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A rarefied gas between two coaxial circular cylinders of infinite length, rotating with different angular
velocities and kept at a common temperature, is considered. The stability of the circumferentially as well as
axially uniform flow �cylindrical Couette flow� for circumferentially uniform small disturbances is investigated
on the basis of kinetic theory. The linear-stability analysis is performed using the Bhatnagar-Gross-Krook
model of the Boltzmann equation and the diffuse reflection condition on the cylinders. The maximum growth
rate of the disturbances is determined numerically by solving the initial and boundary value problem for the
disturbances for relatively small Knudsen numbers and wide ranges of angular velocities of the cylinders. As
a result, the parameter range where the cylindrical Couette flow is unstable is clarified. The result is compared
with the corresponding result based on the continuum model of the compressible Navier-Stokes type. A
comparison is also made with the result of a direct numerical analysis of the original Boltzmann system,
obtained by the direct simulation Monte Carlo method in previous papers as well as in the present study.

DOI: 10.1103/PhysRevE.73.021201 PACS number�s�: 47.45.�n, 51.10.�y, 47.20.�k, 47.40.�x

I. INTRODUCTION

Axially and circumferentially uniform flow between two
rotating coaxial circular cylinders is a textbook example
known as cylindrical Couette flow in classical �incompress-
ible� fluid dynamics. It is also a basic flow for a rarefied gas
and has been investigated on the basis of kinetic theory
�1–15�. The interest of the existing work extends to various
aspects, such as the validation of the generalized hydrody-
namics �3,4�, the validity of the principle of frame indiffer-
ence �6�, the ghost effect caused by infinitesimal evaporation
and condensation on the cylinders �7�, bifurcation of flows
when evaporation and condensation on the cylinders take
place �9–11,14�, and inverted velocity profiles in the case of
small accommodation coefficients �8,15,16�.

On the other hand, the instability of cylindrical Couette
flow and the transition to a secondary vortical flow, known as
the Taylor-vortex flow, is one of the fundamental problems in
incompressible fluid dynamics and have a long history of
investigation �17–22�. In contrast, the study of the same
problems for a rarefied gas was started rather recently, and
some numerical results based on the direct simulation Monte
Carlo �DSMC� method �23,24� have been reported
�14,24–30�. However, as discussed in Ref. �14�, there may be
a limitation of applicability of the DSMC method to instabil-
ity problems. A different approach is taken in Ref. �31�,
where a precise analysis of the bifurcation of cylindrical
Couette flow is performed on the basis of a fluid-dynamic
system that is valid for small Knudsen numbers as well as
slow rotation but for an arbitrary temperature difference be-

tween the cylinders. The attention is focused on the ghost
effect �32,33� on the temperature field in the continuum limit
caused by the Taylor-vortex flow with infinitesimal flow
speed.

In the present study, we investigate the stability of the
cylindrical Couette flow of a rarefied gas for small distur-
bances �linear stability� on the basis of kinetic theory and
clarify the onset of the instability without restricting the
Mach number and the Knudsen number. In classical fluid
dynamics, the standard way for linear-stability analysis is to
derive an eigenvalue problem whose eigenvalues determine
the temporal growth rates of small disturbances and to solve
it numerically by appropriate discretization. In kinetic theory,
however, the corresponding eigenvalue problem is much
more complicated because of many independent variables
and the presence of complicated integrals originating from
the basic equation �Boltzmann equation�. This fact still ap-
plies even if a simplified model equation, such as the
Bhatnagar-Gross-Krook �BGK� equation �34,35�, is used in-
stead of the original Boltzmann equation. Therefore, we take
a different way to bypass the direct solution of the eigen-
value problem. That is, we solve the initial and boundary
value problem for a small disturbance numerically with a
finite-difference method to obtain the time evolution of the
disturbance, from which we deduce the growth rate of the
disturbance. From these results, we obtain the so-called neu-
tral stability curves. In order to make the numerical analysis
feasible, we adopt the BGK equation as the basic equation.

In addition to the linear-stability analysis mentioned
above, we also carry out a direct numerical analysis of the
flow between the cylinders by means of the DSMC method
for the original Boltzmann system �for hard-sphere mol-
ecules� to supplement the results obtained in previous papers
�29,30�. The parameter range in which the Taylor-vortex flow*Electronic address: aoki@aero.mbox.media.kyoto-u.ac.jp
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is obtained by the DSMC method is compared with the result
by linear-stability analysis.

II. PROBLEM AND BASIC EQUATION

Let us consider a rarefied gas between two coaxial circu-
lar cylinders with infinite length. To describe the problem,
we use the cylindrical coordinate system �r, �, z� with the z
axis taken along the common axis of the cylinders �Fig. 1�.
The radius of the inner cylinder is LI and that of the outer
cylinder is LII. The inner and outer cylinders are rotating at
constant surface velocities VI and VII in the � direction and
kept at a common temperature T0. We investigate the behav-
ior of the gas on the basis of kinetic theory under the follow-
ing assumptions: �i� the behavior of the gas is described by
the BGK model equation �34–36�; �ii� the gas molecules
undergo diffuse reflection on the surface of the cylinders �r
=LI and LII�, that is, the reflected molecules are distributed
according to the corresponding part of the Maxwellian dis-
tribution with the velocity and temperature of the surface,
and there is no net mass flow across the surface; �iii� the flow
field is axisymmetric, i.e., circumferentially uniform.

This is the basic setting for the linear-stability analysis
that is the main subject of the present paper. We will also
perform the direct numerical simulation of the gas flow using
the DSMC method. For this, we will make a slight modifi-
cation of the setting, which will be specified in Sec. IV.

We introduce some notation: t is the time; � is the mo-
lecular velocity with �r, ��, and �z its r, �, and z components
�Fig. 1�; f�t ,r ,z ,�� is the velocity distribution function of the
gas molecules; � is the density, v the flow velocity with vr,
v�, and vz its r, �, and z components, and T the temperature
of the gas; and R is the gas constant per unit mass, i.e., R
=k /m, where k is the Boltzmann constant and m is the mass
of a molecule.

The BGK equation in the present coordinate system is
given as

� f

�t
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� �� − v�2f d� , �3c�

where Ac is a constant �Ac� is the collision frequency of a gas
molecule, which is independent of the molecular velocity for
the BGK equation�, d�=d�rd��d�z, and the integration with
respect to � is carried out over its whole space.

The boundary conditions �diffuse reflection� on the cylin-
ders are written as follows: at r=LI, for �r�0,

f�t,LI,z,�� =
�wI

�2�RT0�3/2exp�−
�r

2 + ��� − VI�2 + �z
2

2RT0
� ,

�4a�

�wI = − � 2�

RT0
�1/2�

�r�0
�rf�t,LI,z,��d� , �4b�

and at r=LII, for �r�0,

f�t,LII,z,�� =
�wII

�2�RT0�3/2exp�−
�r

2 + ��� − VII�2 + �z
2

2RT0
� ,

�5a�

�wII = � 2�

RT0
�1/2�

�r�0
�rf�t,LII,z,��d� . �5b�

For convenience of analysis, we introduce dimensionless
variables by the following relations:

t = LI�2RT0�−1/2t̂, r = LIr̂, z = LIẑ ,

��r,��,�z� = �2RT0�1/2�	r,	�,	z� ,

	r = 	 cos �	, 	� = 	 sin �	,
�6�

f =
�0

�2RT0�3/2 f̂ , � = �0�̂, T = T0T̂ ,

�vr,v�,vz� = �2RT0�1/2�v̂r, v̂�, v̂z� ,

VI = �2RT0�1/2V̂I, VII = �2RT0�1/2V̂II,

where �	 ,�	 ,	z� �0
	��, −�
�	��, −� �	z��� is the
cylindrical coordinate system in the dimensionless molecular
velocity space �=� / �2RT0�1/2 with the baseline ��	=0� in the
	r �or �r� direction �Fig. 1�, and �0 is a reference density,
which will be specified in the following section. Then the
BGK equation in dimensionless form reads

FIG. 1. Coordinate systems.
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�̂ =� 	 f̂ d	 d�	d	z, �9a�
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1
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� 	2cos �	 f̂ d	 d�	d	z, �9b�

v̂� =
1

�̂
� 	2sin �	 f̂ d	 d�	d	z, �9c�
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1
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2
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where Kn is the Knudsen number, and �0 is the mean free
path of the gas molecules in the equilibrium state at rest at
density �0 and temperature T0. Here and in what follows, the
integration with respect to 	, �	, and 	z is carried out over the
domain �0
	��, −�
�	��, −� �	z���, unless other-
wise stated. It is noted that Eq. �7� contains only the �	

derivative concerning the molecular velocity.
The boundary condition on the inner cylinder is

f̂�t̂,1, ẑ,�� =
�̂wI

�3/2 exp�− 	2 + 2V̂I	 sin �	 − 	z
2 − V̂I

2� ,

�11a�

�̂wI = − 2���
−�
�	�−�/2,�/2��	��

	2cos �	 f̂�t̂,1, ẑ,��d	 d�	d	z

�11b�

at r̂=1 for 	�	 	 �� /2, and that on the outer cylinder is

f̂�t̂,LII/LI, ẑ,�� =
�̂wII

�3/2 exp�− 	2 + 2V̂II	 sin �	 − 	z
2 − V̂II

2 � ,

�12a�

�̂wII = 2���
	�		��/2

	2cos �	 f̂�t̂,LII/LI, ẑ,��d	 d�	d	z

�12b�

at r̂=LII /LI for −�
�	�−� /2 and � /2��	��.
Now the problem is seen to contain the four dimension-

less parameters Kn, V̂I, V̂II, and LII /LI.
We conclude this section by giving a short remark on the

