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Depending on the Hamiltonian parameters, two-component bosons in an optical lattice can form at
least three different superfluid phases in which both components participate in the superflow: a (strongly
interacting) mixture of two miscible superfluids (2SF), a paired superfluid (PSF) vacuum, and (at a
commensurate total filling factor) the super-counter-fluid (SCF) state. We study the universal properties
of the 2SF-PSF and 2SF-SCF quantum phase transitions and show that (i) they can be mapped onto each
other and (ii) their universality class is identical to the �d� 1�-dimensional normal-superfluid transition
in a single-component liquid. The finite-temperature 2SF-PSF(SCF) transitions and the topological
properties of 2SF-PSF(SCF) interfaces are also discussed.
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OL, this recombination channel is not an issue since now in imaginary time � 2 �0; �! 1�, where� is the inverse
The recent success in experimental studies of ultracold
atoms in a 3D optical lattice (OL) [1] signals a major
breakthrough in the field of quantum lattice systems. The
theoretical framework which describes the physics of
atomic gases in an OL is given by the on-site Bose-
Hubbard model [2]. Its seminal prediction [3]—the
superfluid–Mott-insulator (SF-MI) transition—has been
unambiguously confirmed [1].

Realistic experimental perspectives of trapping sev-
eral atomic species in the ultraquantum regime have
inspired theoretical studies of multicomponent systems
in OLs [4–9]. In particular, it has been argued that the
two-component commensurate mixture of inconvertible
atoms can be in the super-counter-fluid (SCF) state [5]. In
this state, the net atomic superfluid current is impos-
sible, and yet the equal-current flows of two components
in opposite directions are superfluid. Another intri-
guing superfluid ground state which exists in the two-
component (with equal particle numbers) Bose system
in OL is the paired superfluid (PSF) vacuum [7,10].
Qualitatively, this state is equivalent to the superfluid
state of two-atomic molecules and a BCS superconductor.
An important quantitative difference with the BCS
theory is that bosonic superfluidity exists without pairing
correlations too, and the PSF is always associated with
finite intraspecies interaction. At the moment, it is not
clear whether PSF can be realized in atomic gases without
OL. At the two miscible superfluid (2SF) PSF transition
point the pairing interaction is necessarily strong; i.e., the
scattering length for atoms ready to form a pair is of the
order of (or larger) than the interatomic separation. Under
these conditions, metastable atomic gases are likely to
become unstable from the experimental point of view
because of very large inelastic cross sections leading to
formation of fast tight molecules (not to be confused with
the loose pairs we are discussing here) and fast atoms. In
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the regime of strong/weak interaction is controlled by the
ratio of the tunneling constant to the strength of the
effective on-site interaction, while decay rates are still
controlled by the one-site physics and are not sensitive to
tunneling.

In this Letter, we discuss the universal properties of
the 2SF-PSF and 2SF-SCF phase transitions. First, we
prove that the two transitions are equivalent to each other
by establishing mapping between the PSF and SCF
phases. According to mapping, SCF can be viewed as a
‘‘molecular’’ superfluid, where ‘‘molecules’’ consist of
particles of one-component and holes of another compo-
nent. Correspondingly, the SCF transition is equivalent to
the binding of atomic superfluids into PSF. Our main
focus is on the quantum phase transition. We present
strong arguments that this transition is in the �d� 1�-
dimensional U�1� universality class, and propose an ef-
fective �d� 1�-dimensional classical model describing it.
It allows us to relate correlation functions in terms of the
original bosonic fields to correlators of the U�1� order
parameter. In the vicinity of the quantum phase transi-
tion point, our considerations are naturally generalized to
the finite-temperature case, predicting the same U�1�
universality class (but now in d dimensions) for the
2SF-PSF(SCF) transition at T > 0. We verify our predic-
tions numerically by performing Monte Carlo simula-
tions of a 3D two-component closed-loop current model
of Ref. [11], with the long-range critical behavior identical
to that of a two-component 2D quantum system. Finally,
we note that the 2SF-PSF(SCF) phase transition preserves
the molecular part of the order parameter and discuss the
consequences of this fact for the structure of the vortices
in hybrid systems containing 2SF-PSF(SCF) interfaces.

