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On Preservation of Strong Stabilizability Under
Sampling

TOMOMICHI HAGIWARA AND MITUHIKO ARAKI

Abstract-It is shown that a sampled-data system remains strongly
stabilizable if the original continuous-time system is so and if the
sampling period is sufficiently small. At the same time, it is also shown
that a sampled-data system can be strongly stabilizable even if the original
continuous-time system is not so, and some sufficient conditions guaran
teeing this does not happen are derived.

I. INTRODUCTION

The problem of stabilizing an unstable system by an asymptotically
stable compensator is referred to as the strong stabilization problem [I],
[2]. Since the recent development of microprocessor techniques has
greatly enlarged the opportunity of using discrete-time controllers, it
would be significant to study the problem whether strong stabilizability is
preserved under sampling. This note deals with this problem for the case
of scalar sampled-data control systems which use zero-order holds with
sufficiently small sampling periods. It is shown that a sampled-data
system remains strongly stabilizable if the original continuous-time
system is so. On the other hand, an example of a sampled-data system is
given which is strongly stabilizable even though the original continuous
time system is not. Since such possibility exists, sufficient conditions are
given for a system not to be strongly stabilizable after sampling.

II. STRONG STABILIZABILITY CONDITIONS

Let CS be the stabilizable and detectable scalar continuous-time system
described by

dxdi =Ax(t) + bu(t), y(t) = cx(t) (1)

whereA E Rnxn, bE Rnxl, and c E Rlxn are real constant matrices.
The transfer function of CS is given by c(sl - A) - I b = N(s)/D(s)
where

N(s)=det (S/~A -Ob) ,D(s)=det (sl-A). (2)

The real roots of N(s) = 0 and D(s) = 0 in the closed right-half plane
are, respectively, called real unstable zeros (r.u. zeros) and real unstable
poles (r.u. poles). Infinity + 00 is also regarded as a r.u. zero since the
transfer function of CS is strictly proper. CS is said to be strongly
stabilizable if it can be stabilized by an asymptotically stable linear time
invariant continuous-time compensator. It is known [1], [2] that CS is
strongly stabilizable if and only if it possesses the parity interlacing
property of continuous-time systems:

(PIP-CS) the number of r.u. poles counted according
to their multiplicities between two r.u. zeros is even.

Manuscript received Oclober 2, 1987; revised January 15, 1988.
The authors are with the Department of Electrical Engineering, Kyoto University,

Kyoto, Japan.
IEEE Log Number 8822748.

0018-9286/8811100-1080$0 I.00 © 1988 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 11, NOVEMBER 1988 1081

Next, consider the sampled-data system SS described by

IlI. PRELIMINARY STUDY ABOUT THE LOCATION OF ZEROS OF
SAMPLED-DATA SYSTEMS

(P/P-SS) the number of positive r.u. poles counted according
to their multiplicities between two positive r.u. zeros
(including the infinity + 00) is even.

which is obtained by discretizing CS using the zero-order hold with the
sampling period T, The pulse transfer function of SS is given by Nr(z)/
Dr(z) where -rexp (At)b dt)

o . (7)

°

Since It exp (At) dt is nonsingular because of the assumption (6), the
result of the proposition follows immediately. Q.E.D.

Since the n rows except the last of the determinant of (7) become 0 when
T=O, the following are obtained from the formula about the differential
of a determinant:

[iJkNdexp (aT»/iJTk]r=o=O (k=O,"', n-l), (8)

[iJnNdexp (aT»/iJT"]r=o=n! . det (a/~A -ob) =n!N(a). (9)

Since N(a) =t- 0, the result of the lemma follows immediately. Q.E.D.
Lemma 2: Let fJ be a closed interval of real numbers which does not

include zeros of CS. Then, Nr(exp (aT» has the same sign as N(a) Va E
fJ if the sampling period T satisfies 0 < T < Tg where Tg is a positive
number dependent on the interval fJ.