BGK model. This model is based on the Boltzmann equation
for pseudo-Maxwellian molecules �i.e., the molecules inter-
acting with the intermolecular force inversely proportional to
the fifth power of the distance between the molecules and
with an angular cutoff� �36�. In this case, the loss term of the
Boltzmann equation reduces to the form of the loss term of
the BGK equation, i.e., Ac�f . On the other hand, if one as-
sumes that the molecules after collision are distributed ac-
cording to the local equilibrium distribution at the point un-
der consideration, then the gain term of the Boltzmann
equation reduces to the form of the gain term of the BGK
equation, i.e., Ac�fe. Thus, the nonlinearity of the gain term
is stronger than the original quadratic nonlinearity of the
Boltzmann equation though it is preserved in the loss term.
The model satisfies the fundamental properties of the Boltz-
mann equation including the H theorem. It also gives fluid-
dynamic type systems that are of the same form as those
provided by the Boltzmann equation when the Knudsen
number is small, and the quantitative difference arises only
in the transport and slip coefficients �32�. For instance, the
Prandtl number Pr=5R /2�, where  is the viscosity and �
is the thermal conductivity, is unity for the BGK model but
close to 2/3 �2/3 for the pseudo-Maxwellian molecules and
0.6607 for hard-sphere molecules� for the Boltzmann equa-
tion. Although this drawback is well recognized, the simplic-
ity of the BGK equation is highly attractive as a tool for
preliminary analysis and computation. It also enables us to
obtain information about problems that are not tractable by
the original Boltzmann equation. In fact, it has been used in
such a way and has contributed to the understanding of the
phenomena described by the Boltzmann equation.

III. LINEAR-STABILITY ANALYSIS OF CYLINDRICAL
COUETTE FLOW

A. Basic system for stability analysis

We first consider the steady �� /�t̂=0� and axially uniform
�� /�ẑ=0� solution, which is known as cylindrical Couette
flow, of Eqs. �7�, �11�, and �12� �recall that we have assumed
axial symmetry of the flow�. In contrast to the case of a
classical incompressible fluid, analytical solution is not
available for Eqs. �7�, �11�, and �12�. Therefore, we need to
obtain accurate numerical solutions. Let us denote the nu-
merical solution of the cylindrical Couette flow by fC

=�0�2RT0�−3/2 f̂C. We take the average density of fC between
the cylinders as the reference density �0. Then the density �̂C

corresponding to f̂C, i.e., Eq. �9a� with f̂ = f̂C, is normalized
as
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2

�LII/LI�2 − 1
�

1

LII/LI

r̂�̂Cdr̂ = 1. �13�

The numerical solution f̂C will be presented in Sec. III B 1.
Next, we investigate the stability of the cylindrical Cou-

ette flow for a small disturbance on the basis of the numeri-

cal solution f̂C. We assume that the disturbance does not

depend on � and let the solution f̂ be in the following form:

f̂ = f̂C + �F̃�t̂, r̂,	,�	,	z;��exp�i�ẑ� , �14�

where � is a small parameter �0���1�, F̃ is a complex-
valued function, � is an arbitrary real number, and i is the
imaginary unit. To be more precise, the disturbance in Eq.

�14� should be the real part of �F̃ exp�i�ẑ�, but explicit men-
tion is omitted by convention. An arbitrary small disturbance

can be expressed by the superposition of �F̃ exp�i�ẑ�; for
instance, a periodic disturbance with period 2LI in z is ex-

pressed by the form �
n=−�
� F̂n exp��inẑ�. �0 is also the av-

erage density of the dimensional counterpart of f̂ of Eq. �14�
over the domain �LI�r�LII, 0�z�2�LI /�� because of the
periodicity of the disturbance in z.

If we insert Eq. �14� in Eq. �7� as well as in the boundary
conditions �11a�, �11b�, �12a�, and �12b� and neglect the sec-
ond and higher powers of �, then we obtain the linearized

time-dependent boundary value problem for F̃, which can be
expressed in the following form:

�F̃
� t̂

= L�F̃� , �15a�

F̃ = LBI�F̃� at r̂ = 1 for 	�		 � �/2, �15b�

F̃ = LBII�F̃�

at r̂ = LII/LI for − � 
 �	 � − �/2 and �/2 � �	 � � .

�15c�

Here, L is the integro-differential operator defined by

L�F̃� =
2

��Kn
�D̃� f̂ eC − f̂C� + �̂C�F̃e − F̃��

− �	 cos �	

�

� r̂
−

	 sin �	

r̂

�

��	

+ i�	z�F̃ , �16�

F̃e = f̂ eC� D̃
�̂C

+
2�	 cos �	Ṽr + �	 sin �	 − v̂�C�Ṽ� + 	zṼz�

T̂C

+ � 	2 − 2v̂�C	 sin �	 + 	z
2 + v̂�C

2

T̂C

−
3

2� T̃

T̂C

� , �17�

D̃ =� 	F̃ d	 d�	d	z, �18a�

Ṽr =
1

�̂C
� 	2cos �	F̃ d	 d�	d	z, �18b�

Ṽ� =
1

�̂C
� 	�	 sin �	 − v̂�C�F̃ d	 d�	d	z, �18c�

Ṽz =
1

�̂C
� 		zF̃ d	 d�	d	z, �18d�

T̃ =
2

3�̂C
� 	�	2 − 2v̂�C	 sin �	 + 	z

2 + v̂�C
2 −

3

2
T̂C�

�F̃ d	 d�	d	z, �18e�

where �̂C, v̂�C, and T̂C in Eq. �17� are, respectively, the �di-
mensionless� density, flow velocity �� component�, and tem-
perature of the cylindrical Couette flow, defined by Eqs. �9a�,
�9c�, and �9e� with f̂ = f̂C ��̂C has appeared in Eq. �13��;
f̂ eC is the �dimensionless� local Maxwellian defined by

f̂ e �Eq. �8�� with �̂= �̂C, v̂�= v̂�C, and T̂= T̂C; �the real

parts of� �D̃�t̂ , r̂ ;��exp�i�ẑ�, �Ṽr�t̂ , r̂ ;��exp�i�ẑ�, �Ṽ��t̂ , r̂ ;

��exp�i�ẑ�, �Ṽz�t̂ , r̂ ;��exp�i�ẑ�, and �T̃�t̂ , r̂ ;��exp�i�ẑ� are

the disturbances corresponding to �̂, v̂r, v̂�, v̂z, and T̂, respec-
tively. LBI and LBII in Eqs. �15b� and �15c� are the linear
integral operators defined as follows:

LBI�F̃� = −
2

�
exp�− 	2 + 2V̂I	 sin �	 − 	z

2 − V̂I
2�

� �
−�
�	�−�/2,�/2��	��

	2cos �	F̃�r̂ = 1�d	 d�	d	z,

�19�

LBII�F̃� =
2

�
exp�− 	2 + 2V̂II	 sin �	 − 	z

2 − V̂II
2 �

� �
	�		��/2

	2cos �	F̃�r̂ = LII/LI�d	 d�	d	z.

�20�

It is seen from Eqs. �15a�–�15c� that F̃*�t̂ , r̂ ,	 ,�	 ,−	z ;��,
where F̃* is the complex conjugate of F̃, satisfies the same
equation and boundary conditions as Eqs. �15a�–�15c�.
Therefore, we can assume without loss of generality that F̃
has the following property:

F̃�t̂, r̂,	,�	,	z;�� = F̃*�t̂, r̂,	,�	,− 	z;�� . �21�

That is, the real part of F̃ is even with respect to 	z, and its
imaginary part is odd with respect to 	z. From Eqs. �21� and
�18a�–�18e�, it is readily seen that

�D̃�I = �Ṽr�I = �Ṽ��I = �Ṽz�R = �T̃�I  0, �22�

where � �R and � �I indicate the real and imaginary parts of
the quantity in the parentheses. Therefore, the disturbances
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corresponding to �̂, v̂r, v̂�, v̂z, and T̂ are reduced to

��D̃�Rcos �ẑ, ��Ṽr�Rcos �ẑ, ��Ṽ��Rcos �ẑ, −��Ṽz�Isin �ẑ,

��T̃�Rcos �ẑ, respectively.
Now, following the standard procedure in fluid dynamics

�18�, we assume the time dependence of the disturbance

F̃�t̂ , r̂ ,	 ,�	 ,	z ;�� to be of exponential form, i.e., we let

F̃�t̂, r̂,�;�� = F�r̂,�;�,s�exp�st̂� , �23�

where s is a complex number, and � stands for �	 ,�	 ,	z�.
Substitution of Eq. �23� into Eqs. �15a�–�15c� leads to the
following boundary value problem for F:

L�F� = sF , �24a�

F = LBI�F� at r̂ = 1 for 	�		 � �/2, �24b�

F = LBII�F�

at r̂ = LII/LI for − � 
 �	 � �/2 and �/2 � �	 � � .

�24c�

This problem forms an eigenvalue problem for eigenvalues s

and eigenfunctions F for a given set of Kn, V̂I, V̂II, LII /LI,
and �. If s and F�r̂ ,	 ,�	 ,	z� are an eigenvalue and the cor-
responding eigenfunction, then s* and F*�r̂ ,	 ,�	 ,−	z�, where
s* and F* are the complex conjugates of s and F, are also an
eigenvalue and the corresponding eigenfunction.

If the eigenfunctions form a complete set in an appropri-
ate function space, the time evolution of the disturbance with
an arbitrary initial condition, more specifically, the solution
of the initial and boundary value problem formed by Eqs.

