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Design of a Stable State Feedback Controller Based 
on the Multirate Sampling of the Plant Output 

TOMOMICHI HAGIWARA AND MITUHIKO ARAKI, MEMBER, IEEE 

Abstract-This paper proposes a new type of controller which detects 
the ith plant output N, times during a period To and changes the plant 
inputs once during To. It will be shown that an arbitrary state feedback 
can he realized by such controllers if the plant is observable. This implies, 
for instance, that arbitrary symmetric pole assignment is possible if the 
plant is controllable. It is also shown that, if the plant has no zeros at the 
origin, the state transition matrix of the controller itself can be set 
arbitrarily without changing the state feedback to he realized. That is to 
say, inversely expressed, any state feedback can he equivalently realized 
by a controller with any prescribed degree of stability. 

I. INTRODUCTION 

N the design of controllers based on the state-space method, I observers are often used to estimate inaccessible elements of the 
state vector. The advantage of using an observer exists in the fact 
that the observer design can be, at least superficially, separated 
from the regulator design and, therefore, the whole designing 
procedure is simplified. Nonetheless, we can point out two clear 
disadvantages which accompany the introduction of an observer; 
namely, increase of the order of the system and possibility of 
producing an unstable controller [ 11, [2]. Especially, an unstable 
controller is evidently unwelcome from the viewpoint of stability 
margins and integrity, and is said to deteriorate the tracking ability 
[3]. Therefore, it is desired to find new controllers which are 
stable, and, at the same time, are capable of assigning arbitrary 
dynamical characteristics to the closed-loop system. 

Recently, much research was reported which intended to solve 
the above problem by using digital controllers. Namely, Cham- 
mas and Leondes proposed to use a certain type of periodically 
time-varying gain controller [4]-[7], the present authors proposed 
the multirate-input controllers [8], [9], Greschak and Verghese, 
and Khargonekar et a/. proposed another type of periodically 
time-varying controller [lo], [ l l ] ,  and Mita et al. proposed the 
intersample data controllers [ 121. All these controllers have the 
common feature that they include periodically time-varying 
elements. For the convenience of explanation, we introduce the 
term “frame period To” to refer to the “cycle” of the controllers, 
and use the term “sampling period” to indicate the interval with 
which the plant inputs are changed or the plant outputs are 
detected. The contributions and limitations of the above-men- 
tioned research are as follows, where controllability and observ- 
ability of the plant are accepted as the basic assumption. 

Chammas and Leondes made studies about the ability of the 
controllers which use periodically time-varying gains [4]-[7]. 
Especially, in their third report [6], they considered the class of 
controllers which detect all the plant outputs once in a frame 
period To and change all the feedback gains (as a result, all the 
plant inputs) N times in To with uniform sampling periods, and 
showed that arbitrary symmetric pole assignment can be realized 

by such controllers if N is chosen equal to or greater than the 
controllability index of the plant. The present authors tried to 
clarify the ability of the multirate sampled-data controllers [ 131- 
[21], especially those controllers which had been treated in [20], 
[21]. As one of the simplest cases, they considered the multirate- 
input controllers which detect all the plant outputs once in a frame 
period To and change the ith plant input N, times in To with 
uniform sampling periods, and showed that arbitrary symmetric 
pole assignment can be realized by such controllers if (NI ,  . . , 
N,,,) is chosen equal to or greater, in the elementwise sense, than 
the controllability Kronecker invariants [8], [9]. Chammas and 
Leondes’ controllers given in [6] are the special case of the 
controllers of [8] and [9] in which N, = . = N, = N. The 
controllers of [6], [8], and [9] use only gain feedback and, 
therefore, are always stable. So, the above results imply that 
arbitrary symmetric pole assignment can be realized by a certain 
class of “stable” digital controllers, and thus, give a solution to 
the problem presented in the first paragraph. When the closed- 
loop poles are chosen, the feedback gains can be computed by 
using an ordinary pole assignment program for the time-invariant 
state feedback controllers together with a matrix inversion 
program; namely, computational efforts required in the design of 
the above class of controllers are almost the same as those 
required for ordinary time-invariant controllers. Thus, the con- 
trollers of [6], [8], and [9] have advantages for applications in 
three aspects: they are always stable, can assign arbitrary 
symmetric poles, and do not require much computational effort 
for design. But, unfortunately, they have a serious drawback in 
the waveforms. Namely, in the simulation study, it is observed 
that the plant inputs tend to take large positive values and large 
negative values alternatively for several times at the early stage of 
the transient response, especially when the order of the plant is 
large as compared to the number of the inputs. This tendency can 
be interpreted as the natural consequence of the basic control 
strategy of this class of controllers that make use of frequent 
change of inputs to regulate the state. Because of this drawback, 
the controllers of [6], [8], and [9] cannot be strongly recom- 
mended for industrial application at the present stage. 