The qualitative equivalence of PSF and SCF phases can
be understood on the basis of Feynman’s representation of
quantum statistics in terms of particle paths (world lines)
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temperature. In this representation, the superfluid ground
state is characterized by world lines forming macroscopic
cycles (for brevity, we call them M cycles), when the end
of one world line at � � � is the beginning of another
world line at time � � 0, and so on (partition function
world lines in imaginary time are � periodic). The quali-
tative difference between the 2SF and PSF ground states
is that in PSF each A component world line is bound to
some B component world line, and in the long-range limit
there are no free single-component world lines forming
independent M cycles. All M cycles are formed only by
pairs of lines, and we arrive at the picture of PSF, or
molecular superfluid. Less obvious is the fact that SCF
has the same world line structure as PSF. The key obser-
vation is that for integer total filling factor one may use
a hole representation for one of the components, say,
component B. We readily understand that the only world
line structure consistent with the absence of net super-
fluid response is when each B-hole world line is bound
with some A-particle world line —this is the only possi-
bility of forming M cycles out of particle-hole pairs
without having independent single-component M cycles.
Macroscopically, bound particle-hole pairs behave like
new molecules with zero particle number charge, and
their flow is equivalent to the counterflow of participating
components.

In view of the SCF-PSF equivalence, in what follows
we discuss PSF only, implying that all results remain
valid for SCF as well.

The world line language presents also a ‘‘graphic pic-
ture’’ of critical fluctuations driving the PSF-2SF transi-
tion. Suppose that initially we are deep in the PSF phase.
Then each A line is closely followed by some B line. As
the coupling between components becomes weaker,
bound lines demonstrate local unbinding fluctuations;
see Fig. 1(a). These fluctuations can be viewed as single-
colored oriented loops, one part of the loop representing,
say, an A line, and the other part representing a B line
with the reversed direction; see Fig. 1(b). Close to the
critical point, unbinding loops grow larger and start
reconnecting with each other (become dense). We assume
that only large-scale loops are essential for characterizing
the universality class of the transition; the details of
short-range behavior are simply determining parameters
of the critical action for these loops. The phase transition
in a system of oriented loops in d� 1 dimensions (lead-
(a) (b)

FIG. 1. (a) Unbinding fluctuations of two coupled world lines
of the two-component system. (b) The single-loop effective
representation. World lines of different species are depicted as
solid and dotted lines, respectively.
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ing to the appearance of macroscopic-size loops) is
known to describe the SF-MI transition in a commensu-
rate system of bosons on a d-dimensional lattice (see, e.g.,
[11]). In its turn, this transition is equivalent to the finite-
temperature phase transition between normal and super-
fluid states in d� 1 dimensions [3]. Hence, the above
reasoning suggests a mapping between the PSF-2SF and
MI-SF transitions, and establishes that the PSF-2SF tran-
sition is in the universality class of classical �d� 1�-
dimensional U�1� models.

We now argue that in the long-wave limit our system
also can be mapped onto a �d� 1�-dimensional model of
two-color classical rotators. This mapping is used to have
one more argument in favor of the U�1� universality class,
and to establish important relations between basic corre-
lation functions; it also provides a natural generalization
of our considerations to finite temperatures.

The presence of lattice commensurability is not cru-
cial for the PSF-2SF transition since both phases in-
volved are superfluid. However, it proves convenient to
formally assume that we are dealing with the double-
commensurate system—filling factors of both species are
integers. According to [3], commensurate d-dimensional
lattice bosons map in the long-wave limit to a �d� 1�-
dimensional array of rotators with the Hamiltonian

H � 	�
X
hiji

cos��i 	�j�; (1)

where �j 2 �0; 2�� is the angle of the jth rotator [or
phase of the bosonic order-parameter field 	�j� � ei�j]
and h  i stands for the nearest neighbor sites on a square
lattice. In our case, we need three quantum fields:  A and
 B for the two components, and the field  P for the pairs.
This suggests terms similar to Eq. (1) for each of the
corresponding three phases. However, one also has to
account for the terms in the effective Hamiltonian con-
verting a bound pair into two atoms and vice versa. In
terms of the rotator model, this leads to a local term
/
P
j cos��

�P�
j 	��A�

j 	��B�
j � reducing the symmetry of

the three-color rotor system to U�1� � U�1�. This term
introduces some (loose) constraint on the difference be-
tween the phase ��P�

j and the sum ��A�
j ���B�

j . Replacing
it with the rigid constraint ��P�

j � ��A�
j ���B�

j , we reduce
the number of independent variables from three to two—
as one could expect from the very beginning given the
original U�1� � U�1� symmetry of our system. As a re-
sult, we arrive at the following Hamiltonian (for sim-
plicity, we assume exchanging symmetry between the
components):