�15a�–�15c� and an arbitrary initial condition �at t=0� for F̃,
can be expressed by the superposition �summation and/or
integration� of the form �23� with all the eigenvalues and
eigenfunctions of the problem, Eqs. �24a�–�24c�. In most
practical cases, however, we need to solve numerically ei-
genvalue problems whose mathematical properties are not
clear. If we approximate Eqs. �24a�–�24c� using discretized
F at discrete points in r̂, 	, �	, and 	z, then we obtain an
eigenvalue problem of a large linear algebraic system. By
solving such an eigenvalue problem, we obtain a discrete set
of eigenvalues, from which we can conjecture the math-
ematical properties �such as the presence of continuum spec-
tra� of the original eigenvalue problem.

As seen from Eq. �23�, the real and imaginary parts of s
correspond to the temporal growth rate and the frequency of

temporal oscillation of the disturbance, respectively. There-
fore, the linear stability of the cylindrical Couette flow
against the disturbance with a fixed � can be found by find-
ing the eigenvalue whose real part is maximum among all
the eigenvalues. We shall call this value �real part� the maxi-
mum growth rate and denote it by �M. If �M is less than zero,
all the disturbances decay, so that the cylindrical Couette
flow is stable. If �M is greater than zero, at least one of the
modes of the form �23� grows, so that the cylindrical Couette
flow is unstable. If �M is zero, the cylindrical Couette flow is
said to be neutrally stable. The point corresponding to the
neutrally stable state �neutral stability point� forms hypersur-

faces in the �Kn, V̂I , V̂II ,LII /LI ,�� space.

B. Numerical analysis

1. Cylindrical Couette flow

We first prepare accurate numerical solutions of the cylin-
drical Couette flow, the stability of which will be investi-
gated in Sec. III B 2. More specifically, we carry out a nu-
merical analysis using the finite-difference method
developed by Sone and Sugimoto in their study of strong
evaporation from spherical and cylindrical condensed phases
�37,38�. A difficulty inherent in the finite-difference analysis
is caused by the fact that the molecular velocity distribution
function around a convex body generally contains disconti-
nuities �33,39�. The method mentioned above is capable of
describing the behavior of the discontinuity around a spheri-
cal or cylindrical body. The method was adapted to the cy-
lindrical Couette flow setting in Ref. �9�, where the bifurca-
tion of flow is shown to occur even under the condition of
axially and circumferentially uniform flow when evaporation
and condensation take place on the cylinders. Since the nu-
merical method in the present study is essentially the same as
that described in detail in Ref. �9�, we omit the explanation
of the method, giving information about the computational
system in Sec. V C.

Some numerical results for the profiles of the density �̂C
=�C /�0, the � component of the flow velocity v̂�C

=v�C / �2RT0�1/2, and the temperature T̂C=TC /T0, where �C,
v�C, and TC are the dimensional quantities corresponding to

�̂C, v̂�C, and T̂C, are shown in Fig. 2 for relatively small
Knudsen numbers in the case of LII /LI=2. The correspond-
ing parameters are shown in the caption. The outer cylinder
is at rest in cases A and B, rotating in the same direction as
the inner in case C, and rotating in the opposite direction in
case D.

FIG. 2. Cylindrical Couette
flow for relatively small Kn
�LII /LI=2�. �a� �C, �b� v�C, and
�c� TC. The parameters corre-
sponding to cases A, B, C, and D
are as follows. Case A, (Kn,VI /
�2RT0�1/2 ,VII / �2RT0�1/2) = �0.02,
0.5,0�; case B, �0.02,0.8,0�; case
C, �0.0127,0.8,0.3�; and case D,
�0.0127,0.8,−0.6�.
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2. Stability of cylindrical Couette flow

As described in Sec. III A, we can, in principle, solve the
eigenvalue problem �24a�–�24c� by reducing it to an eigen-
value problem for a linear algebraic system by means of
appropriate discretization. However, the linear operator L
occurring in Eq. �24a� �see Eq. �16�� is rather complicated
because it contains many independent variables �r̂, 	, �	, and
	z� and integral operators �with respect to 	, �	, and 	z� as
well as differential operators �with respect to r̂ and �	�.
Therefore, the discretization of the problem is not a simple
task. In the present study, we try to avoid this and calculate

the maximum growth rate in the following way. We solve the
initial and boundary value problem �15a�–�15c� numerically
for an arbitrary initial condition, using the numerical solution

f̂C. If we take into account the relation �21� and the property
described in the second sentence after Eq. �24c�, we find that
the long-time behavior of F̃ is dominated by a function of
the form

F�r̂,	,�	,	z�exp�st̂� + F*�r̂,	,�	,− 	z�exp�s*t̂� , �25�

with the s whose real part is the largest, provided that s is an
isolated eigenvalue. By fitting this form to the long-time be-

havior of the numerical solution of F̃, we can in principle
determine the maximum growth rate �M = �s�R, the frequency
�s�I, and the corresponding eigenfunction F. This process
becomes particularly simple when the eigenvalue s giving
the maximum growth rate is real, as will be seen below.

The numerical analysis of the initial and boundary value
problem �15a�–�15c� is carried out by a finite-difference
method similar to that used to obtain the cylindrical Couette
flow solution f̂C. The difference lies in the fact that the vari-
able 	z cannot be eliminated in the problem under consider-
ation and that a time-dependent scheme is employed instead
of the time-independent scheme used for the cylindrical Cou-
ette flow. We omit the description of the numerical method
also here for brevity and give information about the compu-
tational system in Sec. V C.

Here, we explain the process of obtaining the maximum
growth rate, showing numerical examples. Figure 3 demon-
strates the time evolution of the macroscopic quantities ob-
tained from Eqs. �15a�–�15c�. To be more specific, the time
evolution of the absolute values of the macroscopic variables

�D̃�R, �Ṽr�R, �Ṽ��R, �Ṽz�I, and �T̃�R �cf. Eq. �22�� at r /LI

=1.25 ��a��, 1.5 ��b��, and 1.75 ��c�� are shown for two dif-

ferent VI, i.e., V̂I=VI / �2RT0�1/2=0.5 and 0.8, in the case
where VII=0, Kn=0.02, LII /LI=2, and �=�. The initial con-
ditions for Figs. 3�a�–3�c� are, respectively, the function

given by F̃e of Eq. �17� with D̃=1 and Ṽr= Ṽ�= Ṽz= T̃=0 �we

call this condition type �a��, that with Ṽ�=1 and D̃= Ṽr= Ṽz

= T̃=0 �type �b��, and that with T̃=1 and D̃= Ṽr= Ṽ�= Ṽz=0
�type �c��. In the figures, all the curves for VI / �2RT0�1/2

=0.5 tend to approach parallel straight lines after initial time
intervals. The same is true for VI / �2RT0�1/2=0.8. Since a
logarithmic scale is used for the ordinate, this means that the
eigenvalue s giving the maximum growth rate is real and that

the time evolution of �D̃�R, �Ṽr�R, �Ṽ��R, �Ṽz�I, and �T̃�R at
each point is dominated by the terms of the following form:

�
�D̃�R

�Ṽr�R

�Ṽ��R

�Ṽz�I

�T̃�R

� � �
�D�R

�Vr�R

�V��R

�Vz�I

�T�R

�exp��Mt� . �26�

This feature of the time evolution is observed at all the lattice

FIG. 3. Time evolution of the macroscopic variables 	�D̃�R	,
	�Ṽr�R	, 	�Ṽ��R	, 	�Ṽz�I	, and 	�T̃�R	 for �=� and VI / �2RT0�1/2=0.5
and 0.8 at Kn=0.02 �VII=0 and LII /LI=2�. �a� r /LI=1.25 �initial
condition type �a��, �b� r /LI=1.5 �initial condition type �b��, �c�
r /LI=1.75 �initial condition type �c��. The solid line indicates

	�D̃�R	, the short-dashed line 	�Ṽr�R	, the dash-dotted line 	�Ṽ��R	, the

dotted line 	�Ṽz�I	, and the long-dashed line 	�T̃�R	.
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points in r̂ for the three different initial conditions, types �a�,
�b�, and �c�. Therefore, by numerical fitting, we can obtain
�D�R, �Vr�R, �V��R, �Vz�I, and �T�R as well as �M at all the
lattice points in r̂ for each initial condition. The numerical
values of �M thus obtained show small fluctuations depend-
ing on the initial condition, the macroscopic variables, and
the lattice points. We take its average over all the macro-
scopic variables and over all the lattice points for each initial
condition and let the average value be the maximum growth
rate �M. The obtained average value is �M =−0.4990
�10−1 �VI / �2RT0�1/2=0.5� and 0.3422�10−1 �VI / �2RT0�1/2

=0.8� for initial condition type �a�; �M =−0.4996
�10−1 �VI / �2RT0�1/2=0.5� and 0.3414�10−1 �VI / �2RT0�1/2

=0.8� for initial condition type �b�; and �M =−0.4990
�10−1 �VI / �2RT0�1/2=0.5� and 0.3421�10−1 �VI / �2RT0�1/2

=0.8� for initial condition type �c�. The standard deviation
from the average value of �M over all the macroscopic vari-
ables and lattice points for each initial condition is less than
3.53�10−8. Therefore, the effect of the initial condition is
larger. However, the variation depending on the initial con-
dition seems to be within the error of numerical computation
�see Sec. V C�. We have performed similar numerical checks
for some other values of the parameters and confirmed the
above conclusion. Therefore, we adopt the initial condition
type �b� to carry out more detailed computation, the results
of which will be presented in Sec. V.

