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Negative Group Delay and Superluminal Propagation:
An Electronic Circuit Approach

Masao Kitano, Toshihiro Nakanishi, and Kazuhiko Sugiyama

Abstract—We present a simple electronic circuit which provides
negative group delays for band-limited baseband pulses. It is
shown that large time advancement comparable to the pulsewidth
can be achieved with appropriate cascading of negative-delay
circuits but eventually the out-of-band gain limits the number of
cascading. The relations to superluminality and causality are also
discussed.

Index Terms—Causality, filter, group velocity, negative group
delay, superluminal propagation.

I. INTRODUCTION

BRILLOUIN AND Sommerfeld showed that in the region
of anomalous dispersion, which is inside of the absorp-

tion band, the group velocity can exceed, the light speed in
a vacuum, or even be negative [1], [2]. Recently, it was shown
that for a gain medium, superluminal propagation is possible at
the outside of the gain resonance. Superluminal effects are also
predicted in terms of quantum tunneling or evanescent waves
[3]–[5]. Superluminal group velocities have been confirmed ex-
perimentally in various systems, and most controversies over
this counterintuitive phenomenon have settled down. However,
several questions seem to remain open; for example, “how far
can we speed up the wave packets,” “is it really nothing to do
with information transmission,” “what kind of applications are
possible,” and so on. In this paper, we will try to solve some of
these problems by utilizing a simple circuit model for negative
group delays.

Negative delay in lumped systems such as electronic circuits
is very helpful to understanding various aspects of superlu-
minal group velocity. Mitchell and Chiao [6], [7] constructed
a bandpass amplifier with an inductance–capacitance ()
resonator and an operational amplifier. An arbitrary waveform
generator is used to generate a Gaussian pulse by which a
carrier is modulated. The circuit basically emulates an optical
gain medium which shows anomalous dispersion in off-res-
onant region. Wanget al. [8] extended this circuit by using
two resonators which correspond to the two Raman gain
lines [9], [10]. At the middle of two gain peaks, the frequency
dependence of amplitude response is compensated and the
pulse distortion can be minimized.
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The present authors [11] used an operational amplifier with
an feedback circuit. It provides negative delays for base-
band pulses. In previous experiments, optical or electronic, a
carrier frequency is modulated by a pulse which varies
slowly compared with the carrier oscillation and the displace-
ment of the envelopes is measured. Without carriers ,
the system becomes much more simple. The amplitude response
symmetric with respect to zero frequency is helpful to reduce the
distortion. The baseband pulse is simply derived from a rectan-
gular pulse generator and a series of low-pass filters.

The time constants can easily be set at the order of seconds
and we can actually observe that the output light-emitting diode
(LED) is lit earlier than the input LED. In addition to the use-
fulness as a demonstration tool, this circuit turned out to be very
convenient to look into the essentials of negative group delays
and superluminal propagation because of its simplicity.

In this paper, we exploit the circuit model in order to inves-
tigate some of the fundamental problems. First, we discuss the
relation between negative group delay and superluminarity, and
then the approximate realization of (positive and negative) de-
lays by lumped systems. Then we consider the spectral condi-
tion imposed on input pulses and describe the design of low-pass
filters for pulse preparation. Next, in order to increase the ad-
vancement, a number of negative-delay circuits are cascaded.
We find that an advancement as large as the pulsewidth is pos-
sible but the slow increase of the advancement and the expo-
nential increase of out-of-band gain almost prohibit the achieve-
ment of further advancements. Finally, by regarding our system
as a communication channel, we discuss the causality in lumped
systems.

II. NEGATIVE DELAY AND SUPERLUMINAL PROPAGATION

The group velocity in a dispersive medium is defined as

(1)

where the wavenumber is a function of frequency . It
corresponds to the propagation speed of an envelope of signal
whose spectrum is limited within a short interval containing.

