(at least for 0.5Kn=10). The approach

of the physical quantities to the free-molecular flow values

(69b) is rather slow.

PHYSICAL REVIEW E 65026315

P/ Pav

vy/(2RTy)/?

T/Ty

0 X,/L
(c)

FIG. 12. The profiles of the density, flow velocity v,, and

temperaturerl for various Kn in the case dt=0.5. @ p, (b) vsy,
(©T.

Figure 15 and Table Il show the mass flowl and the
heat flowQ in the X, direction per unit width inX; and per
unit time, i.e.,

L/2 1/2
M:f puzdxlzzpav(zRTo)lszf pdXy,
—L/2 0
(709

L2 12
Q:f Q2dX1:Pav(2RTo)3/2|—j 4.dx;, (70b
—L2 0
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FIG. 13. The profiles of the nontrivial components of the stress  FIG. 14. The profiles of the nontrivial components of the stress
tensorp;; and the heat-flow vectag; for various Kn in the case of tensorp;; and the heat-flow vectar; for various Kn in the case of

F=0.05.(a) p11, (b) P22, (©) Pz, (@) P12, (© a1, () 9. F=0.5.(8) pa1, (b) P2z, (€) P33, (d) Paa, (€) Ay, (F) G-

versus the Knudsen number fBr=0.05[Fig. 15a)] and 0.5 basic system used.here is the BGK model of the .B_oltzm_ann
[Fig. 15b)]. The corresponding results obtained from the€duation and the diffuse reflection boundary gondltlpn. First,
asymptotic analysis for small Kn in Sec. Il are also shownthe case of small Knudsen numbers was investigated by
in Fig. 15a) as well as in Table II. The dimensionless mass-Means of a systematic asymptotic analysis of the basic sys-
flow rate M/2p,(2RT,) YL takes the minimum at an inter- tem fo_r weak ex_ternal forcEEq. (18)] (Sec. _III). As a result, _
mediate Knudsen number, which is similar to the Knudserfh€ fluid-dynamic type equations and their boundary condi-
minimum [38] in the case of the Poiseuille flow caused by fions of slip type were obtalneq up to the second order in the
the pressure gradiedB3]. It increases indefinitely in the Knudsen number, together with the Knudsen-layer correc-
limit Kn—o as well as in the other limit Kn-0, but the tons near the walls. Then, the original BGK system was
increase in the former is slow. The global heat flow change&nalyzed numerically by an accurate finite-difference method

its direction depending on the Knudsen number, that is, it is

in the direction opposite to the flow in the range approxi- % ' 0.02 = ' — 02
mately Kn<15 for F=0.05 and in the range approximately o001 o8l 1018
0.15<Kn<0.8 forF=0.5, but in the direction of the flow in EO'Q_ g é . ford
the other range. The increase of the dimensionless heat-flovg . 010 g %0'6' . ° | oos®
rate Q/p,(2RTo)¥2L with Kn after it takes thenegative §°~1‘ "o o lomd §0_4, S . T H
minimum value is steep. It becomes infinitely large in the v T o 1°
free-molecular flow limit. 0 g Knl(l)u =002 03] o - i ]-0.05
(a) F=0.05 by F=05

V. DISCUSSIONS
FIG. 15. The mass-flow rat&1 and the heat-flow rat@ vs Kn.

In the present paper, we have investigated a Poiseuilleg) E=0.05, (b) E=0.5. Here,¥ indicates the mass-flow rat&
type flow of a rarefied gas between two parallel plates drivenhe heat-flow rate, and the solid line the corresponding results based
by an external force in the direction parallel to the wall. Theon the asymptotic analysis in Sec. IlI.
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TABLE Il. Mass and heat-flow rates. The values in the parentheses indicate the results based on the
asymptotic analysis in Sec. lIl.