On the other hand, the fact that �D�R, �Vr�R, �V��R, �Vz�I,
and �T�R have been obtained at all the lattice points in r̂
means that we have obtained the macroscopic variables cor-
responding to the eigenfunction F�r̂ ,� ;� ,s� �Eq. �23�� per-
taining to the eigenvalue s=�M +0i. Although the obtained
macroscopic variables depend on the initial condition, they
should give the same results, independent of the initial con-
dition, once they are normalized. In fact, we have confirmed
that the difference of the normalized macroscopic variables
depending on the initial condition is within the error of the
present numerical computation.

The �M is negative for VI / �2RT0�1/2=0.5 and positive for
VI / �2RT0�1/2=0.8. Therefore, �M vanishes at an intermediate
value of VI / �2RT0�1/2, which gives the neutral stability point.
We obtain �M for various values of VI / �2RT0�1/2 and deter-
mine the neutral stability point by interpolation using the
natural cubic spline method. The eigenfunction correspond-
ing to the neutral stability point is obtained also by interpo-
lation. We perform this procedure for various values of the
set (Kn,VI / �2RT0�1/2 ,VII / �2RT0�1/2 ,LII /LI ,�). More com-
prehensive results will be presented in Sec. V.

In the examples shown in Fig. 3, the time evolution after
the initial stage does not oscillate, namely, the eigenvalue
giving the maximum growth rate is real, as mentioned above.
Actually, this is always true near the neutral stability point in
the parameter range investigated in the present study. How-
ever, in some regions, e.g., VI / �2RT0�1/2�1.5 and
VII / �2RT0�1/2�0.5 for �=� in Fig. 12, we have observed
decay with oscillation.

IV. DSMC ANALYSIS OF FLOW BETWEEN CYLINDERS

So far, we have focused on the analysis of small distur-
bances imposed on the cylindrical Couette flow. On the other

hand, some numerical results based on the DSMC method
for the flow between rotating cylinders with axial depen-
dence have been reported �24–30�. In this paper, we also
carry out some computations that are additional to Refs.
�29,30�, where the gas molecules are assumed to be elastic
hard spheres. These results will be presented in this section.
Before that, however, we discuss the comparison between
the result based on the BGK model and that based on the
DSMC method, taking the much simpler cylindrical Couette
flow. Since the DSMC method is explained in many places,
we omit its description in the present paper.

For hard-sphere molecules, the Knudsen number Kn is
defined by Kn=�0 /LI with �0= ��2�d2��0 /m��−1 the mean
free path of the gas molecules in the equilibrium state at rest
with density �0, and m and d are, respectively, the mass and
diameter of a molecule.

A. Cylindrical Couette flow

First, we obtain the Couette flow solution of Eqs. �7�,
�11�, and �12� with the right-hand side of Eq. �7� replaced by
the Boltzmann collision term for hard-sphere molecules by
means of the DSMC method. The resulting profiles of the
density �C, the � component of the flow velocity v�, and the
temperature TC, in the same case as Fig. 2, are shown in Fig.
4. Recall that �0 is the average density between the cylinders.
In the figure, the BGK result already shown in Fig. 2 is also
shown.

It should be mentioned that there is no unique way to
compare the results based on two different molecular mod-
els, such as the BGK model and hard-sphere molecules. One
of the standard ways is to convert the mean free path �or the
Knudsen number�, assuming that the viscosity is a common
quantity for both models. Let 0 be the viscosity of the gas at
density �0 and temperature T0. The relation between 0 and
the corresponding mean free path �0 is given by 0
= ��� /4��1�0�2RT0�1/2�0 �see Sec. 3.9 of Ref. �33��, where
�1 is a constant depending on the molecular model: �1=1 for
the BGK model and 1.270 042 for hard-sphere molecules.
Therefore, if we assume that 0 is the common quantity for
the BGK model and for hard-sphere molecules, we have the
following conversion formula between the Knudsen number
for the former Kn�BGK� and that for the latter Kn�HS�:

Kn�BGK� = 1.270 042Kn�HS�. �27�

In Fig. 4, the DSMC result is plotted after the Knudsen
number is converted to that for the BGK model using Eq.
�27�. In other words, the DSMC computation was carried out
for Kn�HS�=0.015 747 51 �cases A and B� and 0.01 �cases C
and D�, which correspond to Kn�BGK�=0.02 and 0.0127, re-
spectively. The profile of v� for the BGK model shows good
agreement with that by the DSMC method �see also Fig. 7 in
�15��. The agreement for the profile of �C is also relatively
good, whereas there is a discrepancy in the profile of TC.
This is due to the fact that the Prandtl number Pr
�=5R /2�� is unity for the BGK model but 0.6607 for hard-
sphere molecules �see Eqs. �A10a� and �A10b��. Therefore, if
the viscosity is assumed to be common to both molecular

LINEAR STABILITY OF THE CYLINDRICAL COUETTE¼ PHYSICAL REVIEW E 73, 021201 �2006�

021201-7



models, the thermal conductivity becomes rather different.
We will use the conversion �27� in Sec. V. It should be noted,
however, that this is just a way of comparison and does not
guarantee anything.

Incidentally, in Fig. 4 we also show the results for a com-
pressible Navier-Stokes system, which is summarized in the

Appendix, with viscosity and thermal conductivity for the
BGK model as well as those for the hard-sphere molecules
�the conversion �27� has been used for the hard-sphere case�.
More specifically, the system �A11�–�A19� in the case of
a steady and axially uniform flow �� /�t̂=� /�ẑ=0 and v̂r

= v̂z=0� is solved numerically with �̂1= �̂2=�T̂ for the BGK
model and �̂1=1.270 042, �̂2=1.922 284 for hard-sphere
molecules. The profiles for the compressible Navier-Stokes
system with BGK viscosity and thermal conductivity �or
hard-sphere viscosity and thermal conductivity� agree well
with those for the BGK model �or for hard-sphere molecules
obtained by the DSMC method�. This is natural because the
Knudsen number considered here is small.

We have also computed the corresponding profiles using
the generalized hydrodynamics proposed in Ref. �3�. The
equations are of a compressible Navier-Stokes type, but their
viscosity and thermal conductivity are more involved. Al-
though the Lennard-Jones fluid is considered in Ref. �3�, the
application to other molecular models, such as the BGK
model and hard-sphere molecules, is obvious �40�. For the
sake of comparison, we adopted these two molecular models
rather than the Lennard-Jones potential. The aim of the gen-
eralized hydrodynamics is to extend the applicability of the
macroscopic approach to larger Knudsen numbers, and it re-
duces to the compressible Navier-Stokes system when the
Knudsen number is small. In fact, in the case of Fig. 4, the
results are indistinguishable from the corresponding results
for the compressible Navier-Stokes system.

In the DSMC computation, the following computational
system is used. The domain LI
r
LII is divided into 400
uniform cells; the total number of simulation particles is
4�104; and the time step �t is �t=5�10−4LI�2RT0�−1/2

=5�10−4�2/���t0Kn−1, where t0 is the mean free time cor-
responding to �0. The initial condition is the equilibrium
state at rest at density �0 and temperature T0.

B. Taylor-vortex flow

Now we consider the flow between the cylinders without
axial uniformity. Since the setting for the DSMC computa-
tion in this case is slightly different from that given in Sec.
II, we first describe the difference.

Instead of the infinite domain in the z direction, we con-
sider a gas in an annular domain LI
r
LII, 0
z
Lz
bounded by the two cylinders and top and bottom boundaries
�z=Lz and z=0�. We assume that the gas molecules are re-
flected specularly on the latter boundaries, i.e.,

f�t,r,z,�r,��,�z� = f�t,r,z,�r,��,− �z� , �28�

at z=0 and Lz. In addition, the BGK collision term in Eq. �1�
is replaced by the Boltzmann collision term for hard-sphere
molecules. Then, the Boltzmann equation with the boundary
conditions �4a�, �4b�, �5a�, �5b�, and �28� is solved by the
DSMC method for a given initial condition at t=0,

f�0,r,z,�� = f0�r,z,�� . �29�

In this setting, the reference density �0 is the average density
of the gas over the annular domain.

FIG. 4. DSMC result for the cylindrical Couette flow for rela-
tively small Kn with some comparison �LII /LI=2; see Fig. 2�. �a�
�C, �b� v�C, and �c� TC. The parameters corresponding to cases A, B,
C, and D are the same as in Fig. 2, i.e., case A,
(Kn,VI / �2RT0�1/2 ,VII / �2RT0�1/2)= �0.02,0.5,0�; case B, �0.02,
0.8,0�; case C, �0.0127,0.8,0.3�; and case D, �0.0127,0.8,−0.6�.
Here, the black circle ��� indicates the DSMC result �hard sphere�,
the solid line the BGK result �cf. Fig. 2�, the dashed line the com-
pressible Navier-Stokes result with the BGK viscosity and thermal
conductivity, and the dotted line that with hard-sphere viscosity and
thermal conductivity.
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If we carry out the above DSMC computation, we find
some different types of final steady solution. Figure 5, which
is taken from Ref. �30�, shows the types of final steady so-
lution when LII /LI=2, Lz /LI=1, and Kn=0.01. To be more
specific, the computation for various values of VI / �2RT0�1/2

