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Analytic Study on the Intrinsic Zeros 
of Sampled-Data Systems 

Tomomichi Hagiwara 

Abstract-This paper investigates the properties of the mapping from 
the simple zero y of a scalar continuous-time system to the corresponding 
zero r ( T )  of the sampled-data system that results by its discretization 
using a zero-order hold, where T is the sampling period. It is shown that 
r ( T )  admits a Taylor expansion with respect to T,  and that it coincides 
with that of exp(yT) at least up to the second-order term, in general, and 
at least up to the third-order term if the relative degree of the continuous- 
time system is greater than or equal to two. The result is applied to derive 
a new stability condition of r(T) for sufficiently small sampling periods. 

I. INTRODUCTION 

It is widely recognized that a zero-order hold is one of the basic 
elements in the implementation of digital control systems. Thus, it 
has been of fundamental interest to clarify the properties of the 
sampled-data system GT ( z )  obtained by the discretization of the 
continuous-time system G ( s )  using a zero-order hold [4], [6], [7j, 
[15j-[17], where T is the sampling period. As is well known, 
by such discretization, the pole X of G ( s )  is mapped to the pole 
h(T)  = exp(XT) of G T ( z ) .  However, the mapping of a zero is 
not so simple that it is generally impossible to derive a closed-form 
expression of the zero r(T) of G T ( z )  that corresponds to the zero 
y of G(s)  in terms of the parameters of G(s)  and T. Thus, many 
studies have been carried out about the zeros of G T ( z )  [I], [3], [5], 

In this paper, confining ourselves to the case of scalar systems, we 
show that r (T)  admits a Taylor expansion with respect to T if y 
is a simple zero of G(s) .  Furthermore, we show that the expansion 
coincides with that of exp(yT) at least up to the second-order term, in 
general, and at least up to the third-order term if the relative degree 
of G ( s )  is greater than or equal to two. The result is applied to 
derive a new stability condition of r(T) for sufficiently small T. 
Some comments are also given on the case where y is a multiple 
zero of G(s) .  

In the following, let (e ,  A, b) be a minimal realization of G(s) :  

[81-[141. 

G(s) = c ( s 1 -  A)-'b (1) 

whereA E Rnxn,b E R n x l , c  E RIXn.Then,itiswellknown(see, 
e.g., [6] and [lo]) that the zeros of G ( s )  and G T ( z )  are, respectively, 
given by the roots of the polynomials 

and 

(3) 

where 

AT = exp(AT), bT = lT exp(At)b d t .  (4) 
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11. MAIN RESULTS-TAYLOR EXPANSION OF r(T) 
Suppose that s = 'y is a simple zero of G(s) ,  and let S be a simply- 

connected hounded domain containing y but no other zeros of G(s) .  
The following result is a direct consequence of [lo, Theorem 31. 

Lemma: Theire exists Ts(>O) such that for every T with 
0 < T < Ts, G T ( z )  has exactly one zero in the domain exp(ST) := 
{exp(sT)ls E S}(!> exp(yT)).  

The above lemma justifies us to say that G T ( z )  has a zero 
corresponding tci the zero y of G ( s )  [8]-[lo]. Specifically, it is called 
the intrinsic zero' of GT (2) corresponding to y, which we denote by 

The above lemma means that r (T )  can be approximated by 
exp(yT) in some sense, but it is not very clear how close r(T) 
is to exp(yT).  On ithe other hand, it was shown in [I31 that r(T) 
can be approximated by 1 + yT. The purpose of this paper is to 
get a more accurate approximation for I'(T). For this purpose, let us 
suppose that r ( T )  admits a power series expansion of the form 

W). 

r (T )  I= 1 + yT + 77'' + ET3 + O(T4). (5) 

Since r (T )  is a zero of G T ( z ) ,  it must satisfy 

$(T)  := det -;TI = o .  
Therefore, OUT purpose is to find the coefficients 7 and E such that 
the Taylor expansion of 4(T)  with respect to T becomes as close to 
zero as possible. More specifically, we are to find 7 and E such that 
( d / d T ) ' " $ ( T ) l ~ = o  = 0(k  = 0,. . . , K )  for as large li as possible. 