MI2p,(2RTo) AL Qlpak2RTo) ¥
Kn F=0.05 F=05 F=0.05 F=05
0.02 2.361x 10°% 9.659 x 107! -1.360 x 1074 2.010 X 1072
(2.362 x 107Y) (—1.248 X 104
0.05 1.176 x 107! 6.806 x 107! —7.089 x 1074 1.583 x 1072
(1.178 x 10°Y) (—7.081 x 1074
0.1 7.374%x 1072 5280 x 10! —1.445 x 1078 6.680 X 1073
(7.385 X 107?) (—1.452 X 103
0.2 5.198 X 1072 4.262 x 10°* —-2.584 x 1073 -5.201 x 1073
(5.197 X 107?) (—2.600 X 1079
0.3 4520 X 102 —3.461 x 1078
(4.490 X 1072 (—3.478 X 1079
0.5 4.047 X 10°? 3.603 x 101! —4.775 X 1078 —1.385 x 1072
0.75 3.506 x 10°* -5.791 x 1073
1 3.841 x 1072 3.492 x 10°% -6.875 x 1073 1.206 X 1072
1.5 3.535x 107! 7.371 X 1072
2 3.955 x 10°? 3.603 x 107! -9.195 x 1073 1.676 x 107!
3 3.743 x 107?! 4.477 x 1071
5 4.428 X 1072 3.982 x 107! —1.158 X 10?2 1.358 x 1¢°
7 4671 x 1072 —1.138 X 1072
10 4.961 X 102 4.400 x 10°* -9.317 X 1078 5509 x 1C°
15 5.327 X 1072 -1.877 x 1078
20 5.606 X 102 1.010 x 1072
for intermediate as well as small Knudsen numb€dsc.  ~0.75 fora=23 [see Fig. 1b); note that (RTO)1/2 is nearly

IV). The num_erical results for sn"_nall Knudsen nu.mbers werghe sound speddThe cause of this seemingly paradoxical
compared with the results obtained by the fluid-dynamicyesult can be explained on the basis of the Navier-Stokes

type systemsSec. Il)). equation. In the present unidirectional flow, the flow field is

ﬁThte E”“}[ﬁ'ySif’hOf Stﬁc- IIII_shl;st :jhat the ng_?;)N;Vief]:St?ke%ssentially determined by the balance of two terms: the vis-
effects (other than the slip boundary conditionmanifest i term d( wdo /dX)/dX and  the
themselves in the second order in the Knudsen number. F%rxter);]al—force terrr(1|¥;) (T/t\evzformcla)r is 1of the order of

example, the anisotropy of the normal stre@ss, p,,, and 1/ :
ps; and the heat flowg, in the direction of the flow appear in §|(23$VT§/:()951U/§§C§LOS) /2] En(z RV\_Irh;rgl v Tlr?er:at}srereiffire?se
this order. The bimodal shape with a very slight local mini- peed, 2/p o/ 70 P2

mum at the center of the gap in the temperature profile i®f the order of (RTo/L)Kn or F~Kn [Eq. (18)], then the
also attributed to the effect of the second-order temperaturéxternal-force term is balanced by the viscosity term with a
field. finite U or U~ (2R Ty)Y? i.e., with a flow of a finite Mach
Finally, let us consider the continuum limit, where the number. The situation remains unchanged in the limit Kn
Knudsen number vanishes, on the basis of the result obtained 0 because Kn cancels out from both terms. In this way, a

in Sec. IIl. In this limit, the parametdt, which is a measure Vvanishingly weak external force can cause a flow of a finite
of the external force, vanishes because of the setting of EdMach number. o

(18). Therefore, one may think that the present problem re- Here we recall that the present problem is originally char-
duces to the case of a gas between two plates atwitsta  acterized by the two independent dimensionless parameters

common temperatuyén the absence of an external force and g gnd Kn[Eg. (12)] and that the continuum limit discussed

in consequence the gas is at rest. But it is not true. In thi . o 2
limit, the flow field in the present problem approaches the%lbove Is based on the settifig-Kn [Eq. (18)] betweenf

leading-order terms of the Hilbert expansidggs. (19) and f’ind Kn. What ha_lpp?ns n thg CE)r?tu?uum limit when one
20)], i.e.. p—pro ?_;AI.HO By—Dano, etc. That is, the imposes the conditiok ~ 1 (that is,F is independent of Kn
flow does not vanish in this limit, and the flow field depends®” F=0(Kn) is now obvious. WhenF~1 1/(2i.e., Fo

on the coefficientr in Eq. (18). In other words, a vanishingly ~2RTo/L), the flow speed should be/(2RTo)™“~1/Kn,
weak external force can cause a gas flow with a rather higho that it increases indefinitely as KfD. When F
speed in the continuum limit. For instance, =o(Kn), the flow speed should Hg/(2RT,)¥?=0(1) and
|02 max/(2RT)?=0.28 for a=1 and |v,|ma/(2RTy)Y?  thus vanishes in the limit Kn-0. In this case, the solution
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approaches that in the case without an external force. visiting fellow (short term of the Japan Society for the Pro-
The balance between the terms that are of the order of Kmotion of Science. The authors wish to thank him for his