and VII / �2RT0�1/2 gives three different types of steady flow
pattern: an axially uniform flow �cylindrical Couette flow�; a
Taylor-vortex flow with a single vortex �single-vortex flow�;
and a Taylor-vortex flow with double vortices arranged in the
axial direction �double-vortex flow�. Figure 5 is the map of
the flow patterns in the (VII / �2RT0�1/2 ,VI / �2RT0�1/2) plane. A
cylindrical Couette flow is obtained at the points with �, a
single-vortex flow at the points with �, and a double-vortex
flow at the points with �. The symbols indicate the results at
VII / �2RT0�1/2=−0.6, −0.3, −0.1, 0, 0.1, 0.3, and 0.6, but �’s
��’s� are shifted leftward �rightward� slightly for legibility.
A negative VII means that the outer cylinder is rotating in the
direction opposite to the inner. In this computation, the initial
condition �29� is chosen in such a way that we can extend the
range of each type of solution as wide as possible �see Ref.
�30� for the details�. There is a significant overlap between
the region of a single-vortex flow and that of a double-vortex
flow when VII / �2RT0�1/2�−0.1. For VII / �2RT0�1/2=−0.3, a
single-vortex flow is limited to a rather narrow range of in-
termediate VI / �2RT0�1/2, and its overlap with the range of a
double-vortex flow is small. There is no region of a single-
vortex flow for VII / �2RT0�1/2=−0.6. In Fig. 6, flow patterns
of a single- and a double-vortex flow are shown for the point
(VII / �2RT0�1/2 ,VI / �2RT0�1/2)= �0,1.5� in Fig. 5 where the
two types of flow coexist. The panel �a� corresponds to the
single-vortex flow, and the panel �b� to the double-vortex
flow. The arrow indicates the flow velocity vector �vr ,vz� in
the �r ,z� plane at its starting point, and the scale of �vr

2

+vz
2�1/2 / �2RT0�1/2=0.2 is shown in each figure. The contour

line v� / �2RT0�1/2=const is also shown in the figure. These
results, as well as some additional results obtained in the

present study, will be compared with the result of the linear-
stability analysis in the next section.

In Figs. 5 and 6, the original Knudsen number for hard-
sphere molecules is used. Instead, the DSMC results in Fig.
10 and in Fig. 12 appearing in Sec. V are plotted after the
Knudsen number is converted to Kn�BGK� by the use of Eq.
�27�.

The computational system used in the present study as
well as in Ref. �30� is as follows. The square cross section
�LI
r
LII, 0
z
Lz with LII /LI=2 and Lz /LI=1� is di-
vided into 120�120 square cells of a uniform size; the total
number of simulation particles is 144�104; and the time
step �t is �t=5�10−4LI�2RT0�−1/2=5�10−4�2/���t0Kn−1,
where t0 is the mean free time corresponding to �0.

V. RESULTS AND DISCUSSION

In this section, we will present some results of the stabil-
ity analysis described in Sec. III B 2. We first investigate the
effect of gas rarefaction in the case where the outer cylinder
is at rest and then discuss the effect of rotation of the outer
cylinder. Throughout this section, the ratio of the cylinder
radii is fixed to be LII /LI=2.

A. Effect of gas rarefaction

Let us consider the case where the outer cylinder is at rest
and investigate the effect of the Knudsen number as well as
that of the rotation speed of the inner cylinder on the stability
of the cylindrical Couette flow.

Figure 7 shows the maximum growth rate �M versus the

dimensionless surface velocity V̂I=VI / �2RT0�1/2of the inner
cylinder for different Knudsen numbers. The data for �=�,
2�, and 3� are indicated by the symbol �, and the data for
each � are connected by the natural cubic spline curve �the
solid curve�. The curves for larger � are located downward.
This means that the disturbance with a higher frequency �in
the z direction� has a lower growth rate. In Fig. 7, �M for
each � tends to have a maximum value at a certain
VI / �2RT0�1/2. As the Knudsen number increases, the maxi-

FIG. 5. DSMC result for the existence range of the steady solu-
tions in the (VII / �2RT0�1/2 ,VI / �2RT0�1/2) plane at Kn=0.01
�LII /LI=2 and Lz /LI=1�. The symbols �, �, and � indicate that a
cylindrical Couette flow, a single-vortex flow, and a double-vortex
flow, respectively, are obtained at the corresponding points. Here,
the symbols stand for the data precisely at VII / �2RT0�1/2=−0.6,
−0.3, −0.1, 0, 0.1, 0.3, and 0.6, but �’s ��’s� are shifted leftward
�rightward� slightly for legibility.

FIG. 6. DSMC result for the flow field of single- and double-
vortex flows for VI / �2RT0�1/2=1.5 and VII / �2RT0�1/2=0 at Kn
=0.01 �LII /LI=2 and Lz /LI=1�. �a� Single-vortex flow and �b�
double-vortex flow. The arrow indicates the flow velocity �vr ,vz� in
the �r ,z� plane at its starting point, and the scale of �vr

2

+vz
2�1/2 / �2RT0�1/2=0.2 is shown in each figure. The contour lines

v� / �2RT0�1/2=const are also shown in the figure.
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mum values decrease: in Fig. 7�b� the maximum values for
�=2� and 3� are negative; and in Figs. 7�c� and 7�d� the
maximum values for all three �’s are negative. Therefore,
there is no unstable region for these disturbances when the
Knudsen number is larger than a certain value.

For the sake of comparison in this and the following sub-
sections, we have also carried out corresponding stability
analyses on the basis of continuum systems, a system of the
incompressible Navier-Stokes �INS� type and one of the
compressible Navier-Stokes �CNS� type, with the viscosity
and thermal conductivity corresponding to the BGK model.
The systems are summarized in the Appendix. To be more
precise, the INS system is composed of Eqs. �A2�–�A8� with
�1=1, and the CNS system Eqs. �A11�–�A19� with �̂1= �̂2

=�T̂. Since the case of high speed rotation of the cylinders is
considered in the present study, the INS system is not ex-
pected to give reasonable results. In Fig. 7, the result based
on the INS system is shown by the long-dashed line, while
that based on the CNS system is shown by the short-dashed
line �only the cubic spline curves connecting the numerical
data are shown for legibility�. The CNS results are relatively
close to the BGK results and thus show the same tendency.
Instead, the INS results show different behavior, that is, �M
increases monotonically with the increase of VI / �2RT0�1/2.

Figure 8 shows the neutral stability curve �i.e., the locus
of the neutral stability point� in the (Kn,VI / �2RT0�1/2) plane
for �=�. More precisely, the symbol � indicates the nu-
merical data for the neutral stability points, which are also

contained in Table I �the data with the entry VII / �2RT0�1/2

=0�, and the solid curve the natural cubic spline curve �in
parametric representation� connecting the data. The cylindri-
cal Couette flow is unstable in the left-hand side of the curve.
The results based on the INS and CNS systems are also
shown by the long- and short-dashed lines, respectively �only
the curves connecting the numerical data are shown�. The
curve for the BGK system and that for the CNS system are
close to each other, and the cylindrical Couette flow based on
these two systems is stabilized more rapidly than that based
on the INS system as the Knudsen number increases. Ac-
cording to the BGK result, the cylindrical Couette flow is
stable for the disturbance with �=� for any value of
VI / �2RT0�1/2 when the Knudsen number is larger than
0.0296. In the left-hand figures of Figs. 9�a�–9�c�, we show
the profiles of the macroscopic quantities �D�R, �Vr�R, �V��R,
�Vz�I, and �T�R pertaining to the eigenfunction F at three
points on the neutral curve �the solid curve� in Fig. 8, i.e.,
(Kn,VI / �2RT0�1/2)= �0.01,0.308� ��a��, �0.02,0.672� ��b��,
and �0.029,1.337� ��c��. In the figures, the quantities are nor-
malized in such a way that �1

LII/LI��D�R
2 + �Vr�R

2 + �V��R
2 + �Vz�I

2

+ �T�R
2 �r̂ dr̂=1. In the right-hand figures of Figs. 9�a�–9�c�,

we show the corresponding flow velocity vector of the dis-
turbance (�Vr�R cos �ẑ ,−�Vz�I sin �ẑ) in the �r /LI ,z /LI�
plane. The scale based on the above normalization is shown
in the figures. At these neutral points, the disturbance is of
single-vortex type in the square domain LI
r
LII=2LI and
0
z
Lz=LI. The features shown in Fig. 9 do not change
much in the regions near the corresponding neutral points.

In Fig. 10, the neutral stability curve for the BGK system
for �=�, which has already been presented in Fig. 8, is
shown together with the result of the direct numerical analy-
sis of the flow between the cylinders by the DSMC method
�see Sec. IV�. Since the DSMC computation deals with a
finite domain in the z direction �0
z
Lz=LI� bounded by
specularly reflecting boundaries at z=0 and LI, the corre-
sponding value of � is restricted to � ,2� ,3� , . . .. Figure 10
also contains the corresponding neutral stability curve based
on the CNS system for hard-sphere molecules, i.e., Eqs.
�A11�–�A19� with �̂1=1.270 042 and �̂2=1.922 284. Both of

FIG. 7. Maximum growth rate �M versus VI / �2RT0�1/2 for �
=�, 2�, and 3� �VII=0 and LII /LI=2�. Kn= �a� 0.01, �b� 0.02, �c�
0.03, and �d� 0.04. The result based on the BGK equation is shown
by �, and the solid line is the cubic spline curve connecting these
points; the corresponding results based on the INS and CNS sys-
tems are also shown by the long- and short-dashed lines,
respectively.