Similarly, the group delay is defined as

(2)

where represents the frequency-dependent phase shift. It
corresponds to the temporal shift of the envelope of the band-
limited signal passing through a system. For a medium with
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length , the phase shift is given by and we
have

(3)

These two quantities seem almost identical, but the group
delay is a more general concept because it can be defined even
for a lumped system. The lumped system is a system whose size

is much smaller than the wavelength of interest. Ne-
glecting the propagation effects, the behavior of the system can
be described by a set of ordinary differential equations with re-
spect to time. For distributed systems, on the other hand, the
spatio-temporal partial differential equation must be used.

The relation between negative group delays and superlumi-
nality can easily be understood when we consider a system con-
sisting of a vacuum path (length) and a lumped system (delay

) which is located at the end of the path. The total time
required for a pulse to pass through the system is

(4)

The corresponding velocity satisfies the relation

(5)

For (positive delay), is smaller than . For
(negative delay), there are two cases. In the case ,

is larger than (superluminal in a narrow sense), while in
the case , becomes negative (negative group
velocity). In the latter case, the contribution of the lumped part
dominates that of the free propagation path.

Normally, the superluminality has been considered as a prop-
agation effect. But in many cases, it seems more appropriate to
discuss in term of the negative group delay for a lumped system.
Let us take experimental parameters from [9], in which the neg-
ative delay of ns was observed. We note that the pulse
length s m is much longer than the cell
length cm. Therefore, we can safely use the lumped ap-
proximation. Since we can eliminate the carrier frequency by
the slowly varying envelope approximation, the wavelength of
light m will not come into play any more.

It should be stressed that the cases where the second term in
(4) or (5), which is positive or negative, dominates the first term
are very likely. For typical atomic experiments, the bandwidth

, which is of the order of megahertz to gigahertz, roughly
determines advancement as , mi-
croseconds to nanoseconds, while the passage timeis less
than the order of nanoseconds. Forcible assignment of a velocity
to such cases, in the above example, would
have caused some confusion.

III. GROUPDELAYS—IDEAL AND APPROXIMATE

A. Mathematical Representation

A mathematical representation for ideal delays can be written
as

(6)

where is the impulse response of the system
and is the delay time. Its Fourier transform is given by

(7)

with

(8)

For (positive delay), the impulse response is
causal, i.e., it is zero for . The positive delay can be realized
easily, if you have an appropriate space . But there is
no way to make ideal, unconditional negative delays, because

is noncausal in this case.

B. Building Blocks

It should be noted that no lumped systems can
produce ideal positive or negative delays. From now on, let us
consider how to make approximate delays with lumped sys-
tems. The amplitude and the phase of the ideal response function

are

(9)

(10)

In [11], we used a circuit having a transfer function

(11)

by which negative delay is provided for baseband pulses
. Here, we will examine several transfer functions which can

be realized with an operational amplifier and a few passive com-
ponents.

First, we consider a function with a single pole

(12)

(13)

(14)

The stability condition that all the poles reside in the upper half
plane requires , therefore, only positive delays

can be achieved with this type of transfer function. An example
of the circuit is shown in Fig. 1(a). Only in the region ,
the amplitude response is flat and the phase response is linear.
The circuit works only for band-limited signals.

Second, we will check a function with a single zero

(15)

(16)

(17)

In this case, no sign restrictions are imposed on, therefore,
both positive and negative delays can be realized; . A
circuit for is shown in Fig. 1(b). Perhaps this is
the most simple circuit which provides negative delay. Again it
works only in the region . Even worse is the rising of
gain at the outside of the band. We can also construct
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Fig. 1. Elementary circuits used in negative group-delay experiments. (a) A
first order low-pass filter. A series of low-pass filters are used for pulse
preparation. (b) Negative group-delay circuit. This simple circuit provides
time-advancement for baseband pulses. (c) All-pass filter.

a positive delay circuit utilizing the relation
.

By observing the sign restrictions for and , we
notice that an asymmetry between the positive and negative de-
lays exists even in lumped systems.