Khargonekar et a/. [ 1 11 treated periodically time-varying 
controllers, which are different from those of [6], 181, and [9] in 
the way of detecting the plant outputs, i.e., the former detect the 
plant outputs N times in a frame period To whereas the latter 
detect only once in To. A special class of such time-varying 
controllers had been already studied by Greschak and Verghese 
[IO]. Khargonekar et a/. established one-to-one correspondence 
between their time-varying controllers and time-invariant control- 
lers defined on extended signal spaces, and studied the robust 
stabilizability, the strong stabilizability, the simultaneous stabili- 
zability , and the sensitivity minimization problems. Their re- 
search includes several enlightening ideas, but their results are not 
enough to be applied to industrial problems directly at the present 
stage; There are-three reasons for that. First, Khargonekar et a/.’s 
design procedure is much more complicated than those of [6], [8], 
and [9]. Secondly, it is not known whether their controllers can 
always assign arbitrary poles to the closed-loop system and still 
remain stable. Khargonekar et a/.  did not make any comments 
about these two points, but Greschak and Verghese’s result [IO] 
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illustrates the situation very well. Greschak and Verghese treated 
the special class of the Khargonekar et a/. type controllers which 
consist solely of N-periodic gains and studied the pole assignment 
problem for scalar plants. They showed that arbitrary symmetric 
pole assignment is possible by their controller if the plant is of 
second order, if its pulse transfer function satisfies a certain 
condition,’ and if N = 3.  But, they did not reach any concrete 
results in the cases of third and higher order plants. That was 
mainly because the coefficients of the closed-loop characteristic 
polynomials become too complicated for the analysis of pole 
assignability when the order of the plant and the frequency of 
change of the gains become large. This implies that computational 
efforts required for precise design are enormous. In addition, the 
fact that “N = 3” is required for the second-order scalar plants 
suggests that the Greschak and Verghese’s controllers possess 
weaker pole-assigning ability than those of [6], [8], and [9], (Note 
that the controllers of [6], [8], and [9] can realize arbitrary pole 
assignment with “N = 2” for second-order scalar plants.) 
Khargonekar et al. raised the ability of the controllers by 
introducing dynamical structures, but the problem of the computa- 
tional difficulties seems to remain unchanged, and it is not still 
clear whether arbitrary symmetric pole assignment is always 
possible by stable controllers. The third reason why Khargonekar 
et al.’s results are not enough for applications is the problem of 
the input waveforms. Namely, their controllers also use the 
control principle of regulating the state by frequent change of 
controller dynamics. Therefore, there is a possibility that their 
controllers also exhibit the phenomena that the plant inputs change 
very rapidly at the early stage of the transient response. 
Unfortunately, this point has not been studied because of the 
computational difficulties mentioned above. To summarize, 
Khargonekar et al. ’s controllers cannot be strongly recommended 
for applications at the present stage, either, because computational 
efforts for design are very large, arbitrary symmetric pole 
assignment cannot be achieved with the present knowledge, and 
there is a possibility that rapid change of inputs may occur. 

Mita et al.’s research has a different feature; namely, they 
considered using a specific set of intersample output data for 
control instead of changing inputs frequently, and showed that 
controllable and observable plants with no zeros at the origin are 
always stabilizable by stable controllers using the intersample 
output data [12]. The result can be extended up to symmetric pole 
assignability although it was not mentioned explicitly. However, 
their result suffers from two strong limitations. First, it can be 
applied only to scalar plants and to a limited class of multivariable 
plants (which they call “mechanical systems”) but not to general 
multivariable systems. Secondly, their controller becomes an n- 
dimensional dynamical system, where n is the dimension of the 
state of the plant, and this dimension cannot be decreased as long 
as their design method is used. 

From the previous research, it is clear that introduction of 
periodically time-varying elements brings about qualitative im- 
provement of the controllers’ ability. However, the available 
results are not enough for applications as discussed above. So, in 
this paper, we propose a new class of periodically time-varying 
controllers, i.e., we propose “multirate-output controllers” 
(abbreviated as MROC’s), which are the dual of the multirate- 
input controllers proposed in [8] and [9]. The MROC’s change the 
plant inputs once in a frame period To and detect the ith plant 
oxput N, times in To with uniform sampling periods. It will be 
shown in the following that MROC’s with satisfactorily large N,’s 
can equivalently realize arbitrary state feedback i f  

A I )  The plant is observable. 
The fact that the arbitrary state feedback can be equivalently 

’ Let the pulse transfer function of the plant be (BIZ +, &)/(z2 + (YIZ + 
a*). They required that i) B2 # 0 and ii) aI and PI are not simultaneously zero. 
They also derived the necessary and sufficient condition so that the second- 
order plants become stable-pole assignable by controllers which change gains 
twice (i.e., N = 2) during a frame period. 

realized implies that arbitrary symmetric pole assignment and LQ 
optimal feedback can be achieved if: 

A2) The plant is controllable. 
In addition, it will be shown that the state transition matrix of 

the controller itself can be chosen freely (independently of the 
choice of the state feedback) i f  

A3) The plant has at least as many outputs as inputs and does 
not have invariant zeros at the origin. 

Here the state transition matrix of the controller is defined for 
the frame period To. The design of the MROC’s can be carried 
out following the next procedure. 

01) Choose the closed-loop poles to be assigned (or alterna- 
tively, quadratic performance index), and calculate the state 
feedback matrix F which realizes those poles (or minimizes the 
given performance index). 