FIG. 8. Neutral stability curve in the (Kn,VI / �2RT0�1/2) plane
for �=� �VII=0 and LII /LI=2�. The neutral stability points based
on the BGK equation are shown by �, and the solid line is the
cubic spline curve connecting these points. The corresponding neu-
tral stability curves based on the INS and CNS systems are also
shown by the long- and short-dashed lines, respectively.
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the DSMC and CNS results �for hard-sphere molecules� in
the figure are shown after the Knudsen number is converted
to that of the BGK model by the use of Eq. �27�. The sym-
bols �, �, and � are the DSMC results taken from Ref.
�29�, where the initial condition is the equilibrium state at
rest with temperature T0 and density �0, that is, the inner
cylinder starts to rotate impulsively at the initial time. The
symbols � and � indicate the results obtained in the present
study, using the cylindrical Couette flow obtained by impos-
ing the axial uniformity as the initial condition. The latter
initial condition introduces much less disturbances than the
former. The symbols � and � indicate that the final steady
solution is the cylindrical Couette flow, and � and � indi-
cate that a single-vortex flow is formed in the �r ,z� plane in
the final steady state. The symbol � indicates that it is dif-
ficult to determine the type of the solution with the DSMC
computation.

The neutral stability curve for the BGK model is close to
that for the CNS system with hard-sphere viscosity and ther-
mal conductivity when Kn�0.02. However, they differ sig-
nificantly for larger Kn. Since the former is very close to the
CNS result for the BGK model �Fig. 8�, we can expect that
the CNS result for hard-sphere molecules in Fig. 10 is close
to the neutral stability curve based on the Boltzmann equa-
tion for hard-sphere molecules. The above discrepancy just
means that the conversion �27� is not an appropriate way to
compare the result for the BGK model and that for hard-
sphere molecules when the speed of rotation of the inner
cylinder is high �note that the Mach number of the surface
speed of the inner cylinder reaches unity at the neutral sta-
bility point when Kn=0.0254�. The reason can be seen from
the comparison between the CNS system for the BGK model
and that for hard-sphere molecules. When the rotation speed
of the inner cylinder is very high, the temperature of the gas
T becomes significantly higher than the temperature of the

cylinder T0, i.e., T̂ becomes larger than unity. As seen from

Eq. �A10a�, the viscosity in the CNS system for the BGK
model becomes larger than that in the CNS system for hard-
sphere molecules. Therefore, though the viscosity is set to be
common at T0 by Eq. �27�, the effective viscosity is larger in
the CNS system for the BGK model. This means that the
cylindrical Couette flow for the BGK model is more stabi-
lized. In spite of this drawback, we will still use the conver-
sion �27� in Sec. V B, since we make a comparison at Kn
=0.0127. The neutral stability curve for the CNS system with
hard-sphere viscosity and thermal conductivity seems to be
consistent with the DSMC result.

B. Effect of rotation of the outer cylinder

Now let us investigate the effect of rotation of the outer
cylinder.

In Fig. 11, the neutral stability curves, based on the BGK
system, for �=� at two Knudsen numbers Kn=0.0127 and
0.0254, are shown in the (VII / �2RT0�1/2 ,VI / �2RT0�1/2) plane.
To be more precise, the symbol � indicates the numerical
results for the neutral stability points, which are also con-
tained in Table I �the data with the entries Kn=0.0127 and
Kn=0.0254�, and the solid curve is the natural cubic spline
curve connecting the data. The cylindrical Couette flow is
unstable in the upper side of the curves. The corresponding
curves based on the INS and CNS equations �with the BGK
viscosity and thermal conductivity� are also shown by the
long-dashed and short-dashed lines, respectively �only the
curves connecting the numerical data are shown in the fig-
ure�. We recall that the negative value of VII / �2RT0�1/2

means that the direction of rotation of the outer cylinder is
opposite to the inner.

For Kn=0.0127, the curve for the BGK system and that
for the CNS system show good agreement in a wide range of
VII / �2RT0�1/2, but the difference is not negligible for
VII / �2RT0�1/2 larger than 0.3. For example, at VII / �2RT0�1/2

TABLE I. Neutral stability points for �=� in the case of LII /LI=2.

VII / �2RT0�1/2=0 Kn=0.0127 Kn=0.0254

Kn VI / �2RT0�1/2 VII / �2RT0�1/2 VI / �2RT0�1/2 VII / �2RT0�1/2 VI / �2RT0�1/2

0.01 0.308 −0.8 0.901 −0.8 1.756

0.0127 0.397 −0.6 0.741 −0.6 1.324

0.02 0.672 −0.4 0.580 −0.4 1.057

0.0254 0.958 −0.2 0.433 −0.2 0.912

0.028 1.184 0 0.397 −0.1 0.903

0.029 1.337 0.1 0.484 0 0.958

0.0293 1.417 0.2 0.649 0.1 1.119

0.0296 1.6 0.3 0.903 0.14 1.246

0.0293 1.770 0.35 1.089 0.167 1.4

0.029 1.866 0.4 1.379 0.178 1.6

0.028 2.086 0.423 1.7 0.168 1.8

0.0254 2.499 0.423 2 0.14 2.005

0.02 3.306 0.4 2.417 0.1 2.191

0.35 2.883 0 2.499

0.3 3.274
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=0.45, the BGK result shows that the cylindrical Couette
flow is stable for any value of VI / �2RT0�1/2, whereas the
CNS result shows that it is unstable in the range 1.69

VI / �2RT0�1/2
2.18. For Kn=0.0254, the difference be-
tween the BGK and CNS results is not negligible in a wider
range of VII / �2RT0�1/2. Because of high speed of rotation of
the cylinders, the results for the INS equation naturally show
large deviation from those for the CNS and thus BGK equa-
tions. The three curves agree well in the vicinity of
VII / �2RT0�1/2=0 when Kn=0.0127 because VI / �2RT0�1/2

there is relatively small.

In Fig. 12, the neutral stability curves, based on the BGK
system, at Kn=0.0127 for �=� and 2� are shown together
with some DSMC results �hard-sphere molecules� �30� taken
from Fig. 5 for Kn=0.01 �recall that the setting for the
DSMC computation corresponds to �=� ,2� ,3� , . . .�. The
correspondence of the Knudsen numbers is based on the con-
version formula �27�. The meaning of the symbols is the
same as Fig. 5. That is, a cylindrical Couette flow is obtained
at the points with �, a single-vortex flow at the points with

FIG. 9. Macroscopic quantities pertaining to F at three neutral
stability points for �=� �VII=0 and LII /LI=2�. (Kn,VI / �2RT0�1/2)
= �a� �0.01,0.308�, �b� �0.02,0.672�, and �c� �0.029,1.337�. In the
left-hand figures, the solid line indicates �D�R, short-dashed line
�Vr�R, dash-dotted line �V��R, dotted line �Vz�I, and long-dashed line
�T�R. These quantities are normalized in such a way that
�1

LII/LI��D�R
2 + �Vr�R

2 + �V��R
2 + �Vz�I

2+ �T�R
2 �r̂ dr̂=1. In the right-hand

figures, the arrows show the flow velocity vectors of the disturbance
(�Vr�R cos �ẑ ,−�Vz�I sin �ẑ) at their starting points in the
�r /LI ,z /LI� plane. The scale based on the above normalization is
shown in the figures.

FIG. 10. Comparison of the neutral stability curve for �=�
�VII=0 and LII /LI=2� with the DSMC results in the
(Kn,VI / �2RT0�1/2) plane. The solid line is the neutral stability curve
�spline curve� based on the BGK equation shown in Fig. 8, and the
dashed line that based on the CNS system with hard-sphere viscos-
ity and thermal conductivity. The symbols are the DSMC results
with specularly reflecting boundaries at z=0 and LI. The circles �

and � and the diamonds � are the results from Ref. �29�, where
the equilibrium state at rest is taken as the initial condition; the
squares � and � are the results obtained by using the cylindrical
Couette flow as the initial condition. The long-time solution is the
cylindrical Couette flow at the points with the symbols � and �,
whereas it is the Taylor-vortex flow with a single vortex at the
points with the symbols � and �. The diamond � indicates that, at
these points, it is difficult to determine the type of solution.

FIG. 11. Neutral stability curves in the (VII /
�2RT0�1/2 ,VI / �2RT0�1/2) plane for �=� �LII /LI=2�. The neutral sta-
bility points for Kn=0.0127 and 0.0254 based on the BGK equation
are shown by �, and the solid curves are the cubic spline curves
connecting the data. The corresponding curves based on the INS
and CNS systems are also shown by the long- and short-dashed
lines, respectively.
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�, and a double-vortex flow at the points with �. More
precisely, for each VI / �2RT0�1/2, the highest � and the low-
est � and � are picked up from Fig. 5 and plotted in Fig. 12.
This figure also contains the corresponding neutral stability
curves based on the CNS system with hard-sphere viscosity
and thermal conductivity, which are indicated by the dashed
lines.

In the left-hand figures of Figs. 13�a�–13�c�, we show the
profiles of the macroscopic quantities �D�R, �Vr�R, �V��R,
�Vz�I, and �T�R pertaining to the eigenfunction F at three
points on the neutral stability curve for �=� �solid curve�
in Fig. 12, i.e., (VII / �2RT0�1/2 ,VI / �2RT0�1/2)= �−0.6,0.741�
��a��, �0,0.397� ��b��, and �0.3,0.903� ��c��. In the right-hand
figures of Figs. 13�a�–13�c�, we show the corresponding
flow velocity vector of the disturbance (�Vr�R cos �ẑ ,
−�Vz�I sin �ẑ) in the �r /LI ,z /LI� plane. Figure 14 contains
corresponding figures at three points on the neutral stability
curve for �=2� �solid curve� in Fig. 12, i.e.,
�VII / �2RT0�1/2 ,VI / �2RT0�1/2�= �−0.6,0.771� ��a��, �0,0.623�
��b��, and �0.3,1.196� ��c��. In the square domain LI
r

LII=2LI and 0
z
Lz=LI, the disturbance at the neutral
stability point is of single-vortex type in Figs. 13�b� and
13�c� and of double-vortex type �with two vortices arranged
in the z direction� in Figs. 14�b� and 14�c�. In contrast, it
shows a different structure in the case of Figs. 13�a� and
14�a�. In Fig. 13�a�, in addition to the main vortex, there
appears a weak vortex near the outer cylinder. In Fig. 14�a�,
we observe a four-vortex structure with two main vortices
arranged in the z direction and two weak vortices appearing
near the outer cylinder. As in Fig. 9, the quantities in the
left-hand figures in Figs. 13 and 14 are normalized in such a
way that �1

LII/LI��D�R
2 + �Vr�R

2 + �V��R
2 + �Vz�I

2+ �T�R
2 �r̂ dr̂=1, and

the scale based on this normalization is shown in their right-
hand figures.