Another interesting transfer function is

(18)

(19)

(20)

which can be realized by the circuit shown in Fig. 1(c). This
circuit is called the all-pass filter. The phase function is the same
as the above cases aside from the factor 2, but the amplitude
response is independent of the frequency as in the case of ideal
delay. The stability condition implies , therefore, only
positive delays are possible.

IV. BANDWIDTH AND DISTORTION

A. Bandwidth of Negative-Delay Circuit

It turned out that lumped circuits can provide a delay, positive
or negative, only for a band-limited signal. From the approxi-
mate transfer function for negative delays, we
have the imperfect amplitude and phase functions

(21)

(22)

which are plotted in Fig. 2. We see that the inputs must satisfy
the spectral condition

(23)

Otherwise, the output waveform will be distorted due to the
higher order terms in (21) and (22). In electronic circuits, a rect-

Fig. 2. Frequency response of approximate negative delay. (a) Amplitude.
(b) Phase responses. The response for ideal negative delay are plotted with
dashed lines. The approximation is valid only forj!j < 1=T .

angular pulse is most easily generated. But its spectrum has a
long tail; . The tail must be suppressed with low-pass
filters. The cutoff frequency must be smaller than .

B. Low-Pass Filter for Pulse Preparation

A simple method is to cascade suitable numbers of first-order
low-pass filters, whose transfer function is represented by (14),
as

(24)

where is a normalization parameter to
keep the 3-dB cutoff frequency constant. It is reduced asis
increased. Otherwise, due to the decrease of bandwidth, the
pulsewidth is broadened and the pulse height is reduced. For
better low-pass characteristics, we can use Bessel filters [12],
[13], whose transfer function is given by

(25)

where is the th Bessel polynomials and the parameter
is determined so that .

The effect of filtering is shown in Figs. 3 and 4. The initial,
rectangular pulse is sent to a series of fil-
ters, where represents a unit step function. As the order

of the filter is increased, the high-frequency tails are more
suppressed, and accordingly, the waveform becomes smoother.
Exceeding a few stages, the waveforms look very similar to each
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Fig. 3. Rectangular pulse of widthT (= T ) is filtered bymth-order Bessel
filter with cutoff frequency1=T . The height of the original pulse(m = 0) is
unity but it is halved in the graph.

Fig. 4. Spectra of low-pass-filtered pulses (log-log plot). The high-frequency
components strongly suppressed asm increases.

other. But the leading edge scales and the peak position is
delayed. The delay, which is due to the phase transfer function
of the low-pass filters, is unavoidable. We will see in Section VI
that must be increased in order to attain large advancement.
The pulsewidth approaches a value determined by the cutoff fre-
quency , if the initial pulsewidth is smaller than .

From the way of preparation of input pulse with low-pass
filters, we can interpret that the leading edge is shaped so as to
be more predictable. The future can well be predicted, if enough
restrictions are imposed on the pulse.

C. Gaussian Pulse

The Gaussian pulse is widely used in negative delay or super-
luminal propagation experiments. It is because of the rapid tail
off of the spectrum and its mathematical simplicity. But there
seems no natural implementation which generates a Gaussian
pulse. It is usually synthesized numerically and the calculated
data is fed to a digital-to-analog converter. It should be noted
that the ideal Gaussian pulse has a infinitely long leading edge.
What we can generate practically is a truncated Gaussian pulse

(26)

where . A causal function is a unit
step function or a smoothed version of it. This truncation nec-
essarily introduces discontinuities for

Fig. 5. (a) Circuit diagram of a practical negative-delay circuit. Gain
divergence for higher frequency is suppressed byC andR . (b) Amplitude
response functionA(!). (c) Phase response function�(!). Parameters are
a = C =C = 0:2, areb = R =R = 0:05. The case ofa = b = 0 is also
plotted. Usable frequency region is limited withinj!jT < 1.

at and associates high-frequency components. However
small they may look like, they will eventually be revealed by a
negative-delay circuit with advancement larger than. In order
to reduce the effect of truncation, must be increased, which
corresponds to the increase ofin the pulse preparation with
low-pass filters.