02)  Choose the state transition matrix M of the controller. 
0 3 )  Solve a linear simultaneous equation. Then, we obtain the 

actual parameters of the MROC. 
In step Dl) ,  we can use the standard routine of pole assignment 

by state feedback (or the LQ optimization routine). So, necessary 
computational efforts for design are almost the same as those 
required for the design of ordinary time-invariant controllers. 
Concerning the waveforms, the results of simulation indicate that 
rapid change of the inputs does not occur even if the order of the 
plant is large compared to the number of inputs and outputs. This 
can be interpreted as the consequence of the new control principle 
employed by MROC’s. Namely, MROC’s make use of frequent 
detection of plant outputs for equivalently realizing the specified 
state feedback, and, therefore, do not need to change the plant 
inputs rapidly. 

To summarize, MROC’s have the following advantages: first, 
they have the same ability as the state feedback in adjusting the 
closed-loop characteristics of the control systems; second, they 
have the ability of choosing arbitrary state transition matrices of 
the controllers themselves; third, the above two results apply to a 
wide class of plants (i.e., observable and controllable plants which 
have at least as many outputs as inputs and which do not have 
invariant zeros at the origin); fourth, computational efforts 
required in the design procedure are almost the same as those 
required for the ordinary time-invariant controllers; and fifth, 
they do not change the plant inputs rapidly as the multirate-input 
controllers and other types of controllers which use frequent 
changes of gains for regulation. Thus, MROC’s are much more 
suited to industrial applications than the periodically time-varying 
controllers proposed before [4]-[ 121. The remaining important 
item, which should be clarified before MROC’s are applied, is the 
robustness problem. In an example studied in Section V, it will be 
shown that the stability margins seen at the input terminal change 
according to the state transition matrix of the controller and can be 
set at satisfactory values by adjusting the controller dynamics. It 
can be generally shown that the same stability margins as the 
direct state feedback are realized when the state transition matrix 
of the controller is set to zero. (This result will be reported as a 
separate paper [30].) These results suggest that MROC’s have the 
ability of assuring satisfactory robustness, too. 

11. MULTIRATE-OUTPUT SAMPLING MECHANISM AND PRELIMINARY 
RESULTS 

Consider the linear time-invariant continuous-time plant de- 
scribed by 

d 
- x ( t )  = A x ( t )  +Bu( t )  
dt 

where the state x E R“,  the plant input U E R”, and the plant 
output y E RP. Connecting a sampler and a zero-order hold with 



8 14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 9. SEPTEMBER 1988 

- 
k+lT, 

- 
k+2T0 

Fig. 1 .  Multirate-output sampling mechanism. (m = p = 2, N ,  = 3, 
N2 = 2). 

the sampling period To to each plant input, u(t) is given by 

u( t )=u(kT , )  (kT, 5 t < k T T , ) .  (3) 

Substituting (3) into (1) and solving (I), we obtain 

x(kT,+s)=exp (As)x(kT,)+ js exp (At)Bdt . u(kTo)  (4) 

for 0 5 s 5 To. Detecting the ith plant output yi at every T,, the 
sampled value is given by 

~ , ( k T o + ~ c l ) = ~ , ~ ( k T ~ + ~ c c l )  ( p = O ,  *. . ,  N f - 1 ) .  ( 5 )  

Here, c, is the ith row of the output matrix C, and T, and To are 
assumed to be related by 

T,=T, /N ,  ( i = l ,  . . * , p )  (6) 

where N, is a positive integer. Equation (6) implies that the ith 
plant output is detected N, times during To (Fig. 1). We refer to To 
as the input sampling period or the frame period (in the 
following, we mainly use the latter terminology; the reason why 
To has two names will become clear in the next section), T, as the 
ith output sampling period, (NI, . . * , N,) as the output 
multiplicities, and the above sampling mechanism as the 
multirate-output sampling mechanism. Next, several properties 
of the multirate-output sampling mechanism will be derived. 

Put s = To in (4) to obtain 

TO 

x ( m ~ , )  = exp ( A  ~ , ) x ( k ~ , )  + j exp ( A I ) B ~ ~  . u ( k ~ , ) .  (7) 

Solving the above equation for x(kTo) and substituting the 
solution into (4), we obtain 

x(kTo + s) = exp { A  (s - To)}  x ( m  To) 
s- To 

+ j, exp (At)Bdt . u(kT,). (8) 

Substituting the above equation into ( 5 ) ,  we obtain 

yi(kTo + pTi) = c; exp { A ( p T  - T o ) } x ( k T T 0 )  
rT;- To 

+ci  so exp (At)Bdt . u(kTo) ( p = O ,  e . . ,  Ni-  1). (9) 

Moving the terms of x ( k 7  To) to the left-hand side, moving the 

terms ofyi(kTo + pT,)  to the right, and expressing the equations 
for i = 1 ,  . . , p; p = 0, * . . , Ni - 1 by a vector-matrix form, 
we obtain 

~x(k+TO)=9(kTo)-eu(kT0) ( k  2 0). (10) 

Here, e E RIJx", G E RIJiixm, and j (kT,)  E RN are, 
respectively, given by 

CI exp ( - A N I T , )  

e= 

&= 

and 

cl {,"'T1 exp (A t )B  dt 

- TI 
cI so exp (A t )B  dt 

cp Jo-NpTpexp (A t )B  dt  

- TP 
c, so exp (At)B dt 

9 ( k  To) = 

where N is given by 
P N=c N,. 

i =  I 

(13) 

(14) 

