Analytic Study on the Intrinsic Zeros of Sampled-Data Systems

Tomomichi Hagiwara

Abstract

This paper investigates the properties of the mapping from the simple zero γ of a scalar continuous-time system to the corresponding zero $\Gamma(T)$ of the sampled-data system that results by its discretization using a zero-order hold, where T is the sampling period. It is shown that $\Gamma(T)$ admits a Taylor expansion with respect to T, and that it coincides with that of $\exp (\gamma T)$ at least up to the second-order term, in general, and at least up to the third-order term if the relative degree of the continuoustime system is greater than or equal to two. The result is applied to derive a new stability condition of $\Gamma(T)$ for sufficiently small sampling periods.

I. Introduction

It is widely recognized that a zero-order hold is one of the basic elements in the implementation of digital control systems. Thus, it has been of fundamental interest to clarify the properties of the sampled-data system $G_{T}(z)$ obtained by the discretization of the continuous-time system $G(s)$ using a zero-order hold [4], [6], [7], [15]-[17], where T is the sampling period. As is well known, by such discretization, the pole λ of $G(s)$ is mapped to the pole $\Lambda(T)=\exp (\lambda T)$ of $G_{T}(z)$. However, the mapping of a zero is not so simple that it is generally impossible to derive a closed-form expression of the zero $\Gamma(T)$ of $G_{T}(z)$ that corresponds to the zero γ of $G(s)$ in terms of the parameters of $G(s)$ and T. Thus, many studies have been carried out about the zeros of $G_{T}(z)$ [1], [3], [5], [8]-[14].

In this paper, confining ourselves to the case of scalar systems, we show that $\Gamma(T)$ admits a Taylor expansion with respect to T if γ is a simple zero of $G(s)$. Furthermore, we show that the expansion coincides with that of $\exp (\gamma T)$ at least up to the second-order term, in general, and at least up to the third-order term if the relative degree of $G(s)$ is greater than or equal to two. The result is applied to derive a new stability condition of $\Gamma(T)$ for sufficiently small T. Some comments are also given on the case where γ is a multiple zero of $G(s)$.

In the following, let (c, A, b) be a minimal realization of $G(s)$:

$$
\begin{equation*}
G(s)=c(s I-A)^{-1} b \tag{1}
\end{equation*}
$$

where $A \in \boldsymbol{R}^{n \times n}, b \in \boldsymbol{R}^{n \times 1}, c \in \boldsymbol{R}^{1 \times n}$. Then, it is well known (see, e.g., [6] and [10]) that the zeros of $G(s)$ and $G_{T}(z)$ are, respectively, given by the roots of the polynomials

$$
N(s)=\operatorname{det}\left[\begin{array}{cr}
s I-A & -b \tag{2}\\
c & 0
\end{array}\right]
$$

and

$$
N_{T}(z)=\operatorname{det}\left[\begin{array}{cc}
z I-A_{T} & -b_{T} \tag{3}\\
c & 0
\end{array}\right]
$$

where

$$
\begin{equation*}
A_{T}=\exp (A T), \quad b_{T}=\int_{0}^{T} \exp (A t) b d t \tag{4}
\end{equation*}
$$

[^0]
II. Main Results-Taylor Expansion of $\Gamma(T)$

Suppose that $s=\gamma$ is a simple zero of $G(s)$, and let S be a simplyconnected bounded domain containing γ but no other zeros of $G(s)$. The following result is a direct consequence of [10, Theorem 3].

Lemma: There exists $T_{\mathcal{S}}(>0)$ such that for every T with $0<T<T_{\mathcal{S}}, G_{T}(z)$ has exactly one zero in the domain $\exp (\mathcal{S T}):=$ $\{\exp (s T) \mid s \in \mathcal{S}\}(\ni \exp (\gamma T))$.

The above lemma justifies us to say that $G_{T}(z)$ has a zero corresponding to the zero γ of $G(s)$ [8]-[10]. Specifically, it is called the intrinsic zero ${ }^{1}$ of $G_{T}(z)$ corresponding to γ, which we denote by $\Gamma(T)$.

The above lemma means that $\Gamma(T)$ can be approximated by $\exp (\gamma T)$ in some sense, but it is not very clear how close $\Gamma(T)$ is to $\exp (\gamma T)$. On the other hand, it was shown in [13] that $\Gamma(T)$ can be approximated by $1+\gamma T$. The purpose of this paper is to get a more accurate approximation for $\Gamma(T)$. For this purpose, let us suppose that $\Gamma(T)$ admits a power series expansion of the form

$$
\begin{equation*}
\Gamma(T)=1+\gamma T+\eta T^{2}+\xi T^{3}+O\left(T^{4}\right) \tag{5}
\end{equation*}
$$

Since $\Gamma(T)$ is a zero of $G_{T}(z)$, it must satisfy

$$
\psi(T):=\operatorname{det}\left[\begin{array}{cc}
\Gamma(T) I-A_{T} & -b_{T} \tag{6}\\
c & 0
\end{array}\right]=0
$$