Proof' Note that iJnNr (exp (aT»/iJm is continuous with respect to
a and T. By (9) and by the assumption that fJ does not include any zeros of
CS (i.e., roots of N(s) = 0), [iJnNr (exp (aT»/iJm]n=O has the same
sign as N(a) Va E fJ. Therefore, there exists a positive number Tg such
that iJnNr (exp (aT»)liJm takes the same sign as N(a) Va E fJ and 0 ~

"IT < Tg • Since (8) holds true, successive integrations with respect to T
lead to the result of the lemma. Q.E.D.

From the above lemmas, we can derive the following propositions
about zeros of SS.

Proposition 3: Let -y be a real zero of CS with an odd multiplicity, and
let a and {3 be real numbers such that a < -y < (3 and N(a)N({3) < O.
Then, SS has a real zero in the interval [exp (aT), exp ({3T)] if the
sampling period T satisfies 0 < T < min (T,,, T~).

Proof' By Lemma I, N r (exp (aT»Nr (exp ({3T» < 0 if 0 < T <
min (T", T~). The result of the proposition follows readily since Nr(z) is
continuous with respect to Z. Q.E.D.

Proposition 4: Suppose that the interval fJ = [a, {3] includes no real
zeros of CS. Then, SS has no real zeros in the corresponding interval exp
(f1 T) : = [exp (a T), exp ({3 T)] if ,he sampling period T satisfies 0 < T
< Tg.

Proof' By Lemma 2, Nr(z) has the same sign VZ E exp (fJT) if 0 <
T < Tg• The result of the proposition follows immediately. Q.E.D.

The next proposition is also necessary to deal with the boundary case.
Proposition 5: SS has a zero at Z = I if and only if CS has a zero at

s = O.
PrOOf' Note that the following relation holds true:

c-,,:(AT) - 1;','.(AOb dl)

=
(

ror eXPo(At) dt 0) (A b)
J 1 -C -0 . (10)

I Their result can be applied to a certain class of CS's to show that the corresponding
SS does not possess the (PIP-SS). But, their result is not helpful if CS does not belong to
that class. Details will be stated in the comments follOWing Theorems 2 and 3.

The main result is as follows.
Theorem 1: If CS possesses (PIP-CS) and if the sampling period T is

sufficiently small, then SS possesses (PIP-SS).

IV. PRESERVATION OF THE PIP UNDER SAMPLING

about it in general. I So, we make a preliminary study about the location of
zeros of SS in this section. The following two lemmas are the keys to
clarify the locations of the zeros of SS, where Lemma 2 is a generalization
of Lemma 1.

Lemma 1: Let a be a real number which is not a zero of CS. Then,
Nr(exp (aT» has the same sign as N(a) if the sampling period Tsatisfies
o < T < To> where To is a positive number dependent on a.

Proof' By (4)

(

exp (aT)/-exp (AT)
Nr<exp (aT»=det

c

(5)i= 1, "', n.Ai=exp (AiT)

x(k+TT)=exp (AT)x(kT) + [ exp (At)b dt . u(kT),

y(kT) = cx(kT) (3)

where k = ± I, ± 2, .. '. Since the ordinary stabilizability is necessary
for strong stabilizability, we assume throughout this note that the
sampling period T satisfies (6). It should be noted that (6) prohibits the
imaginary part of a nonreal unstable pole of CS from being a multiple of
'If/T. This, together with (5), implies the following.

Proposition /: Any r.u. pole of SS corresponds to a r.u. pole of CS by
(5) and vice versa.

Proposition 2: All the r.u. poles of SS are positive.
From Proposition 2 and from the strong stabilizability condition of

general discrete-time systems [2], we can conclude that SS is strongly
stabilizable (i.e., stabilizable by an asymptotically stable linear time
invariant discrete-time compensator) if and only if it possesses the parity
interlacing property of sampled-data systems:

The real roots of Nr(z) = 0 and Dr(z) = 0 outside the open unit disk
centered at the origin are, respectively, called r.u. zeros and r.u. poles,
Infinity 00 is also regarded as a r.u. zero since the pulse transfer function
of SS is strictly proper.