The vector 9(kTo) is composed of the multirate-sampled-data of 
the outputs in the interval of a single frame period, and its relation 
to the inputs and the final state in that interval is given by (10). We 
refer to (10) as the basic formula of the multirate-output 
sampling mechanjsm. We can show that the coefficient matrix C 
and the pair [C GI can be made to have full ranks by choosing 
N:s sufficiently large. To facilitate the statement of the results, 
we introduce the term "observability index vector. " 

Definition (Observability Index Vector): Consider an observ- 
able pair ( A ,  C) where A E R and C E RP" ". Express C as 
C = [c;, . * ., ~3.'. A set o f p  integers (n,, . * * ,  np) is said to be 
an observability index vector (abbreviated as OIV) of the pair 
( A ,  C) if 

ni=n 
i =  1 
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andthevectors c1, . - * , c I A n l - ' ; c 2 ,  . .* ,czA"2-I;  - . - ;  cp, a . . ,  

cpAnp-' are linearly independent. Here, n, = 0 means that the 
vectors of the form c,A " do not appear in the above series. 

Note that an observable pair has at least one OIV [i.e., the set of 
Kronecker invariants [22] of the pair (AT,  CT)] and may have 
more OIV's if p 5 2. An algorithm to find OIV's was given by 
Luenberger [23]. Also note that any OIV is preserved under the 
similarity transformation. 

Concerning the matrix C of the basic formula (lo),  we have the 
next result. 

Lemma 1: Let ( A ,  C) be an observable pair. Then, the matrix e given by (1 1) has full column rank ( = n) for almost every frame 
period To if the output multiplicities (NI, * * . , N,) satisfy 

N, n, ( i = l ,  . . -  7 P) (16) 

where (nl, * * e ,  n,) is an OIV of the pair ( A ,  C). 
In the above lemma, and also in the following, the statement 

"for almost every To" is used to shortly express the fact that the 
assertion fails only at isolated values of To. The _proof of Lemma 1 
is given in the Appendix. Concerning the pair [ C GI, we have the 
next result. 

Lemma 2: Let ( A ,  C) be an observable pair, and suppose that 

815 

rank (z : ) = n + m .  

Then, the matrix [e G] given by (1 1) and (12) has full column 
rank (= n + m) for almost every frame period To if the output 
multiplicities ( N I ,  

N, 2 mi ( i = l ,  . . . , p  ) (18) 

* . , Np) satisfy 

where (ml ,  . e ,  mp) is an OIV of the augmented system 

((a' :)' 
Proof: Observing that 

it is easy to see that the matrix [c GI given by (11) and (12) has 
the same structure as the matrix C if ( A ,  C) is replaced by the pair 
(19) of the coefficient matrices of the augmented system. Since 
the augmented system is observable if and only if two assumptions 
of the lemma are satisfied [24], the result immediately follows 
from Lemma 1. Q.E.D. 

111. MULTIRATE-OUTPUT CONTROLLER AND EQUIVALENT STATE 
FEEDBACK 

Consider controllers which include the multirate-output sam- 
pling mechanism given in the last section, and which determine 
the control input by 

(20) 

where M E R m x m  and H E RmxN. In view of (13), the above 
equation means that the control inputs for the (k  + 1)th frame 
period are determined based on the values of the control inputs for 
the kth frame period and the sampled-data of the outputs obtained 
during the kth frame period. Note that the above controller is an 
mth-order discrete-time dynamical system whose state is u(kT,). 
We refer to the above type of controllers as the multirate-output 
controllers (abbreviated as MROC's). MROC's can be regarded 
as a special class of multirate sampled-data controllers in which 
the input sampling periods are uniform and the same as the frame 
period. 

U ( k 7  To) = MU (kT,) - Hj(kTo) 

L- 
Multirate 
Sampling 

Closed-loop configuration with a multirate-output controller. Fig. 2. 

We have the following theorem which tells that an arbitrary 

Theorem I :  Suppose that ( A ,  C) is an observable pair and that 

N, 2 n, ( i = l ,  . . . , p )  (21) 

where (nl, e ,  n,) is an OIV of the pair ( A ,  C). Then, for almost 
every frame period To, we can make the control law (20) 
equivalent to any state feedback control law 

state feedback can be equivalently realized by MROC's. 

the output multiplicities (NI ,  e ,  N,) satisfy 

u(kT0)= -Fx(kTo) (k 2 1 )  (22) 

by suitable choice of the matrices H E R m x N  and M E Rmxm.  
Proof: Multiplying the basic formula (10) of the multirate- 

output sampling mechanism by a matrix H from the left, we 
obtain 

~ & ( k + l ~ , )  = ~ j y k ~ , )  - H&(~T,). (23) 

Therefore, the control law (20) becomes equivalent to the state 
feedback (22) if the matrix H satisfies 

H ~ = F  (24) 

and if we set 

M=HG. (25) 

By Lemma 1, there exists a matrix H which satisfies (24) for 
any F E R m x " .  This completes the proof. Q.E.D. 

If we determine the matrices H and A4 by (24) and (25), the 
resulting closed-loop system becomes as shown in Fig. 2, and th_e 
stability of the controller itself is determined by the matrix H G .  
Since an unstable controller always provides the closed-loop 
system with some additional unstable zeros beyond those of the 
plant, it is desirable to use a stable controller from the viewpoint 
of sensitivity to disturbances and ability to track reference inputs 
[3]. So, let us study whether HG can be made stable (in the 
discrete-time sense) or not. 