The following equation is readily obtained as in [6], [8]-[10] 
irrespective of q and E ,  using a formula for the derivative of a 
determinant: 

(7) 

Next, from the condition (~ /~T) ' "+(T) IT=O = 0 for k = n + 1, 
we obtain 

(d /dT)"$(T)IT=o = 0 ( k  = 0, ' ' ' ,  7%). 

where 6, is given lby 

8, = (71 - A)- l (q I  - A2/2)b - Ab/2. (9) 

Furthermore, from the condition ( d / d T ) ' $ ( T ) l ~ = o  = 0 for k = 
n + 2, we obtain 

where 

8 , ~  = -A2b/6 + ( [ I  - A3/6) (y I -  A)-'b 
-. [(VI - A2/2) (y I  - A)-']'b 
+ (171 - A2/2) (y I  - A)-'Ab/2 

$- trace ((171 - A2/2) (y I  - A)-') 

. [(VI - A2/2)(y1 - A)-'b - Ab/2]. (11) 

The conditions (8) and (IO), and even higher order conditions, can 
be derived using essentially the same technique as that employed in 
the proof of [8, Lemma 13 and [lo, Lemma 11 (basically, differentiate 

' A zero of GT ( 2 )  is called an intrinsic zero if it corresponds to a zero of 
G(s). G T ( z )  often has a zero that has no continuous-time counterpart [1], 
which we call a discretization zero of G T ( z ) .  See [8]-[lo] for more details. 
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the matrix in (6) row by row repeatedly and add and subtract 
appropriate terms to arrange the results using the Laplace expansion 
of a determinant). The lengthy derivations are not repeated here. 

Since (8) is equivalent to c(y1 - A)-'b, = 0, we obtain from (9) 
the following equation for 17: 

\ 

~ ( y l - A ) - ~ b .  = ~(yl-A)-~A~b/2+c(yI-A)-~Ab/2. (12) 

Now, by the assumption that y is a simple zero of G(s) ,  we have 

c(y1- A)-'b = -G'(y) # 0 (13) 

where G'(s )  denotes (d/ds)G(s) .  Therefore, q can be obtained as 

c(y1- A)-'A2b + c(y1- A)-'Ab 
r l =  2 4 7 1  - A)p2b 
- yc(yi - A ) - ~ A ~  

= 7 2 1 2  (14) 

- 
2 ~ ( y I -  A)-'b 

where we added yc(y1 - A)-'b = 0 to the numerator to get the 
last expression. 

Substituting the above equation into (ll), i0c reduces to kt, where 

S E  = -A2b/6 + ( [ I  - A3/6)(yI - A)-'b 
- $71 + A)b/4 + y trace (71 + A)b/4. (15) 

= 0, we obtain from Then, since (10) is equivalent to c(y1-  
(15) and c(y1 - A)-'b = 0 the following equation for E :  

c (y1-  A)-2b. E = c(y1- A)-'6 (16) 

where 

6 = A2b/6 + (71- A)-'A3b/6 + yAb/4 
= y(y1- A)-'A2b/6 + yAb/4 
= yAb/l2 + y2(yI  - A)-'Ab/6. (17) 

Therefore, E can be obtained as 

yc(y1- A)-'Ab/l2 + y2c(y1 - A)-2Ab/6 
, (18) 

Here, since sG(s)  = c(sI-A)-'Ab+cb, we have G(s)+sG'(s) = 
- c ( s l  - A)-'Ab. From these equations and from G(y) = 0, we 
obtain c ( y 1 -  A)-'Ab = -cb and c ( y 1 -  A)-'Ab = -yG'(y). 
Substituting these and (13) into (18), we obtain 

~(71- A)-'b E =  

[ = y 3 / 6  + ycb/lXG'(y). (19) 

Continuing the above manner, it is easily seen that we can derive 
the Taylor expansion' of r(T) which justifies (5) .  To summarize the 
above arguments, we have shown that 

Noting that cb = 0 if the relative degree of G(s)  is greater than or 
equal to two, we obtain the following theorem. 

Theorem I :  Suppose that y is a simple zero of G(s). Then, T(T) 
admits a Taylor expansion with respect to T,  and it coincides with 
that of exp(yT) at least up to the second-order term. In particular, 
if the relative degree of G(s )  is greater than or equal to two, they 
coincide at least up to the third-order term. 

*The expansion is possible in principle, but to express its coefficients in an 
explicit compact form seems nontrivial. 

Remark I: Even if the relative degree of G(s )  is one, the third- 
order terms still coincide if y = 0. Actually, r(T) = 1 for any 
T(>O) if y = 0, regardless of the relative degree of G ( s )  (see, e.g., 
[6]), and thus r(T) = exp(yT) is always true if y = 0. 

Remark 2: If the relative degree of G(s )  is greater than or equal 
to two, r(T) = exp(yT) can be the case. For example, for 

the zeros of GT (2) are given' by f exp (77'). 

m. APPLICATION TO THE STABILITY CONDITION OF r(T) 
In this section, we study the stability of r (T) ,  where it is said to be 

stable if it lies inside the unit circle. From the lemma, the following 
result is immediate [SI-[ lo]. 