H �	
X
hiji

��1 cos�ij � �2 cos�
�A�
ij � �2 cos�

�B�
ij �; (2)

�j � ��A�
j ���B�

j ; (3)

where �ij ��i	�j and ��A;B�
ij ���A;B�

i 	��A;B�
j . Apart

from the 2SF-PSF transition, this model also can be used
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FIG. 2. Different geometries of PSF-2SF interfaces. (See dis-
cussion in the text.)
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to describe other phase transitions in the doubly commen-
surate system.

It is convenient to introduce the phase difference

’j � ���A�
j 	��B�

j �=2; (4)

and to rewrite the Hamiltonian (2) as (’ij � ’i 	 ’j)

H � 	
X
hiji

��1 cos�ij � 2�2 cos��ij=2� cos’ij�: (5)

(The fields � and ’ describe charge and pseudospin
degrees of freedom, respectively.) Though the new vari-
ables �j and’j cannot be interpreted as the angles of new
rotators—the configurational space of the original rota-
tors ��A�

j and ��B�
j is exhausted with, say, �j 2 �0; 2��

and ’j 2 �	�;��, while the Hamiltonian (5) is not 2�
periodic with respect to �j—for our purposes it is suf-
ficient that only ’j can be viewed as a rotator angle.
Indeed, in both PSF and 2SF, the pair phase variable �j
is ordered and its local fluctuations are not relevant to the
criticality of the 2SF-PSF transition. Therefore, we may
simply set �j � 0 in Eq. (5) which brings us to the
effective one-component rotor model for ’:

H2SF	PSF � 	2�2

X
hiji

cos’ij: (6)

The transition thus is the superfluid–normal-fluid transi-
tion in the ’-channel (which means localization in the
pseudospin sector); the corresponding complex order
parameter is  �X� / ei’�X�, where X is the space-time
radius vector treated as a continuous variable in the long-
wave limit. Given this order parameter and Eq. (4) relat-
ing ’ to the original phases (��A� � 	��B� � ’), we
immediately find the critical behavior of various correla-
tion functions:

h y
A�X� A�0�i � h y

B�0� B�X�i � h A�0� B�X�i

� h y�X� �0�i: (7)

The model (6) with large but finite size in the � direc-
tion describes the initial part of the finite-temperature
2SF-PSF line in the vicinity of the quantum critical point.
We thus establish the universality class—U�1� in d di-
mensions — for the finite-temperature II-order 2SF-PSF
transition. Since the order parameter for the transition is
�ei’ (molecular channel is not critical), we arrive at a
rather counterintuitive conclusion that with increasing
temperature the transition is from 2SF to PSF. The rela-
tions (7) take place at the finite-temperature critical point
as well. Note, that a finite-temperature SCF phase has
been argued to exist also in a planar U�1� � U�1� super-
conductor [12], caused, however, by an absolutely differ-
ent microscopic mechanism.

The finite-temperature 2SF-PSF transition survives
even when the two components have slightly different
densities and the ground state is inevitably 2SF (both
h Ai and h Bi are nonzero). Away from the quantum
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critical point, the 2SF-PSF transition can be viewed as
the superfluid to normal fluid transition in the (dilute)
subsystem of excessive particles.

Equation (5) is also useful for understanding the struc-
ture of vortices across the interface between the PSF and
2SF phases. Experimentally, interfaces naturally arise in
inhomogeneous systems (in a confining potential, par-
ticle densities drop to zero at the boundary, and, e.g.,
the SCF phase, which requires commensurability, may
not survive at the edge). Suppose one creates a vortex in a
PSF phase and then adiabatically removes OL and the
trapping potential to observe the system by the standard
technique of absorption imaging [13]. When the lattice
potential is turned off, the system behaves as two weakly
interacting gases. The question now is the following: Do
vortices in the PSF phase transform (and how) into vor-
tices in the resulting weakly interacting system [14]?