First, suppose that the output multiplicities ( N I ,  . . a ,  Np) are 
set to the minimum values satisfying (21), i,e., 

N,=n, ( i = l ,  . . . , p ) .  (26) 

Then, the matrix e becomes a nonsingular square matrix and the 
H satisfying (24) is uniquely determined by 

H=FC-I.  (27) 

This means that the stability of the matrix HG depends solely on 
the choice of the state feedback matrix F i n  this case. 

Next consider the case where the output multiplicities (NI, 1 . . , 
Np) are set larger than the minimum values as 

N, > n,. (28) 

Then, we can find, in general, infinitely many matrices H which 
satisfy (24), and it becomes plausible that we can select H so that 
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the matrix HG becomes stable. Concerning this point, we have 
the following theorem. 

Theorem 2: Suppose that (A ,  C )  is an observable pair and that 

r a d  (G : )=n+m.  

Further suppose that the output multiplicities (NI ,  . , N,) satisfy 

N, )= m, ( i = l ,  . . . , p )  (30) 

where ( m l ,  . -., m,) is an OIV of the augmented system (19). 
Then, for almost every frame period To, there exists a matrix H 
E R m x N  such that 

H ~ = F  (31) 

HG=M (32) 

and 

where F E R is an arbitrarily specified matrix corresponding 
to the desired state feedback and M E R m x m  is an arbitrarily 
specified matrix corresponding to the desired state transition 
matrix of the controller itself. 

Proof: Note that (31) and (32) are equivalent to 

H[e G ] = [ F  MI.  (33) 

By Lemma 2,  (33) has a matrix solution H if the assumptions of 
the theorem are satisfied. Q . E . D .  

The above theorem implies that we can equivalently realize any 
state feedback F by a multirate-output controller possessing any 
prescribed degree of stability since we can choose the matrix M 
arbitrarily. In particular, if M = 0, the control law (20) reduces 
to the multirate sampled-data nondynamic output feedback 

u ( G T T , ) =  -H$(kTo) (34) 

which is of the dual form of the control law that the “multirate- 
input controller” employs [8], [9]. 

Suppose we set the output multiplicities ( N I ,  * . * ,  N,) to the 
minimum values satisfying (30) 

N,=m, ( i= l ,  . - . , p )  (35) 

to obtain a stable controller. Then, the dynamical order of the 
controller remains the same ( = m) as the case of (26), but the sum 
N of the output multiplicities increases by m .  The following 
lemma exhibits a sort of “consistency” between two design 
methods based on Theorems 1 and 2 (cf. [23] for the proof of the 
lemma). 

Lemma 3: Suppose that the augmented system (19) is observ- 
able. Then for any OIV (nl, - * a ,  n,) of the pair (A, C) ,  there 
exists an OIV ( m l ,  * . , mp) of the augmented system such that m, 
2 n, ( i  = 1, * a ,  p ) .  Conversely, for any OIV ( m l ,  * * e ,  m,) of 
the augmented system, there exists an OIV (nl, . * ,  n,) of the 
pair ( A ,  C )  such that n, 5 rn, ( i  = 1, . a - ,  p ) .  

IV. POLES OF THE CLOSED-LOOP SYSTEM AND STRONG 
ST ABILIZ ABILITY 

Let us consider the poles of the closed-loop system shown in 
Fig. 2. From (7), we obtain 

x ( ~ ~ T o ) = d x ( k T o ) + B u ( k T o )  (36) 

where 

A = exp ( A  T,) (37) 

(38) B =  1,“ exp ( A t ) B  dt. 

It follows from (lo), (20), (24) [or (31)], (25), and (36) that the 
closed-loop system is described by 

u(k+ 1 To) 

Applying the similarity transformation by the matrix 

(-‘F ;) 
[25], we obtain 

where 

z (kT,) = X( kT,) + FU ( k  To).  (42) 

Therefore, the closed-loop poles can be divided into tyo 
groups: n poles which are the eigenvalues of the matrix A - BF 
and m poles located at the origin. This assures us of the important 
but nontrivial fact that the closed-loop system is stable if and only 
if the equivalently realized state feedback F makes the “ideal” 
regulator ’4 - BF stable, 

From the above consideration and from Theorem 2, we can 
derive an important theorem on the strong stabilizability [2], [3] 
of an unstable plant, i.e., the stabilizability using an asymptoti- 
cally stable controller. 

Theorem 3: A controllable and observable plant ( A ,  B ,  C )  
which. satisfies the condition (29) is strongly stabilizable by a 
multirate-output controller (20)-wi$ almost any frame period To. 

Proof: Since the pair ( A ,  B) given by (37) and (38) is 
controllable for almost every frape pefiod To [26], there exists a 
state feedback gain F such that A - BF is stable. If we note that 
the closed-loop system with the controller (20) is stable if and only 
if the equivalently realized state feedback F of (31) makes A - 
8 F  stable, the result of the theorem follows by choosing a stable 
matrix M of (32). Q . E . D .  