Let Ai(i = I, "', n) be the poles of CS and let Ai(i = 1, "', n) be
those of SS. It follows from (2) and (4) that {Ai} and {Ai} correspond
one-to-one by

In view of the parity interlacing condition, we have to examine the
disposition of the poles and zeros of SS in order to study its strong
stabilizability. As noted in the preceding section, the poles of SS are
closely related to those of CS, and their exact locations are given by (5).
But, as for the zeros of SS, little knowledge is available at present.
Astrom et al. [3] showed that, assuming that the sampling period Tis
sufficiently small, there are m zeros near exp (-yT) if -y is a zero of CS
with the multiplicity m. But this result is not useful for our purpose
because both poles of SS and the values exp (-y T) converge to I when T
becomes small and nothing about their mutual locations are clarified.
Hara et al. [4] showed that, if the number of real zeros of CS between two
real poles (Ai and Aj) of CS is even (respectively, odd), the number of real
zeros of SS between the corresponding real poles exp (Ai T) and
exp (Aj T) of SS is also even (respectively, odd) for almost every
sampling period T. This result does not contribute to our purpose very
much either, because what we need to know is the number of real poles
between real zeros and Hara et al. 's result cannot give exact knowledge

It is well known that SS is stabilizable and also detectable if and only if the
sampling period T satisfies

{1m (A;)-Im (AJ )} T*2k7r whenever Re (A;)=Re (AJ ) ~ 0 (6)

N,(,)-d~ ( ,1- ': (Al) - I: "'.(AOb dl) .

Dr(z)=det [z/-exp (AT)], (4)
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The following notion [4] is used in the proof of this theorem.
Definition 1: Let the LU. poles of CS repeated according to

multiplicities be A.. "', Ar • When CS has no poles and zeros at s = 0,
define X as {O, A.. "', Ar }, and when CS has either poles or zeros at s
= 0, define X as {AI' "', Ar }. The members of X are said to be the
extended r.u. poles of CS.

Proofof Theorem 1: Let the extended LU. poles of CS be ~I ~ •••

~ ~2 ~ ~J' Note that if ~/:t= 0 (i.e., if CS has a zero at s = 0), then I is
even by the assumption that CS possesses the (PIP-CS). Since the interval
fl i = [b, b-tl (2 ~ 2i ~ I) includes no zeros of CS by the same
assumption, it follows from Proposition 4 that SS has no real zeros in the
interval exp (fliT) if 0 < T < T9i . This, together with Proposition 1,
implies that SS possesses the (PIP-SS) if the sampling period T satisfies 0
< T < mini (Tg). Q.E.D.

The above thereom means that SS remains strongly stabilizable if CS is
so and if the sampling period T is sufficiently small. But, it seems difficult
to find by analysis an interval of T which preserves strong stabilizability.

Next, let us consider the case where CS does not possess the (PIP-CS).
Example: Consider the continuous-time system CS with

A-O ~ O· b{O· ,-[I I I[ [II)

The transfer function is 6(s - 3)2/{(S - l)(s - 2)(s - 4)} and, so, CS
does not possess the (PIP-CS). Calculation of the Taylor expansion of the
discriminant of NT(z) shows that the corresponding SS does not have real
zeros if Tis sufficiently small. This implies that SS possesses the (PIP-SS)
for sufficiently small T.

The above example shows that there is a case where SS can be strongly
stabilizable even if CS is not. This fact motivates us to find sufficient
conditions guaranteeing that SS is not strongly stabilizable.