V. EXPERIMENT

A. Practical Design

Fig. 5(a) shows a practical circuit for negative delays [11].
The components are are added to the circuit of Fig. 1(b)
in order to suppress the gain for higher frequency. Its transfer
function can easily be derived. First, we see that

(27)
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Fig. 6. Second-order Bessel low-pass filter.

where , . If we
assume a large gain of the operational amplifier, the virtual short
condition holds and we have

(28)

where . If and are sat-
isfied, then the transfer function is approximated as

near the origin . Thanks to or , the max-
imum gain is limited by . The response functions for

, are plotted in Fig. 5(b) and (c). The phase
slope at the origin is almost conserved but the usable bandwidth
is reduced.

Second-order Bessel filters are used in the experiment, be-
cause the second-order filter can be realized with an operational
amplifier [12], [13]. The circuit diagram is shown in Fig. 6. The
frequency response is

(29)

where is the inverse of cutoff frequency and
.

B. Experimental Result

In Fig. 7, we show the overall block diagram for the neg-
ative-delay experiment. The complete circuit diagram is pre-
sented in [11]. The pulse generator on the top is composed of a
single-shot pulse and two second-order Bessel filters. Triggered
by the switch, a timer integrated circuit (ICM7555) generates a
rectangular pulse with duration 1.5 s. The pulse is shaped by the
filters. The cutoff frequency is chosen as ,
so that and can be considered to be constant and
linear, respectively. is the time constant of the nega-
tive-delay circuits.

Two negative-delay circuits are cascaded for larger advance-
ment. The circuit parameters are M , F,

, and .
The input and output terminals are monitored by LEDs. Their

turn-on voltage is about 1.1 V.
The experimental result is shown in Fig. 8. The input and

output waveforms are recorded with an oscilloscope. The time

Fig. 7. Experimental setup.

Fig. 8. Experimental result. The traces of oscilloscope show the input and
output pulses. Pulse is advanced about 0.5 s.

origin is the moment when the switch is turnedON or
the rising edge of the initial rectangular pulse.

We see that the output pulse precedes the input pulse consid-
erably (more than 20% of the pulsewidth). The slight distortion
of the output waveform is caused by the nonideal frequency de-
pendence of and .

The observed advancement of0.5 s agrees well with the
expected value s.

General purpose operational amplifiers (TL082) are used for
low-pass filters and negative-delay circuits. The time scale has
been chosen so that we can directly observe the negative delay
with two LEDs connected at the input and the output terminals.
The whole experimental setup can be battery operated and self
contained. If we want to observe the waveform, instead of oscil-
loscopes, we can use two analog voltmeters (or circuit testers)
to monitor the waveforms.

VI. CASCADING—FOR LARGER ADVANCEMENT

A. Normalized Advancement

We have seen that in typical situations the advancement
is fairly smaller than the pulsewidth . Typically, the relative
advancement only reaches to a few percents.

To see the reason, we consider a Gaussian pulse
and its Fourier transform
. When it is passed through

the negative-delay circuit, the power is amplified owing to the
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rising amplitude response (16). We define the excess power
gain as

(30)

which can be used as a measure of distortion. Now we have a
relation between and the relative advancement

(31)

For example, if we allow , then the relative advancement
is at most.

If we want to increase the advancement , for a given
system, the bandwidth must be reduced, which results in the
increase of pulsewidth , and does not increase.

B. Degression of Time Constant

We will try to increase the relative advancement by cascading
the negative group-delay circuits in series. The transfer function
for stages

(32)

(33)

(34)

At first, we may expect that the total advancement increases
in proportion to because the slope of at the origin
increases as . But we should notice by looking at
that the usable bandwidth is reduced asincreased for fixed.
In other words, for a given input pulsewidth , must be
reduced as . Thus, the total advancement scales as

(35)

It should be noted that the gain outside of the band is increases
very rapidly. Spectral tails of the input pulse must be suppressed
enough. Otherwise, they could be amplified to distort the pulse
shape. From the asymptotic forms of and ,
we see that the condition must be satisfied. Order of
low-pass filters must be increased cooperatively. It is possible to
increase the advancement as large as the pulsewidth or more, but
the advancement increases very slowly; . Fig. 9(a) repre-
sents an example of simple-minded cascading, whereis kept
constant. The waveforms are rapidly distorted asincreased.