Note that the required condition (29) is equivalent to the 
following three conditions: 

a) m p ,  i.e., the plant has at least as many outputs as inputs, 
b) the plant is nondegenerate [27], 
c) the plant has no invariant zeros [28] at the origin. 
In particular, if the plant is a controllable and observable single- 

input single-output system, the conditions a)-c) reduce to the sole 
condition 

c‘) the plant has no (blocking) zeros at the origin, 
because the conditions a) and b) are always satisfied [27] and 
because the blocking zeros [29] and the invariant zeros are the 
same in this case. 

On the other hand, it is well known that an unstable plant is 
strongly stabilizable by the conventional finite-dimensional linear 
time-invariant controllers if and only if it possesses the parity 
interlacing property (abbreviated as p.i.p.) [2], [3]. The p.i.p. is 
the condition on the location of real unstable poles and real 
unstable blocking zeros of the plant, and is clearly different from 
the conditions a)-c). In particular, as far as a single-input single- 
output plant is concerned, the condition c’) is a very mild 
restriction as compared to the p.i.p. in the point that the location 
of the unstable poles of the plant is irrelevant. Actually, there is a 
large class of unstable plants which do not possess the p.i.p. and 
are still strongly stabilizable by the proposed multirate sampled- 
data controllers. 

V. EXAMPLES 

Two examples are studied in this section. The first example is a 
stable scalar plant. Concerning this plant, the standard procedure 
of designing MROC’s and the possibility of obtaining a type-1 
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Fig. 3 .  Nyquist diagram of (Design 1-1). 

servo system by appropriately choosing the controller's state 
transition matrix will be shown. The second example is an 
unstable one-input two-output plant which does not satisfy the 
p.i.p. condition. Concerning this plant, it will be exampled that 
we can construct a control system with satisfactory stability 
margins by using a stable MROC if the output multiplicities are 
increased appropriately. 

Example 1: Consider the controllable and observable scalar 
plant with 

.=( : ; ;),.-(p) ,C=[ lO 7 11 .  (43) 
- 6  - 8  - 5  

The transfer function is 

(s + 2)(s + 5 )  
{(s+ 1)2+ l } (s+3)  (44) 

and this plant satisfies (29). 

Here, let us choose the following: 
To start the design we have to choose the design parameters. 

frame period To = 0.2, 

closed-loop poles 0.56k 0.2 j  and 0.65. 

The state feedback F which assigns the above closed-loop poles 
should be calculated by using the pole-assignment routine. The 
result is 

F=[10.600 9.8352 1.93541. (45) 

In the following, let us try two design methods: the method to 
choose the output multiplicities equal to the OIV of the plant, and 
the method to choose the output multiplicities equal to the OIV of 
the augmented system. 

(Design 1-1): Since the plant has the observability index 3,  let 
the output multiplicity be NI = 3. Then, the matrix H i s  uniquely 
determined by (27) as 

H=[24.817 -59.188 35.8801. (46) 

Therefore, by (25) ,  we obtain 

M =  Hc = 0.74587 (47) 

which implies that the obtained controller itself is also stable. The 
Nyquist diagram considered at the plant input (or equivalently, at 
the plant output) is as shown in Fig. 3, which indicates that the 
gain margin and the phase margin are about + 5.4 dB and 5 1 O ,  

respectively. 
(Design 1-2): Since the augmented system has the observability 

0 0  
0 1  2 3 4  5 6  

Fig. 4. Indicia1 response of (Design 1-2). 

index 4, let the output multiplicity be NI  = 4. In order to 
construct a type-1 robust servo-control system, let us set M = 1 
in (32). Then, the matrix H is uniquely determined by solving 
(33) as 

H =  [ - 147.73 527.35 - 627.57 249.601. (48) 

The resulting closed-loop system has the gain margin about + 4.5 
dB and the phase margin about 40". The indicia1 response of the 
closed-loop system under the initial conditions x(0) = [0, 0, 01 
and u(0) = 0 is as shown in Fig. 4, where -9 is replaced by 6 (e 
denotes the error r - y ;  r :  reference) in the control law (20). 

Example 2: Consider the fourth-order plant with 

/ 2  0 0 o \  / 1 \  

- 1  2 - 1  0 - 3  0 .") ' B;! -;) ' .-! 1 0  0 - 2  

c=( ;  ; ; ;) . (49) 

This plant is controllable and observable, and satisfies (29). The 
transfer function matrix is 

(s - l)(s + 5) 
(s - 2)(s + l)(s + 3) 

(s - 2)(s + 2) 

Equation (50) implies that this plant has a blocking zero at s = 1 
and an unstable pole at s = 2 .  Namely, the plant does not possess 
the p.i.p. in the continuous-time sense [2], [3]. 

Let the frame period To = 0.2, and let us determine the 
desirable state feedback F by solving the optimal regulation 
problem. For the performance index 

[ (S-1) 1. (50) 

m 

J =  ( v 7 ( k T o ) Q y ( k T , ) + u ( k T , ) 2 }  (51) 

Q=diag [5, 51 (52)  

k:O 

the optimal state feedback F is given as 

F= [4.3873 1.5444 X 1.7478 x I O - '  8.5964 x (53) 

The above state feedback is equivalently realized by the multirate- 
output controller as follows. Also for this example, let us try the 
two design methods. 