Corollary: For any zero y of G(s ) ,  Ir(T)I < 1 (respectively, 
[I'(T)I > 1) for sufficiently small T if %(y) < O(respective1y 

From this result, we can check the stability of r(T) if the zero 
y of G(s) is not on the imaginary axis. However, if it is on the 
imaginary axis, the lemma is not helpful to examine stability of the 
corresponding zero q T ) ,  because exp(ST)  necessarily contains the 
points both inside and outside the unit circle. From this difficulty, 
no stability condition of r(T) has been obtained for the case of 
%(y) = 0 (except the special case of y = 0 as described in remark 
2 ) .  In the following, we give a stability condition for such a case 
using the results of the preceding section. 

Now, suppose that y = j D ( #  0) so that y is on the imaginary 
axis. Then, from (5)  and (14), we obtain 

WY) > 0). 

where 

0 := R(E), w := %(E). (23) 

Therefore, we obtain 

From this equation, we can conclude that Ir(T)I < 1 (respectively, 
Ir(T)I > I) for sufficiently small T if 0 < O(respectively, U > 0). 
Here, fkom (19) and y = j p ,  we have 

(25) 

In the following, we assume that the relative degree of G( s) is one 
so that cb # 0. Then, jT(T)I < l(respectively, II'(T)I > 1) if cb and 
W(y/G'(y)) have opposite signs (respectively, the same sign). Here, 
let us rewrite G(s) in the form 

(26) 

0 = E(<) = %(ycb/l2G'(y)). 

G(s)  = fi(s)(s2 - y2)/D(s) 

where @(s) and D ( s )  are coprime polynomials. Then, we can easily 
verify that 

T/G'(T) = %)/2fi(y). (27) 

Next, let us rewrite 1/G(s) in the form 
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TABLE I 
Ir(q FOR EXAMPLE 

0.9987 0.9119 

where qxs) is an appropriate polynomial whose degree is less than 
that of N ( s ) .  Then, we can easily show that cb = l/p1. Furthermore, 
substituting (26) into (28), multiplying the both sides by s2 - y2, and 
letting s = y = j p ,  we readily obtain R(D(y)/N(y)) = T O .  

Combining the above arguments, we are led to the following 
stability condition of r (T) .  

Theorem 2: Suppose that the relative degree of G ( s )  is one and 
let y(# 0) be a simple zero of G(s)  on the imaginary axis. 
Then, the corresponding zero r(T) of G T ( z )  satisfies Ir(T)I < 1 
(respectively, Ir(T)I > 1) for sufficiently small T if p l  and T O  have 
opposite signs (respectively, the same sign), where p1 and T O  are 
given by (28). 

We study simple examples to illustrate the above theorem. 
Exumple: For the stable minimum phase systems 

(29) 
(s + 1)(s2 + 4) 

s4 + 3s3 + 109  + 16s + 13 

(30) 
(s + 1)(s2 + 4) 

G Z ( S )  = s4 + 3s3 + 1 O s 2  + 14s + 11 
we have 

1 1 3s+1 - = (s + 2 )  + - + - G1 (s) s + l  s 2 + 4  

Therefore from Theorem 2,  we can conclude that for sufficiently small 
T ,  the r (T)  corresponding to y = 2 j  lies outside the unit circle for 
GI (s) and inside the unit circle for G:! (s). This is demonstrated in 
Table I. 

Iv. COMMENTS ON THE CASE WHERE IS A MULTIPLE ZERO 

When y is a multiple zero of G ( s ) ,  it is easy to see that (8) becomes 
indefinite with respect to 17 and that (10) reduces to the quadratic 
equation for only 7 (i.e., [ vanishes in the equation) given by 

(33) 

where G”(s) := (d /ds) ’G(s) .  Therefore, if y is a zero with degree 
two so that G”(y) # 0, then we can obtain two values of 17 from 
the above equation, each of which corresponds to one of the two 
“branches” of r (T) .  

However, if the degree of y as a zero of G(s) is greater than two 
so that G”(y) = 0, and if the relative degree of G(s )  is one so that 
cb # 0, then (33) admits no solution 7 unless y = 0. This is because 
the expansion of r (T)  in (5) is not always adequate when y is a 
multiple zero; the branches of r(T) do not admit Taylor expansions, 
in general. This is not surprising in view of the theory of algebraic 
functions [2] ;  the expansion of r(T) would require fractional power 
of T,  in general, if y is a multiple zero. 

G”(y)(q - y2/2)’/2 - y c b / l 2  = 0 
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V. CONCLUSION 

The properties of the zero F(T) of G T ( z )  corresponding to the 
zero y of G ( s )  are investigated and are applied to derive a new 
stability condition of r(T) for sufficiently small T. 