Let us go back to Fig. 12. For VII / �2RT0�1/2�0.3, the
neutral stability curve for the BGK model for �=� lies more
or less between the symbols � and �, and that for �=2�
lies below �or almost on� the symbols �. They are also not
very far from the corresponding curves �dashed lines� based
on the CNS system with hard-sphere viscosity and thermal
conductivity. For larger VII / �2RT0�1/2, however, the discrep-
ancy between the neutral stability curves for the BGK model
and those based on the CNS system for hard-sphere mol-
ecules becomes significant. The former curves are also in-
consistent with the DSMC result at VII / �2RT0�1/2=0.6. This
discrepancy is also due to the fact that the conversion of the
Knudsen number �27� is not appropriate for high-speed rota-
tion of the cylinders. The neutral stability curve for the BGK
model for �=2� crosses that for �=� at VII / �2RT0�1/2

FIG. 12. Comparison of the neutral stability curves for �=� and
2� at Kn=0.0127 �LII /LI=2� with the DSMC results in the
(VII / �2RT0�1/2 ,VI / �2RT0�1/2) plane. The solid lines indicate the
neutral stability curves �cubic spline curves� based on the BGK
equation �the curve for �=� is shown in Fig. 11�, and the dashed
lines those based on the CNS system with hard-sphere viscosity and
thermal conductivity. The symbols are the DSMC results from Fig.
5 with the specularly reflecting boundaries at z=0 and LI. The white
circles � indicate the largest values of VI / �2RT0�1/2 where the cy-
lindrical Couette flow is obtained, the black circles � the smallest
values where the Taylor-vortex flow with a single vortex is ob-
tained, and the black triangles � the smallest values where the
Taylor-vortex flow with double vortices, arranged in the z direction,
is obtained.

FIG. 13. Macroscopic quantities pertaining to F at three neutral
stability points for �=� at Kn=0.0127 �LII /LI=2�.
(VII / �2RT0�1/2 ,VI / �2RT0�1/2)= �a� �−0.6,0.741�, �b� �0,0.397�, and
�c� �0.3,0.903�. See the caption of Fig. 9.
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=−0.746 and goes slightly below for smaller VII / �2RT0�1/2

though it is not clearly visible in the figure. This feature is
seen more clearly for the neutral stability curves based on the
CNS system �hard-sphere molecules�. This means that, for a
fixed VII / �2RT0�1/2 in this zone, as VI / �2RT0�1/2 increases,
the cylindrical Couette flow first becomes unstable to the
disturbance that may induce a double-vortex flow. This ten-
dency is observed in the DSMC result for slightly larger
values of VII / �2RT0�1/2. That is, at VII / �2RT0�1/2=−0.6 �see
Fig. 5�, the region of a cylindrical Couette flow ��� is in
contact with the region of a double-vortex flow ���, and we
are not able to obtain a stable single-vortex flow around
there.

C. Computational system and accuracy

In this section, we summarize the computational systems
used in the finite-difference analysis in the present study and
some accuracy tests.

In the computation for the cylindrical Couette flow in Sec.
III B 1, the region 1
 r̂
LII /LI is divided into N nonuni-
form intervals, the smallest intervals being at the cylinders
and the largest around the middle of the gap between the
cylinders; the region 0
	�� is replaced by a finite interval
0
	
	D and then divided into M1 nonuniform intervals,
the smallest intervals being around 	=0 and the largest at
	=	D; the region −�
�	
� is divided into M2 uniform
intervals. It is noted that 	z can be eliminated by a suitable
transformation in the present axially and circumferentially
uniform case �9,37�. We use the following three systems:

�N ,	D ,M1 ,M2�= �120,6 ,48,272� �system A� for V̂I�1.5;

�120,8.167,56,544� �system B� for 1.5
 V̂I�3; and

�240,9.375,60,1088� �system C� for 3
 V̂I. The smallest
and largest intervals �r̂s and �r̂l in r̂ and the smallest and
largest intervals �	s and �	l in 	 in these systems are as
follows: ��r̂s ,�r̂l ;�	s ,�	l�= �1.713�10−4 ,1.309�10−2 ;
2.604�10−3 ,0.2474� �system A�, �1.713�10−4 ,1.309
�10−2 ;2.604�10−3 ,0.2891� �system B�, and �4.284
�10−5 ,6.545�10−3 ;2.604�10−3 ,0.3099� �system C�.

In the computation of Eqs. �15a�–�15c� in Sec. III B 2, the
way of discretization for r̂, 	, and �	 is the same as that for
the cylindrical Couette flow. As for 	z, we consider the half
region 	z�0 taking into account the property �21�; then it is
replaced by a finite region 0
	z
	zD and divided into M3
nonuniform intervals, the smallest interval being around 	z
=0 and the largest at 	z=	zD. We used the following three
systems: �N ,	D ,M1 ,M2 ,	zD ,M3�= �60,6 ,24,136,6 ,24�
�system A�� for V̂I�1.5, �120,8 ,36,272,6 ,24� �system B��
for 1.5
 V̂I�3, and �120,10,48,272,6 ,24� �system C�� for

3
 V̂I. The dimensionless time step �t̂ is taken to be �t̂
=Kn/5, which means that the dimensional time step is
about 22% of the mean free time of the gas. Let �	zs and
�	zl be the smallest and largest intervals in 	z. Then, the
smallest and largest intervals in these systems are as fol-
lows: ��r̂s ,�r̂l ;�	s ,�	l ;�	zs ,�	zl�= �6.852�10−4 ,2.617
�10−2 ;1.042�10−2 ,0.4896;1.042�10−2 ,0.4896� �system
A��, �1.713�10−4 ,1.309�10−2 ;6.173�10−3 ,0.4383;1.042
�10−2 ,0.4896� �system B��, and �1.713�10−4 ,1.309
�10−2 ;4.340�10−3 ,0.4124;1.042�10−2 ,0.4896� �system
C��.

Since the computation of the system �15a�–�15c� is rather
heavy, it is not easy to perform a systematic and thorough
check of accuracy of the computation. Therefore, we have
restricted ourselves to an accuracy test for the results of neu-
tral stability points. Let us consider the neutral stability
points for �=� and Kn=0.0127 shown in Fig. 11 and Table
I. In the last paragraph of Sec. III B 2, we have explained the
way of obtaining a neutral stability point. That is, for a fixed

value of V̂II, we obtain �M at some values of V̂I in an interval

that seems to contain the V̂I corresponding to �M =0. Then,
we interpolate these �M’s using the natural cubic spline

curve to obtain �M as a function of V̂I: �M =S�V̂I�. Thus, the

neutral stability point for the V̂II is obtained as V̂I=S−1�0�. In
the region where the gradient of the neutral stability curve is

large, the roles of V̂II and V̂I are interchanged.

FIG. 14. Macroscopic quantities pertaining to F at three neutral
stability points for �=2� at Kn=0.0127 �LII /LI=2�.
(VII / �2RT0�1/2 ,VI / �2RT0�1/2)= �a� �−0.6,0.771�, �b� �0,0.623�, and
�c� �0.3,1.196�. See the caption of Fig. 9.
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We now consider the three points P1 �V̂II , V̂I�= �0,0.397�,
P2 �0.3,0.903�, and P3 �0.423,2� on the neutral stability
curve for Kn=0.0127 in Fig. 11 �see Table I�. The point P1 is
obtained by spline interpolation based on the four points

�V̂II , V̂I�= �0,0.3�, �0,0.4�, �0,0.5�, and �0,0.6�; the point P2

from that based on �V̂II , V̂I�= �0.3,0.8�, �0.3,0.9�, �0.3,1.0�,
and �0.3,1.1�; the point P3 from that based on �V̂II , V̂I�
= �0.40,2�, �0.41,2�, �0.42,2�, and �0.43,2�. The system �A
+A�� is used for the points P1 and P2 �that is, system A is
used for the cylindrical Couette flow, and system A� for the
linear-stability analysis�, whereas the system �B+B�� is used
for the point P3. First, in order to check if the spline inter-

polation gives a correct value of V̂I or V̂II corresponding to
�M =0, we compute �M at points close to P1, P2, and P3, i.e.,

P1
± �V̂II , V̂I�= �0,0.397±0.001�, P2

± �0.3,0.903±0.001�, and
P3

± �0.423±0.001,2�. Then we obtain �M =−0.3164�10−3 at
P1

− and �M =0.3792�10−3 at P1
+; �M =−0.4805�10−3 at P2

−

and �M =0.2647�10−3 at P2
+; and �M =0.3174�10−2 at P3

−

and �M =−0.1689�10−2 at P3
+. From these values, it is seen

that the spline interpolation gives the value of V̂I or V̂II cor-
responding to �M =0 with an error smaller than ±0.001.
Next, we compute the neutral stability points corresponding
to P1, P2, and P3 with different lattice systems, that is, the
finer system �B+B�� for P1 and P2, and the coarser system

�A+A�� for P3. The result is �V̂II , V̂I�= �0,0.396� for P1,
�0.3,0.900� for P2, and �0.425,2� for P3. The difference is
smaller than 0.5%.