(Design 2-1): Since the plant has OIV ( 2 ,  2 ) ,  let the output 
multiplicities be NI = N2 = 2 .  Then, the matrix W is uniquely 
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Fig. 6. Transient response of (Design 2-2). 

determined by (27) as 

H =  [5.2346X lo - ’  - 5.7712X lo - ’  - 53.594 65.5301. 

Therefore, we obtain 

M =  HG= 5.1386> 1 

most attractive advantage of the proposed controllers exists in 
that, under the assumptions of Theorem 2, the state transition 
matrix of the controller itself can be arranged to have any 
prescribed value without changing the state feedback to be 
realized. Use can be made of this advantage to expand the stability 
margins and to improve the steady-state characteristics of the 
closed-loop system. Furthermore, a wide class of unstable plants 
without the parity interlacing property can be strongly stabilized 
by the proposed controllers. On account of these theoretical bases, 
the proposed controllers are expected to be successfully applied to 
the industrial problems. 

In the proposed controllers, the values of the control inputs are 
determined based on the output data obtained during the last one 
frame period. It is possible to generalize the control law, i.e., to 
determine the inputs based on the output data obtained during the 
last L (2 2) frame periods. By using such generalized control 
laws, we can realize the state feedback controller with smaller 
output multiplicities, and, so, relax the requirement for quick 
observations. In particular, if we choose L = n where n is the 
order of the plant, the suggested control law would be equivalent 
to the Mita et al. controller of [12]. Study on advantages and 
disadvantages of such generalized control laws is a future 
problem. 

APPENDIX 

(PROOF OF LEMMA 1)  

Multiply (1 1) by exp (A To) from the right to obtain 

(54) Observe that there exists a series of elementary row transforma- 
tions denoted by the matrix S such that 

( 5 5 )  

which implies that the obtained controller is unstable. Analysis 
using a Nyquist diagram shows that the gain margins considered at 
the plant input are about +0.86 dB and - 1.2 dB, and the phase 
margin is about 6 ” .  

(Design 2-2): Since the augmented system has OIV (3, 2), let 
the output multiplicities be NI = 3 and N2 = 2, and let us design 
a stable controller. By setting M = 0 in (32), the multirate 
sampled-data nondynamic output feedback controller (34) is 
obtained, where the matrix H is uniquely determined by solving 
(33) as 

H=[899.43 -2059.1 1173.3 245.21 -299.441. (56) 

The Nyquist diagram considered at the plant input is as shown in 
Fig. 5. This indicates that the gain margins are, about + 7.4 dB 
and - 6.9 dB, and the phase margin is about 41 . These stability 
margins are exactly the same as those of the “ideal” regulator 
with the state feedback (53). The transient response of the 
resulting closed-loop system is as shown in Fig. 6 ,  where the 
initial conditions are x(0) = [ l ,  1 ,  0, - 11 and u(0) = 0. 

VI. CONCLUSIONS 

A new class of controllers using the multirate sampling of the 
plant output is proposed. From the theoretical point of view, the 

f 7 
I I 

Since matric_es-S and exp (AT,) are nonsingular, it is enough to 
show that SCexp(A To) has full column rank. Deleting appropriate 
rows of the matrix SCexp(A To), we obtain the square matrix 

CI 

c, {exp (ATp) - l}n~- l  
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Apparently, the rank of the matrix (A3) is the same as that of the 
matrix 

CI 

c, {exp (AT,) -I} “ P -  ‘/T?- 

and this matrix goes to 

( ‘45) 

as To goes to 0. Since the determinant of a matrix is a continuous 
function of its entries, the determinant of (A4) goes to that of 
( A 3 ,  which is nonzero by the assumption. This implies that the 
determinant of (A3) is nonzero for sufficiently small To. 
Observing that the determinant of (A3) is an analytic function of 
To since so is each entry of (A3), it follows that the determinant of 
(A3) is nonzero for almost every To. The required result follows 
readily. Q.E.D. 

REFERENCES 

W. M. Wonham, Linear Multivariable Control: A Geometric 
Approach. New York: Springer-Verlag, 1974. 
D. C. Youla, J .  J .  Bongiorno, Jr . ,  and C. N .  Lu, “Single-loop 
feedback-stabilization of linear multivariable dynamical plants,’’ 
Automatica, vol. 10, pp. 159-173, 1974. 
M. Vidyasagar, Control System Synthesis: A Factorization Ap- 
proach. 
A. B. Chammas and C. T .  Leondes, “On the design of linear time- 
invariant systems by periodic output feedback: Part I .  Discrete-time 
pole assignment,” Int. J .  Contr., vol. 27, pp. 885-894, 1978. 
-, “On the design of linear time-invariant systems by periodic 

output feedback: Part 11. Output feedback controllability,” Int. J .  
Contr., vol. 27, pp. 895-903, 1978. 
__ , “Pole assignment by piecewise constant output feedback,” Int. 
J .  Contr., vol. 29, pp. 31-38, 1979. 
- , “On the finite time control of linear systems by piecewise 
constant output feedback,” Int. J .  Contr., vol. 30, pp. 227-234, 
1979. 
M. Araki and T. Hagiwara, “Pole assignment by multirate sampled- 
data output feedback,” in Proc. 24th IEEE Conf. Decision Contr., 

Cambridge, MA: M.I.T. Press, 1985. 