(in an appropriate scalingand thus vanish in the continuum valuable discussions and comments.

limit [such as the viscosity term with ~ (2R To)? and the

external-force term discussed abdvesults in the fact that APPENDIX A: HILBERT EXPANSION OF THE

the behavior in the continuum limit can be affected by van- MACROSCOPIC QUANTITIES

ishingly small quantities in this limit. Such an effect is called

the ghosteffect. In the present problem, this effect could be !N this appendix, we summarize explicit expressions of

explained in the framework of the classical Navier-Stokeghe coefficientdy,, in terms off pym fOF Py Doty Ty PH s

equations(see the preceding paragraphBut, in general, it P, and@;y up tom=2.

cannot be described by the Navier-Stokes sydi@iore spe-

cifically, the conservation equations of mass, momentum, ~ |z

and energy with Newton'’s law of stress and Fourier’s law of PHo f fods, (A1a)

heat flow and the nonslip boundary condition for the velocity

and temperatujebecause, except for the viscosity and heat- A agn 2

conductign terms, the effects o?the order of (@mcyh as the UZHO_(l/pHO)J £2fhodZ (ALD)

thermal creep flow[30,39—-41 and the nonlinear thermal

stress flowf15,42,43) are not contained in the system. As an

example, let us consider a gas in a closed container at rest

Ho:(2/3l3Ho)f [+ (Lo—Dan0) %+ 5%]‘?Hod§,

with an arbitrarily assigned surface temperature varying (Alc)
along the surface in the absence of external forces. If we ~
investigate the steady behavior of the gas using the Navier- Pro=PHoTHo> (A1d)

Stokes system, we are led to the conclusion that the gas is at

rest and the temperature distribution in the gas is described o~ . A Y

by the steady heat-conduction equation with the nonjump pino—ZJ (£~ D2n00i2) (£~ Danodj2) fraodd,

condition. However, the second part of the conclusion is not (Ale)

true except for some special cases. In reality, the thermal

creep and nonlinear thermal stress flows, which vanish in the :f A 2, (s 5 2., ;213

continuum limit, give a significant effect on the temperature ~ 11° (&= D2n0di2) L&+ (L2~ D2n0) "+ £3]THodd,

field in this limit. Therefore, the Navier-Stokes system has a (A1f)

serious defect in describing the behavior of the gas even in

the continuum limit, in spite of the fact that it is generally - :J t..d A2a

accepted as the correct system for this limit. This fact was Pr1 H1dd, (A23)

pointed out in Ref[15]. The reader is referred to Refd.9],

44-47 in addition to Ref[15] for the details and further A " 2 A ga ya

Biscuszions [15] U2H1:(1/PHO)J {ofH1d8—(PH1/PHo)D2mo, (A2b)
It should be noted that we do not need to follow the afore-

mentioned limiting process to the continuum limit by experi-

ments. If the parameters of the experiment being performed

are close to the limit, then we can predict the result of the

Toa=(23pu0) | (834 (L= a0+ Bl 0

experiment from that of the limit. For instance, suppose that = (Pr1/Pro) Tho, (A20)
a two-dimensional vertical channel with width 5 cm and ~ .
length, say 10 m, connects two large reservoirs separated PH1=PHoTH1 T PH1THO, (A2d)

vertically and that the pressures of the gas in the two reser-
voirs are regulated in such a way that the pressure at the o f A _ s Y

channel entrance in each reservoir is exactly the same. Then, ~ PiiH1 2 | (&= D2108i2) (£~ D2n0j2) fradd,

the gas flows downward through the channel because of the (A2e)
gravity. Suppose that the gas is argon, the pressure is 1 atm,
and the gravity is that on the earth. Then, the Knudsen

Qg = = Dopnd 24 (Ea—D 24 /203
number is Kr=1.8x10"°® and the force parameter is Gita J(g' D2r002)[ {1+ (62 Do) ™+ £5]THadE

F=4x10"5. This is nearly the continuum limit and satisfies — (Dot 2DunS D A2f
the condition(18) with «=2.2. Therefore, one can predict (Pizeot 2Prodiz) Oz, (A20)
that the Mach number of the gas flow reaches 0.6 at the .