Therefore, our purpose is to find the coefficients η and ξ such that the Taylor expansion of $\psi(T)$ with respect to T becomes as close to zero as possible. More specifically, we are to find η and ξ such that $\left.(d / d T)^{k} \psi(T)\right|_{T=0}=0(k=0, \cdots, K)$ for as large K as possible.
The following equation is readily obtained as in [6], [8]-[10] irrespective of η and ξ, using a formula for the derivative of a determinant:

$$
\begin{equation*}
\left.(d / d T)^{k} \psi(T)\right|_{T=0}=0 \quad(k=0, \cdots, n) \tag{7}
\end{equation*}
$$

Next, from the condition $\left.(d / d T)^{k} \psi(T)\right|_{T=0}=0$ for $k=n+1$, we obtain

$$
\operatorname{det}\left[\begin{array}{cc}
\gamma I-A & \hat{b}_{\eta} \tag{8}\\
c & 0
\end{array}\right]=0
$$

where \hat{b}_{η} is given by

$$
\begin{equation*}
\hat{b}_{\eta}=(\gamma I-A)^{-1}\left(\eta I-A^{2} / 2\right) b-A b / 2 \tag{9}
\end{equation*}
$$

Furthermore, from the condition $\left.(d / d T)^{k} \psi(T)\right|_{T=0}=0$ for $k=$ $n+2$, we obtain

$$
\operatorname{det}\left[\begin{array}{cc}
\gamma I-A & \hat{b}_{\eta \xi} \tag{10}\\
c & 0
\end{array}\right]=0
$$

where

$$
\begin{align*}
\hat{b}_{\eta \xi}= & -A^{2} b / 6+\left(\xi I-A^{3} / 6\right)(\gamma I-A)^{-1} b \\
& -\left[\left(\eta I-A^{2} / 2\right)(\gamma I-A)^{-1}\right]^{2} b \\
& +\left(\eta I-A^{2} / 2\right)(\gamma I-A)^{-1} A b / 2 \\
& +\operatorname{trace}\left(\left(\eta I-A^{2} / 2\right)(\gamma I-A)^{-1}\right) \\
& \cdot\left[\left(\eta I-A^{2} / 2\right)(\gamma I-A)^{-1} b-A b / 2\right] \tag{11}
\end{align*}
$$

The conditions (8) and (10), and even higher order conditions, can be derived using essentially the same technique as that employed in the proof of [8, Lemma 1] and [10, Lemma 1] (basically, differentiate
${ }^{1}$ A zero of $G_{T}(z)$ is called an intrinsic zero if it corresponds to a zero of $G(s) . G_{T}(z)$ often has a zero that has no continuous-time counterpart [1], which we call a discretization zero of $G_{T}(z)$. See [8]-[10] for more details.
the matrix in (6) row by row repeatedly and add and subtract appropriate terms to arrange the results using the Laplace expansion of a determinant). The lengthy derivations are not repeated here.

Since (8) is equivalent to $c(\gamma I-A)^{-1} \hat{b}_{\eta}=0$, we obtain from (9) the following equation for η :

$$
\begin{equation*}
c(\gamma I-A)^{-2} b \cdot \eta=c(\gamma I-A)^{-2} A^{2} b / 2+c(\gamma I-A)^{-1} A b / 2 \tag{12}
\end{equation*}
$$

Now, by the assumption that γ is a simple zero of $G(s)$, we have

$$
\begin{equation*}
c(\gamma I-A)^{-2} b=-G^{\prime}(\gamma) \neq 0 \tag{13}
\end{equation*}
$$

where $G^{\prime}(s)$ denotes $(d / d s) G(s)$. Therefore, η can be obtained as

$$
\begin{align*}
\eta & =\frac{c(\gamma I-A)^{-2} A^{2} b+c(\gamma I-A)^{-1} A b}{2 c(\gamma I-A)^{-2} b} \\
& =\frac{\gamma c(\gamma I-A)^{-2} A b}{2 c(\gamma I-A)^{-2} b} \\
& =\gamma^{2} / 2 \tag{14}
\end{align*}
$$

where we added $\gamma c(\gamma I-A)^{-1} b=0$ to the numerator to get the last expression.

Substituting the above equation into (11), $\hat{b}_{\eta \xi}$ reduces to \hat{b}_{ξ}, where

$$
\begin{align*}
\hat{b}_{\xi}= & -A^{2} b / 6+\left(\xi I-A^{3} / 6\right)(\gamma I-A)^{-1} b \\
& -\gamma(\gamma I+A) b / 4+\gamma \operatorname{trace}(\gamma I+A) b / 4 \tag{15}
\end{align*}
$$

Then, since (10) is equivalent to $c(\gamma I-A)^{-1} \hat{b}_{\xi}=0$, we obtain from (15) and $c(\gamma I-A)^{-1} b=0$ the following equation for ξ :

$$
\begin{equation*}
c(\gamma I-A)^{-2} b \cdot \xi=c(\gamma I-A)^{-1} \hat{b} \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{b} & =A^{2} b / 6+(\gamma I-A)^{-1} A^{3} b / 6+\gamma A b / 4 \\
& =\gamma(\gamma I-A)^{-1} A^{2} b / 6+\gamma A b / 4 \\
& =\gamma A b / 12+\gamma^{2}(\gamma I-A)^{-1} A b / 6 \tag{17}
\end{align*}
$$