Definition 2: Let distinct positive finite LU. zeros of CS with odd
multiplicities be 'Y.... " 'Yq. When CS has no zeros ats = O. Define ~ as
h .... " 'Yq, + oo}, and when CS has zeros at s = 0, define ~ as {O, 'Y ..
• . " 'Yq, + oo}. The members of~ are said to be the r.u. zeros of CS with
odd multiplicities in the generalized sense.

Theorem 2: Suppose that CS has Wi, Wj E ~ such that an odd number
of r.u. poles, counted according to their multiplicities, lie between Wi
and Wj' Then, SS does not possess the (PIP-SS) if the sampling period Tis
sufficiently small.

Proof' It follows from the assumption that an odd number of LU.

poles lie between wand the infinity + 00, where Wis either Wi or Wj' IfW
:t= 0, choose a and {J so that 0 < a < W < (J, N(a)N({J) < 0, and [a, {J]
includes no poles of CS. Then, by Proposition 3, there is a r.u. zero of SS
in [exp (aT), exp ({JT)] if T is sufficiently small. It follows from
Proposition 1 that there are an odd number of LU. poles of SS between
that zero of SS and + 00. This implies that SS does not possess the (PIP
SS). If W = 0, SS has a zero at Z = 1 by Proposition 5. By Proposition 1,
there are an odd number of r.u. poles of SS between 1 (= exp (wT» and
+ 00. This implies that SS does not possess the (PIP-SS) for any
T. Q.E.D.

From the latter half of the proof, we obtain the next theorem.
Theorem 3: Suppose that CS has zeros at s = 0 and has an odd number

of real unstable poles. Then, SS does not possess the (PIP-SS) for any
sampling period T.

The above two theorems supply sufficient conditions under which SS is
not strongly stabilizable. Let ~I ~ ••• ~ ~2 ~ ~l be the extended r.u.
poles of CS. It follows from the result of Hara et al. [4] that SS is not
strongly stabilizable for almost every sampling period T if there exists an
interval fl i = [b, b-tl (2 ~ 2i ~ I) which includes an odd number of
LU. zeros. Even when all the intervals fl i include an even number of r.u.
zeros, we can still conclude from Theorem 2 that SS is not strongly
stabilizable for sufficiently small T if there exists an interval 9i which
includes a r.u. zero with an odd multiplicity. Therefore, only when all
zeros in the intervals fl i are with even multiplicities, SS can be strongly
stabilizable even though CS is not. But, it should be noted that SS is not
always strongly stabilizable in such cases. Concerning this point, further

results can be derived by examining (n + l)th and (n + 2)th derivatives
of NT (exp (aT» with respect to T. The details are omitted because of the
limitation of space.

V. CONCLUSION

Several results are obtained about strong stabilizability of sampled-data
systems. These results are derived under the assumption that the discrete
time compensator does not require any computation time. But, the parallel
results hold true even if the compensator is assumed to require the
computation time Tc (> 0: not necessarily a multiple of the sampling
period T). This can be shown by the following steps.

a) let CS-d be the continuous-time system obtained by cascading CS
and the pure delay exp ( - sTc ), and let SS-d be the sampled-data system
derived from CS-d. Then, the problem reduces to the problem of
stabilizing SS-d by an asymptotically stable discrete-time compensator
which requires no computation time.

b) Stable poles of SS-d at z = 0, which are yielded by the pure delay,
have nothing to do with the PIP. Other poles correspond one-to-one to
those of CS by (5).

c) The condition (6) is valid also for SS-d.
d) From b) and from c), Propositions 1 and 2 hold true also for SS-d.

Therefore, the strong stabilizability condition (PIP-SS) applies also to SS
d.

e) We can derive Propositions 3-5 also for SS-d by slightly modifying
the proofs.

Theorems 1 and 3 can be extended to the multivariable case if zeros are
replaced by blocking zeros [5], [6]. Details of this as well as the detailed
results indicated at the end of the preceding section will be reported as a
separate item in the future.
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