center of the channel. f)Hz=f fyodg, (A3a)
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?H2=(2/3FA’HO)J [§§+(§2_52H0)2+ fg]szdf

—(Pra!Pro) Thi— (Pra! Pro) To— (2/3)51,

(A3c)
Prz=ProTH2t P Tt PrzTho, (A3d)

PijH 222] (&i=D2n08i2) (£ Damodj2) Tradd
_Zf)Hoﬁngaiz&jz, (A3e)

Qino= J (&i— 02108 D[ L+ (L= D am0) 2+ {31 Fh2d L
~(Pizro+ 3Pr06i2) 0 2n2— (Pizn1+ 3 PH1GI2)D2H1 s
(A3f)

where §;; is the Kronecker delta. Note th@tzm=Pozm
:0 andq3Hm=0.

APPENDIX B: HILBERT EXPANSION OF THE LOCAL
MAXWELLIAN

The coefficientsfepg, fens,» and fenp in Eq. (21) are
summarized in the following:

PHYSICAL REVIEW E 65026315

Tho
(Blo

B 3+ (L—Dom0)?+ 85 3)(&)2 ang}

Tho 41\ Tho

APPENDIX C: STRESS TENSOR AND HEAT-FLOW
VECTOR OF THE HILBERT SOLUTION

In this appendix, we summarize the expressions of the
coefficientsp;j, and@;ym of the Hilbert expansiori20) of
the stress tensgp;; and that of the heat-flow vectdy; in
terms ofpy,,, Thn, anddy,(n<m) for m=0, 1, and 2; that
is,

(CY
P12r0= P2110=0,
P1111= P22r1= PasH1= PH1,
(C2
o A A doono
P12H1=P21H1= — HOd—X11

A 31 d[. dTy
P11H2=PH2t

2 o 01 Td—) coa

A A 11 d[. dTa Tho [ dD 10\ ?
P2oH2=PH2+ H 20—\ ——

P PHo exr{ §i+(§2—ﬁzHo)2+§§) 2 pro dxg | % dx PHo dX1(C3b)
eHO ™ o .~ - - '
(7Tho)¥? Tho A
(Bla) oo 11 d 2 dTho o3
) ) ) P33H2= PH2 2 Puo dXg HO dx, |’ (C30
P o3 @+2(§2_02H0)02H1
eH1™ TeHo ™ - . digy o digm
0 P1or2=P21r2= — Thy dx, HO g, (C3d
G+ (L= Dam0)?+ 5 3\ Ty
+( % o> = | (B1b) A1H0=02H0=0, (CH
HO HO
. 5. dTwo
’f —f ﬁH2+2(§2_i}2H0)62H2 QIle_ZTHOd_Xla q2H1:0a (CS)
em2=Teno\ T— T —
PHo Tho R )
. S5~ dTyr o dTyo
~ = = — — —+ —_
gi+(§2_02H0)2+ g%_ E) THZ qu2 4 THO Xm THl Xm ’ (C6a)
Tho 2] Tho A N ~ N R
a :4M dTho dd 2o EE d2U2H0 (C6b)
+E iﬂ 2(?2_52H0)52H1 27 huo dxg dxg 2 P dxg
2 PHo THO NOte thatf)lgHm=fJ23Hm=0 andq:gHm:O.
2
2 A 2. 42 s
£t (Lo~ Dono) ™+ 485 3) Tha APPENDIX D: KNUDSEN-LAYER PARTS OF THE
Tho 2/ 70 MACROSCOPIC QUANTITIES
1 poy 2 (£3—Dari0)Dabiy X The exE)ressions dfxy, in terms ofmefori)K,ﬁZK,'T'K,
- E ~ _ZTTHl Pijk » and@jx up tom=2 are summarized below. Here, the
PHo Tho condition (34) has been used.
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ﬁm:f frade, (D1a
A 1 .
UzKlsz {ofkadd, (D1b)

. 2 , 3|,

TKl:S(ﬁHO)BJ’ g 3 fr1dg, (D1o
@11K1:2j {3tkade, (D1d)
f)12|<1:2f {18afkade, (Dle
ﬁzzqzzf $5Fkade, (D1f)
ﬁBBKlZZJ' 5fkade, (D1g
QlKl:J' {1%Fkqde, (D1h)