Fig. 9(b) shows the cascading, where is reduced as
. The pulse shape is preserved fairly well. The input pulse

is filtered with five tenth-order Bessel filters . Fig. 10
shows the case of . The input rectangular pulse is filtered
by a fourth-order Bessel filter . For cascading,
scars of the initial pulse appear at and , and they
become more prominent asincreases.

C. Out-of-Band Gain

As we have seen, the out-of-band gain is the primary obstacle
toward large advancement. In order to estimate how the gain

Fig. 9. Cascading of negative-delay circuits. The input pulse is filtered by a
series of five tenth-order Bessel filters(m = 50). (a) Simple cascading with
fixed time constant. The pulse is forwarded further as the number of circuitsn
increases, but the waveform is heavily distorted after a few stages. (b) Cascading
with reduced time constant as1=

p
n. Owing to small distortion, we can increase

n even though the advancement per stage is small. Withn = 49 stages, the
advancement clearly larger than the pulsewidth is achieved.

Fig. 10. Breakdown of cascading. The input pulse is filtered by a fourth-order
Bessel filter(m = 4). We see that, forn > m, the pulse advancement halts.
Especially att = 0 and t = T , which correspond to the turn-on and the
turn-off of the original rectangular pulse, respectively, strong deformation is
observed. Curves are offset for clarity.
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Fig. 11. Mach–Zehnder interferometer as a negative group-delay device. The
reflectivity of two beam splitters is slightly smaller than 50%. The output from
dark port is advanced.

increases, we use a realistic transfer function (28), which has
a finite maximum gain . For ,

, , we have

(36)

Such a huge gain will certainly induce instabilities. The noise
level must also be suppressed. If we increaseor to reduce

, then the bandwidth is significantly reduced as seen in
Fig. 5. For the reduced bandwidth, we have to increase the
pulsewidth , which diminishes the relative advancement

.
We see from this example, a large negative delay comparable

to the pulsewidth is very hard to achieve or almost prohibitive.
The allowable gain would be limited by system-dependent fac-
tors such as a performance of active devices, a threshold for in-
stabilities, fluctuation due to quantum noise, and so on.

Again we notice the asymmetry between the negative and
the positive delays. For positive delays, gain problem does not
occur. In fact, the cascading of low-pass filters yields a large
amount of delay without difficulty.

VII. D ISCUSSION

A. Interference in the Time Domain

From the minimal transfer function for
the negative delay, we see that in time domain the input–output
relation can be written as

(37)

Here, the two terms interfere constructively at the leading edge
and destructively at the trailing edge. The addition of the time
derivative to the original pulse results in the pulse forwarding.

This time-domain picture is useful to devise a new system
which shows negative delays. The Mach–Zehnder interferom-
eter shown in Fig. 11 is such an example. First, we assume

for the reflectivity of the beam splitters. The path difference
is chosen so as to satisfy the condition ,

where is the wavelength, is the pulsewidth, and
is the delay time due to the path difference. We can tune the path
length so that the transmission for one port is unity. Then for the
steady state, there appears no output at the other port (dark port)
owing to the destructive interference.