R. E. Kalman and J.  E. Bertram, “A unified approach to the theory of 
sampling systems,” J .  Franklin Inst., vol. 267, pp. 405-436, 1959. 
T. C .  Coffey and 1. J .  Williams, “Stability analysis of multiloop, 
multirate sampled systems,” AIAA J . ,  vol. 4,  pp, 2178-2190, 1966. 
E. I. Jury, “A note on multirate sampled-data systems,” IEEE Trans. 
Automat. Contr., vol. AC-12, pp. 319-320, 1967. 
W. H.  Boykin and B. D. Frazier, “Multirate sampled-data systems 
analysis via vector operators,’’ IEEE Trans. Automat. Contr., vol. 

R. A. Meyer and C: S .  Burrus, “Design and implementation of 
multirate digital filters,” IEEE Trans. Acoust., Speech, Signal 
Processinp. vol. ASSP-24. DD. 53-58. 1976. 

AC-20, pp. 548-551, 1975. 

.. 
C. H. Luand S. C. Gupta, “Multirate digital filters,” Inr. J.  Syst. 
Sci., vol. 10, pp. 605-620, 1979. 
M. Araki, K. Yamamoto, and B. Kondo, “Multivariable multirate 
sampled-data systems: Symmetric coordinate expression, stability, and 
generalized Gershgorin bands,” presented at the U.S.-Japan Seminar 
on Recent Advances in Algebraic System Theory, Gainesville, FL, 
Apr. 1983. 
M. Araki and K.  Yamamoto, “Multivariable multirate sampled-data 
systems: State-space description, transfer characteristics, and Nyquist 
criterion,” IEEE Trans. Automat. Contr., vol. AC-31, pp. 145-154, 
1986. 
R. E. Kalman, “Kronecker invariants and feedback.” in Proc. Cony. 
Ordinary Differenlial Equations, Math. Research Center, Naval 
Research Labs., Washington, DC, 1971, pp. 459-471. 
D. G. Luenberger, “Canonical forms for linear multivariable sys- 
tems,” IEEE Trans. Automat. Contr., vol. AC-12, pp. 290-293, 
1967. 
H. W. Smith and E. J .  Davison, ”Design of industrial regulators: 
Integral feedback and feedforward control,” Proc. IEE, vol. 119. no. 

T. Mita, “Optimal digital feedback control systems counting computa- 
tion time of control laws,” IEEE Trans. Automat. Contr., vol. AC- 

R. E. Kalman, Y. C. Ho, and K. S. Narendra, “Controllability of 
linear dynamical systems, ’ ’  Contributions to DiJferential Equations, 
vol. 1, no. 2 ,  pp. 189-213, 1962. 
E. J. Davison and S .  H. Wang, “Properties and calculation of 
transmission zeros of linear multivariable systems,” Automatica, vol. 
10, pp. 643-658, 1974. 
A. G. J .  MacFarlane and N. Karcanias, “Poles and zeros of linear 
multivariable systems: A survey of the algebraic, geometric and 
complex-variable theory,” Int. J .  Contr., vol. 24, pp. 33-74, 1976. 
P. G. Ferreira and S .  P. Bhattacharyya, “On blocking zeros,” IEEE 
Trans. Automat. Conrr., vol. AC-22, pp. 258-259, 1977. 
M. Araki and T. Hagiwara, “Several approaches to the design of 
multirate-output controllers,” to be published. 

8, pp. 1210-1216, 1972. 

30, pp. 542-548, 1985. 

Tomomichi Hagiwara was born in Osaka, Japan, 
on March 28, 1962. He received the B.E. and M.E. 
degrees, both in electrical engineering, from Kyoto 
University, Kyoto, Japan, in 1984 and 1986, 
respectively. 

Since 1986 he has been an Instructor in the 
Department of Electrical Engineering, Kyoto 
University. His research interests are in digital 
control systems, multivariable control systems, and 
system theory. 

1985, pp. 189-193. 
M. Araki and T. Hagiwara, “Pole assignment by multirate sampled- 
data output feedback,” Int. J .  Contr., vol. 44, pp. 1661-1673, 1986. 
I.  P. Greschak and G. C. Verghese, “Periodically varying compensa- 
tion of time-invariant systems,” Syst. Contr. Leti., v i .  2: pp. 88-93, 
1982. 
P: P Khargonekar, K. Poolla, and A. Tannenbaum, “Robust control 
of linear time-invariant plants using periodic compensation,” IEEE 
Trans. Automat. Contr., vol. AC-30, pp. 1088-1096, 1985. 
T. Mita, B. C. Pang, and K. Z. Liu, “Design of optimal strongly stable 
digital control svstems and aoolication to outout feedback control of 

Mituhiko Araki (M’88) was born in Tokyo, Japan, 
on September 25, 1943 He received the B E , 
M E , and Ph D degrees, all in electronic 
engineering. from Kyoto University, Kyoto, Japan, 
in 1966, 1968. and 1971. respectively 

Since 1971 he has been with the Department of 
Electrical Engineering, Kyoto University, where he 
is currently a Professor His research interests are in 
digital control, stability theory, large-scale systems. 
nonlinear systems, and applications 

m&hanical systems,” Int. J.‘bontr., vol 45: pp. 2071-2082, 1987 
G M Kranc, “Input-output analysis of multirate feedback system,” 
IRE Trans. Automat. Contr., vol. AC-3, pp 21-28, 1957 