Q2K1=J {o0*1dE— 3 (Pro)d ak1 (D1i)
o= [ Tt (D2a
1 . dp
52K2:m[f§2f|<2d§— (Pro)st g—:,o)Bﬂ Uok1
i
_{(i}ZHl)B"_(l;—ZyHO) ﬁﬁKl_f)KlﬁzKl], (D2b)
B
fomp | 5 [ |25 et
k=5 513 = 5] Tkadd
. dpro -
—|(Pu)e ™t d_y)BW}TKl
R T .
= (Thoet d_;'o)Bﬁ ﬁKl_ﬁKlTKl}
do 2
3 (Don1)et Z—Z;O)Bﬂ 52K1‘§®§K1’
(D20)
Pusa=2 | ot (D2d)
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f’lszzzf {185t k2dg, (D2¢)
f’zsz:Zf {5t ka08—2(Pro)sdiki— 4(Pro)s
R DoHo R
X[ (V2n1)B T+ d—) 7 |V2k1 (D2f)
Y /g
f333;<2:2f e ore (D29)
Cthzf {187 k20— (Pagn) BD 21
. dooHo . R
_{(U2H1)B+(d—y B77+02K1 P11
(D2h)
. % . do,no N R
Qok2= | £20Tk2dl—| (Don1)t dy 7+ 0ok | Pax1
B
3. R A . do oho
_E[PK1+(PH0)BTK1] (U2n1)B ™t “dy B77
. 5] dp .
+02Kl}_§[(le)B+ d_;O)Bﬂ‘F(PHo)B
_'I*_ d:rHO -~ ~ ~
X[ (Tup)et+ dy B’? UZKl_E(pHO)BUZKZy
(D2i)
where
P={+ 53, di=dgdEdss, (D3)

and ( ) indicates the value on the waly €0). In addition
t0 Praskm=P2xkm=0 and gzxm=0, we havep,ikn=0 be-
causepyik is given bypii=Pi1—P1a, andPiy and Pagy
are the same constgmtote that Eq(16a holds also fop;4
becausé,, is a solution of Eq(9) and thatp,,= P, outside
the Knudsen laydr Furthermore, the relationg;x1
=P1k2=0 andf,x; =0 hold. In fact, multiplying Eq(473
with £,E and Z°E, integrating with respect td; over its
whole space, and taking into account the conditidrno), we
have

| atdade- [ actmdz=o,  ©4

for m=1 and 2, which, together with EqéD1e), (D1h), and
(D2e), leads to the relations mentioned abdmete thatf;x»
does not vanish

026315-21



KAZUO AOKI, SHIGERU TAKATA, AND TOSHIYUKI NAKANISHI

[1] R. Esposito, J. L. Lebowitz, and R. Marra, Commun. Math.
Phys.160, 49 (1994.

[2] M. Tij and A. Santos, J. Stat. Phys6, 1399(1994).

[3] M. Malek Mansour, F. Baras, and A. L. Garcia, Physica4g,
255 (1997).

[4] M. Tij, M. Sabbane, and A. Santos, Phys. Fluitig 1021
(1998.

[5] D. Risso and P. Cordero, Phys. Rev58 546 (1998.

[6] F. J. Uribe and A. L. Garcia, Phys. Rev.6B, 4063(1999.

[7] S. Hess and M. Malek Mansour, Physic®222, 481 (1999.

[8] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rdy511
(19549.

[9] P. Welander, Ark. Fys7, 507 (1954).

[10] M. N. Kogan, Appl. Math. Mech22, 597 (1958.

[11] Y. Sone, inRarefied Gas Dynamic®dited by L. Trilling and
H. Y. Wachman(Academic, New York, 1969 p. 243.

[12] Y. Sone and K. Yamamoto, J. Phys. Soc. Jp®).495(1970;
see also Y. Sone and Y. Onislitjd. 47, 672(1979.

[13] Y. Sone, inRarefied Gas Dynamigcsdited by D. Dini(Editrice
Tecnico Scientifica, Pisa, Italy, 197 Mol. 2, p. 737.

[14] Y. Sone, inAdvances in Kinetic Theory and Continuum Me-
chanics edited by R. Gatignol and Soubbaramay®pringer,
Berlin, 1991, p. 19.

[15] V. Sone, K. Aoki, S. Takata, H. Sugimoto, and A. V. Bobyleyv,
Phys. Fluids8, 628 (1996 ibid. 8, 841(E) (1996.

PHYSICAL REVIEW E 65026315

[23] C. Bardos, R. E. Caflisch, and B. Nicolaenko, Commun. Pure
Appl. Math. 39, 323(1986.