The computation has been performed mainly on CRAY
Origin 2000 computers in the Institute for Chemical Re-
search, Kyoto University and PC’s with Pentium IV proces-
sors �2.4/3.0 GHz� in the laboratory of Molecular Fluid Dy-
namics, Department of Mechanical Engineering and Science,
Kyoto University.

VI. CONCLUDING REMARKS

In the present study, we considered rarefied gas flows be-
tween two coaxial circular cylinders rotating at different an-
gular velocities. The stability of the cylindrical Couette flow
�a flow with axial and circumferential uniformity� for small
disturbances was investigated by means of a linear-stability
analysis. Such an analysis for the cylindrical Couette flow,
which is classical in continuum fluid dynamics, has not been
attempted, to the authors’ knowledge, for a rarefied gas so far
because of the complexity of the basic kinetic equations. In
the present study, we have performed such an analysis on the
basis of the BGK model of the Boltzmann equation, and for
a certain ratio of the radii of the cylinders �LII /LI=2�, we
have investigated the stability of the cylindrical Couette flow
for disturbances with circumferential uniformity and with
certain periodicity in the axial direction ��=� and 2��. As a
result, we were able to obtain the corresponding neutral sta-
bility curves, the boundary between the stable and unstable
zones for the cylindrical Couette flow, in the parameter
planes. The results were compared with the corresponding
neutral stability curves based on continuum models. The re-

sults based on the compressible Navier-Stokes equations
with the BGK viscosity and thermal conductivity, in general,
show good agreement with those based on the BGK model.
However, the discrepancy becomes significant when the
outer cylinder is rotating at fast rotation speed in the same
direction as the inner. This is due to the fact that the local
Knudsen number near the inner cylinder becomes larger than
the overall Knudsen number Kn because of the density drop
caused by the strong centrifugal force. In addition, compari-
son was made with the results of numerical analysis of the
flow between the two cylinders by the DSMC method for
hard-sphere molecules that were obtained in our previous
papers as well as in the present study. Since there is no
systematic way to compare the result for the BGK model
with that for hard-sphere molecules, we adopted the conven-
tional conversion of the Knudsen number based on the as-
sumption that the viscosity is common to both molecular
models. In this comparison, the neutral stability curves based
on the compressible Navier-Stokes system with hard-sphere
viscosity and thermal conductivity were used as a reference.
Except in the case of very high-speed rotation of the cylin-
ders, the BGK result shows reasonable agreement with the
DSMC result. A study of the effect of the molecular model
on the stability of the cylindrical Couette flow in the high-
speed rotation case would be an interesting subject for both
the DSMC and continuum approaches.
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APPENDIX: CONTINUUM MODELS

In Sec. V the results of the linear-stability analysis based
on continuum models are shown for comparison. In this ap-
pendix, we specify the continuum models.

1. Incompressible Navier-Stokes-type system

We first consider the continuity equation and the Navier-
Stokes equation for an incompressible fluid with the viscos-
ity related to the mean free path as

 =
��

2

R�0T0�0

�2RT0�1/2�1, �A1�

where �1 is a constant depending on the molecular model,
for example, �1=1 for the BGK model and 1.270 042 for
hard-sphere molecules. This system, together with the corre-
sponding energy equation, and the so-called no-slip bound-
ary condition have been derived rigorously from the Boltz-
mann equation and its boundary condition by a systematic
asymptotic analysis for small Knudsen numbers �33,41� un-
der the condition that the flow Mach number and the relative
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temperature variation are as small as the Knudsen number.
Since the velocity and pressure fields are determined only by
the continuity and momentum equations, we do not consider
the energy equation. The dimensionless form of the relevant
equations is given by

1

r̂

�

� r̂
�r̂v̂r� +

� v̂z

� ẑ
= 0, �A2�

� v̂r
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= −
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4
��̂v̂r −
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r̂2� ,

�A3�

� v̂�

� t̂
+ v̂r

� v̂�

� r̂
+ v̂z

� v̂�

� ẑ
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v̂rv̂�

r̂
=

���1Kn

4
��̂v̂� −

v̂�

r̂2 � ,

�A4�

� v̂z

� t̂
+ v̂r

� v̂z

� r̂
+ v̂z

� v̂z

� ẑ
= −

1

2

� p̂

� ẑ
+

���1Kn

4
�̂v̂z, �A5�

where

�̂ 
�2

� r̂2 +
1

r̂

�

� r̂
+

�2

� ẑ2 , �A6�

and p̂ is the dimensionless pressure related to the dimen-
sional pressure p as p̂= p /R�0T0. The no-slip boundary con-
ditions for Eqs. �A2�–�A5� are

v̂r = v̂z = 0, v̂� = V̂I, at r̂ = 1, �A7�

v̂r = v̂z = 0, v̂� = V̂II, at r̂ = LII/LI. �A8�

The Knudsen number enters this system through the viscos-
ity.

The linear-stability analysis of the above system is essen-
tially the same as the classical one �e.g., �18–20��. Here, we
let

v̂r = �Vr�r̂�exp�st̂�exp�i�ẑ� , �A9a�

v̂� = v̂�C�r̂� + �V��r̂�exp�st̂�exp�i�ẑ� , �A9b�

v̂z = �Vz�r̂�exp�st̂�exp�i�ẑ� , �A9c�

p̂ = p̂C�r̂� + �P�r̂�exp�st̂�exp�i�ẑ� , �A9d�

where v̂�C and p̂C are the velocity �� component� and pres-
sure of the cylindrical Couette flow solution, � ��0� is a
small parameter, � is a real number, s is a complex number,
and Vr, V�, Vz, and P are complex-valued functions of r̂. If
we insert Eqs. �A9a�–�A9d� into Eqs. �A2�–�A8� and neglect
the products of �, we obtain an eigenvalue problem for Vr,
V�, Vz, P, and s. The problem is essentially the same as that
appearing in the first-order bifurcation analysis in Ref. �42�,
where the effect of evaporation and condensation on the bi-
furcation of the flow between two coaxial rotating cylinders

is investigated. We have exploited the solution method of
Ref. �42� to solve the eigenvalue problem, which led to the
results contained in Figs. 7, 8, and 11. It should be mentioned
that a detailed bifurcation analysis of the flow between two
rotating cylinders has been performed in Ref. �31�, in the
case where the speed of rotation of the cylinders is low but
the temperature difference of the cylinders is large, with spe-
cial interest in the ghost effect on the temperature field
caused by the infinitesimal Taylor-vortex flow in the con-
tinuum limit. The above eigenvalue problem is contained in
the first-order bifurcation analysis there, as the special case
where the temperatures of the two cylinders are the same.

2. Compressible Navier-Stokes-type system

Next, we consider the Navier-Stokes system for a com-
pressible fluid with the following formulas of viscosity and
thermal conductivity:

 =
��

2

R�0T0�0

�2RT0�1/2 �̂1T̂1/2, �A10a�

� =
5��

4

R2�0T0�0

�2RT0�1/2 �̂2T̂1/2, �A10b�

where �̂1 and �̂2 are functions of T̂, and their functional form

depends on the molecular model, for example, �̂1= �̂2=�T̂
for the BGK model, and �̂1=1.270 042 and �̂2=1.922 284
for hard-sphere molecules. These formulas are obtained by
the systematic asymptotic analysis of the Boltzmann equa-
tion �33,43�. The dimensionless form of the continuity, mo-
mentum, and energy equations as well as the equation of
state are written as follows:
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p̂ = �̂T̂ , �A16�

where

p̂* = p̂ +
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+
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+

� v̂z
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The no-slip boundary conditions at the cylinders are

v̂r = v̂z = 0, v̂� = V̂I, T̂ = 1, at r̂ = 1, �A18�

v̂r = v̂z = 0, v̂� = V̂II, T̂ = 1, at r̂ = LII/LI. �A19�

The Knudsen number enters the above system through the
viscosity and thermal conductivity.

The linear stability of the cylindrical Couette flow has
been investigated on the basis of the compressible Navier-
Stokes system in Refs. �44,45�. The system used in these
references is essentially the same as the above system. Here,
we let

�̂ = �̂C�r̂� + �D�r̂�exp�st̂�exp�i�ẑ� , �A20a�

T̂ = T̂C�r̂� + �T�r̂�exp�st̂�exp�i�ẑ� , �A20b�

in addition to the form of Eqs. �A9a�–�A9d�, where �̂C, v̂�C,

T̂C, and p̂C are the density, velocity �� component�, tempera-
ture, and pressure of the cylindrical Couette flow solution of
the above system, and D, Vr, V�, Vz, T, and P are complex-
valued functions of r̂. We derive the boundary-value problem
of the system of linear ordinary differential equations for the
disturbances D, Vr, V�, Vz, T, and P, which forms an eigen-
value problem. We solved this problem using the same tech-
nique as in Ref. �45� to obtain the results shown in Figs. 7, 8,
and 10–12. In this case, we are able to attain much higher
accuracy than in the case of the BGK system.

It should be mentioned that similar continuum equations,
i.e., the equations of compressible Navier-Stokes type with
viscosity and thermal conductivity of the form of Eqs.
�A10a� and �A10b� �more precisely, their approximations�,
have been employed for the study of the Rayleigh-Bénard
problem �46,47�.
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