For time-dependent inputs, however, the cancellation is in-
complete and the output corresponding to the time derivative of

Fig. 12. Pulse advancement by Mach–Zehnder interferometer. A Gaussian
input pulseg(t) = exp(�t =2T ) is used. The parameters are� = 0:17T ,
and� = 0:06.

the amplitude appears at the dark port (see Fig. 12). If we su-
perpose this output with the original waveform, we will have
the advancement as shown in (37). The superposition can easily
be provided by unbalancing the amplitude of each path. We set
the reflectivity of the two beam splitters as slightly smaller than
50%: . Then the output of the dark port becomes

(38)

and the advancement of is achieved. and
are the envelope of the input field and the dark port field, re-
spectively. The usable bandwidth of the system is ,
for which the darkness of the dark port is ensured.

This is an example of all-passive systems with negative delay.
It should be noted that when we increase the advancement by
decreasing, the transmission is decreased accordingly. It is also
true for the superluminal propagation of evanescent waves and
tunneling waves [4], [5].

This model convinces us that the negative group delay and
the superluminal group velocity are the simple consequence of
wave interference.

B. Causality and Negative Delay

It has been well recognized and confirmed in many ways
that the front velocity is connected with the causality, and the
causality has no direct connection with the group velocity. But
one is still apt to connect the group velocity with the causality
because many practical communication systems utilize pulse
modulation to send information.

Let us examine our system shown in Fig. 13 in terms of
causality. By pushing the switch, a rectangular pulse is gen-
erated. Feeding it into the low-pass filter, a band-limited pulse

is prepared. Finally, sending it through the negative-delay cir-
cuit, an advanced pulse is created. This would be a cause-ef-
fect chain in a casual sense. However, the reversal of the chrono-
logical order between and causes trouble for the naive pic-
ture. One may think that making use of this twist, it is possible to
send information to the past despite of the causality. Of course
this is wrong.
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Fig. 13. Communication channel with negative group delay. Inset shows
timing of pulses at each site.

First, we should realize that in a strict sense, all the pulses,
, and are causal to each other because they are the signals

in a single lumped system. When an impulse is applied to a qui-
escent lumped system, then all parts respond instantaneously.
Some of them look delayed, but they just started smoothly as

. All the pulse fronts share the time , when the
switch is turned on . Therefore, the above discussion on the
order is totally pointless.

But one may still shelve the theory, which deals with the al-
most unseen signals just after , considering practical sit-
uations where the information is related to the peak position or
the rising edge where a half of the pulse peak is reached. How-
ever, in order to generate a smooth pulsewhich is acceptable
to the negative-delay circuit, we have to make a decision well in
advance (before , in this case) because of the delay caused
by the low-pass filter. Once we miss the timing, the number
of the low-pass filters must be reduced in order to catch up. But
breaking the condition , the pulse cannot be forwarded
any more and is distorted badly.

Let us regard the negative-delay circuit of Fig. 13 as a com-
munication channel. We assign three people, Alice, Bob, and
Clare, on the sites , , and , respectively. Clare always finds
a pulse before Bob does, i.e., she can always predict Bob’s pulse.
But Bob has no control over his pulses; he cannot cancel a pulse
initiated by Alice. The real sender of the pulse is not Bob, but
Alice. Bob is just an observer standing at the sending site. This
scenario tells us that comparing the input and the output pulses
of superluminal channel is somewhat nonsense and that the real
start point of the input pulse should be considered (see Sec-
tion IV-C).

VIII. C ONCLUDING REMARKS

The negative group delay is already utilized in many prac-
tical applications implicitly. Signals from slow sensors, such as a
hot-wire anemometer, are compensated by a differentiator with
a transfer function . In proportional, integral, and deriva-
tive (PID) controllers the derivative elementis used to predict
the behavior of the system and to improve the dynamic response.
When a capacitive load is connected to the output of an opera-
tional amplifier, an additional feedback loop with derivative el-
ement is used, which is called lead compensations. All these ef-
forts are to compensate delays in a system as far as possible but
the excessive use will result in instabilities or noise problems.

We have explored many aspects of negative delays and super-
luminality utilizing circuit models. The use of circuit models is
very helpful because the choice of parameters are very flexible

and many handy circuit-simulation software are available. Ex-
tension to nonlinear cases and to distributed systems [14] will
be very interesting.
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