[24] C. Cercignani, inTrends in Applications of Pure Mathematics
to Mechanics edited by E. Krmer and K. Kirchgasner
(Springer-Verlag, Berlin, 1986p. 35.

[25] F. Golse and F. Poupaud, Math. Methods Appl. 34i. 483
(1989.

[26] Y. Sone, J. Phys. Soc. Jpho, 1463(1964).

[27] Y. Sone, J. Phys. Soc. Jp20, 222 (1965.

[28] Y. Sone and Y. Onishi, J. Phys. Soc. JB8, 1773(1973.

[29] Y. Sone and Y. Onishi, J. Phys. Soc. Jgd, 1981(1978.

[30] T. Ohwada, Y. Sone, and K. Aoki, Phys. Fluids 1A 1588
(1989.

[31] Y. Sone, T. Ohwada, and K. Aoki, Phys. Fluids 1 363
(1989.

[32] S. Chapman and T. G. CowlinGhe Mathematical Theory of
Non-Uniform Gases3rd ed. (Cambridge University Press,
London, 1970, Chap. 15.

[33] T. Ohwada, Y. Sone, and K. Aoki, Phys. Fluids 1A 2042
(1989.

[34] M. Tij and A. Santos, Physica 289, 336 (2001).

[35] C. K. Chu, Phys. Fluid8, 12 (1965.

[36] K. Aoki, K. Nishino, Y. Sone, and H. Sugimoto, Phys. Fluids A
3, 2260(1992).

[37] Y. Sone, T. Ohwada, and K. Aoki, Phys. Fluids 1A 1398
(1989.

[16] Y. Sone, C. Bardos, F. Golse, and H. Sugimoto, Eur. J. Mech[38] M. Knudsen,The Kinetic Theory of Gaseg8rd ed.(Methuen,

B/Fluids 19, 325(2000.
[17] Y. Sone and K. AokiMolecular Gas Dynamic§Asakura, To-
kyo, 19949 (in Japanese

London, 1950.
[39] E. H. Kennard Kinetic Theory of Gase@McGraw-Hill, New
York, 1938.

[18] Y. Sone,Theoretical and Numerical Analyses of the Boltzmann[40] Y. Sone, J. Phys. Soc. Jp21, 1836(1966.
Equation—Theory and Analysis of Rarefied Gas Flows—, Lecf41] Y. Sone, K. Sawada, and H. Hirano, Eur. J. Mech. B/FIdi8s

ture Notes (Department of Aeronautics and Astronautics,
Graduate School of Engineering, Kyoto University, 1998art
I (http://www.users.kudpc.kyoto-u.ac.jp/~a50077/

[19] Y. Sone,Kinetic Theory and Fluid Dynamigdviodeling and
Simulation in Science, Engineering and Technology
(Birkhauser, Basel, in pregs

[20] C. CercignaniRarefied Gas Dynamics, From Basic Concepts
to Actual Calculations(Cambridge University Press, Cam-
bridge, 2000.

[21] Y. Sone, H. Sugimoto, and K. Aoki, Phys. Fluidg, 476
(1999.

[22] H. Grad, in Transport Theory edited by R. Bellman, G.
Birkhoff, and I. Abu-Shumay$American Mathematical Soci-
ety, Providence, 1969p. 269.

299 (1994.

[42] V. S. Galkin, M. N. Kogan, and O. G. Fridlender, Mekh. Zhid.
Gazag3, 98 (1971 [Fluid Dyn. 6, 448(1971)].

[43] M. N. Kogan, V. S. Galkin, and O. G. Fridlender, Usp. Fiz.
Nauk.119, 111 (1976 [Sov. Phys. Usp19, 420(1976)].

[44] Y. Sone, S. Takata, and H. Sugimoto, Phys. Flugls3403
(1996; ibid. 10, 1239E) (1998.

[45] Y. Sone, inRarefied Gas Dynamicgdited by C. ShefPeking
University Press, Beijing, 1997p. 3.

[46] Y. Sone, inAnnual Review of Fluid Mechanig@&nnual Re-
views, Palo Alto, 2000 Vol. 32, p. 779.

[47] F. Bouchut, F. Golse, and M. Pulvirenjnetic Equations and
Asymptotic Theoryedited by B. Perthame and L. Desvillettes
(Gauthier-Villars, Paris, 2000Chap. 2.

026315-22