System inhomogeneity implies that at intermediate
stages of the potential turning off, there is an interface
similar to the one shown in Fig. 2(a). Ultimately, the
interface shrinks and disappears with the PSF phase,
while the topological structure of the 2SF state remains
the same as it was when the interface existed. To under-
stand this structure we resort to the rotator model (5). In
both PSF and 2SF the phase field � is ordered and thus
the circulation of r� does not change across the inter-
face. Since the phase field ’ is disordered inside the PSF
phase, there are no topological constraints associated
with it. Taking into account (3), we arrive at the following
rule for topological charges:

I�A� � I�B� � I; (8)

where I�A;B� and I are integer topological charges in 2SF
and PSF correspondingly,

I�A;B� �
1

2�

I
C2

r��A;B�dl; I �
1

2�

I
C1

r�dl: (9)

We see that vortices in PSF always induce vortices in the
2SF phase fields ��A� and/or ��B�, and thus make it
possible to observe the circumstantial evidence of the
PSF vortex in the absorption image of the weakly inter-
acting 2SF state. However, the values of topological
charges are not unambiguously defined. For example, if
030403-3
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I � 1 then �I�A� � 1; I�B� � 0� and �I�A� � 0; I�B� � 1� are
consistent with Eq. (8), as well as, say, �I�A� � 2; I�B� �
	1�. This implies that particular values of I�A� and I�B�

depend on details of the experimental setup determining
the lowest energy configuration. For example, if the two
components have different superfluid stiffnesses and, ini-
tially, there was one vortex in the PSF, then, after creating
the interface and removing the PSF, the vortex will reside
in the component with lower stiffness.

Another interesting geometry is shown in Fig. 2(b).
Using arguments identical to those presented above, we
see that the only integer topological charge on contour C
is I. While the sum of the integrals for I�A� and I�B� still
equals I, separately they are ill defined on C, because the
phase ’ experiences large zero-point fluctuations in the
PSF region. Suppose, then, that initially there was no
PSF phase at all, and the topological charges of compo-
nents were, say, I�A� � 1 and I�B� � 0. Imposing OL to
create PSF eliminates quantization for the individual
phases ��A;B�, while preserving the sum I�A� � I�B� � 1.
Accordingly—since no memory about the initial values
I�B�; I�A� is retained—further removal of the OL may
result in the final 2SF state with I�A� � 0; I�B� � 1.
Similar to the previous setup, if the two components
have different superfluid stiffnesses, then, after the cycle
of switching on and off OL, the circulation will reside in
the component with lower stiffness.

There are several options to verify the above consid-
erations numerically. One is a direct simulation of the
two-component d-dimensional Bose-Hubbard Hamilton-
ian at very low temperature. However, the universality
class of the phase transition and the relevant long-wave
description of critical fluctuations may also be obtained
for the �d� 1�-dimensional classical lattice model built
on particle trajectories in discrete imaginary time. One of
the quantum-to-classical mappings for the Bose-Hubbard
Hamiltonian— the J-current model—was developed in
Ref. [11], and we straightforwardly generalized it to the
two-component case. Our choice to simulate the classical
action was motivated only by reasons of numeric effi-
ciency. Recently developed quantum and classical worm
algorithms do not suffer from critical slowing down [15],
but the classical one is superior because of its simplicity
(it was already successfully applied to the disordered one-
component J-current model [16]). We defer details of
simulations performed for the d� 1 � 3 case to a longer
paper [17] and simply mention here the results. The
correlation radius and the correlation function exponents
for the 2SF-PSF transition agreed with the known values
for the 3D U(1)-universality class [18] within 1%–2%
accuracy. We have directly verified that nontrivial rela-
tions between the correlation functions given by Eq. (7)
hold true at the critical point, and deviations from Eq. (7)
are barely visible even at distances as small as five lattice
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constants. We have observed the qualitative prediction of
the model (6) about the transition from 2SF to PSF with
increasing temperature.

To summarize, we have shown that two strongly corre-
lated phases of the two-component bosonic system— the
superfluid state of pairs and the counterflow superfluid—
are macroscopically equivalent. We have presented argu-
ments supported by the results of numeric simulations
that quantum phase transitions leading to formation of
these phases from the state of two miscible superfluids are
in the universality class of superfluid–Mott-insulator
transition in a single-component bosonic system. The
finite-temperature 2SF-PSF(SCF) transitions are in the
universality class of a single-component superfluid–
normal-fluid transition. The proposed two-color rotator
model correctly describes the critical behavior of various
correlators and — in the spatially inhomogeneous case—
yields a simple rule for ‘‘sewing’’ topological defects
across the boundary between the phases.
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