Therefore, ξ can be obtained as

$$
\begin{equation*}
\xi=\frac{\gamma c(\gamma I-A)^{-1} A b / 12+\gamma^{2} c(\gamma I-A)^{-2} A b / 6}{c(\gamma I-A)^{-2} b} \tag{18}
\end{equation*}
$$

Here, since $s G(s)=c(s I-A)^{-1} A b+c b$, we have $G(s)+s G^{\prime}(s)=$ $-c(s I-A)^{-2} A b$. From these equations and from $G(\gamma)=0$, we obtain $c(\gamma I-A)^{-1} A b=-c b$ and $c(\gamma I-A)^{-2} A b=-\gamma G^{\prime}(\gamma)$. Substituting these and (13) into (18), we obtain

$$
\begin{equation*}
\xi=\gamma^{3} / 6+\gamma c b / 12 G^{\prime}(\gamma) \tag{19}
\end{equation*}
$$

Continuing the above manner, it is easily seen that we can derive the Taylor expansion ${ }^{2}$ of $\Gamma(T)$ which justifies (5). To summarize the above arguments, we have shown that

$$
\begin{equation*}
\Gamma(T)=1+\gamma T+\frac{\gamma^{2}}{2} T^{2}+\left(\frac{\gamma^{3}}{6}+\frac{\gamma c b}{12 G^{\prime}(\gamma)}\right) T^{3}+O\left(T^{4}\right) \tag{20}
\end{equation*}
$$

Noting that $c b=0$ if the relative degree of $G(s)$ is greater than or equal to two, we obtain the following theorem.

Theorem 1: Suppose that γ is a simple zero of $G(s)$. Then, $\Gamma(T)$ admits a Taylor expansion with respect to T, and it coincides with that of $\exp (\gamma T)$ at least up to the second-order term. In particular, if the relative degree of $G(s)$ is greater than or equal to two, they coincide at least up to the third-order term.

[^1]Remark 1: Even if the relative degree of $G(s)$ is one, the thirdorder terms still coincide if $\gamma=0$. Actually, $\Gamma(T)=1$ for any $T(>0)$ if $\gamma=0$, regardless of the relative degree of $G(s)$ (see, e.g., [6]), and thus $\Gamma(T)=\exp (\gamma T)$ is always true if $\gamma=0$.

Remark 2: If the relative degree of $G(s)$ is greater than or equal to two, $\Gamma(T)=\exp (\gamma T)$ can be the case. For example, for

$$
\begin{equation*}
G(s)=\frac{s-\gamma}{(s-p)(s-q)(s-2 \gamma)} \quad(\gamma=(p+q) / 2) \tag{21}
\end{equation*}
$$

the zeros of $G_{T}(z)$ are given' by $\pm \exp (\gamma T)$.

III. Application to the Stability Condition of $\Gamma(T)$

In this section, we study the stability of $\Gamma(T)$, where it is said to be stable if it lies inside the unit circle. From the lemma, the following result is immediate [8]-[10].

Corollary: For any zero γ of $G(s),|\Gamma(T)|<1$ (respectively, $|\Gamma(T)|>1$) for sufficiently small T if $\Re(\gamma)<0$ (respectively $\Re(\gamma)>0)$.

From this result, we can check the stability of $\Gamma(T)$ if the zero γ of $G(s)$ is not on the imaginary axis. However, if it is on the imaginary axis, the lemma is not helpful to examine stability of the corresponding zero $\Gamma(T)$, because $\exp (S T)$ necessarily contains the points both inside and outside the unit circle. From this difficulty, no stability condition of $\Gamma(T)$ has been obtained for the case of $\Re(\gamma)=0$ (except the special case of $\gamma=0$ as described in remark 1). In the following, we give a stability condition for such a case using the results of the preceding section.

Now, suppose that $\gamma=j \beta(\neq 0)$ so that γ is on the imaginary axis. Then, from (5) and (14), we obtain

$$
\begin{align*}
\Gamma(T)= & \left(1-\frac{\beta^{2}}{2} T^{2}+\sigma T^{3}+O\left(T^{4}\right)\right) \\
& +j\left(\beta T+\omega T^{3}+O\left(T^{4}\right)\right) \tag{22}
\end{align*}
$$

where

$$
\begin{equation*}
\sigma:=\Re(\xi), \quad \omega:=\Im(\xi) \tag{23}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{align*}
|\Gamma(T)|^{2}= & \left(1-\frac{\beta^{2}}{2} T^{2}+\sigma T^{3}\right)^{2} \\
& +\left(\beta T+\omega T^{3}\right)^{2}+O\left(T^{4}\right) \\
= & 1+2 \sigma T^{3}+O\left(T^{4}\right) \tag{24}
\end{align*}
$$

From this equation, we can conclude that $|\Gamma(T)|<1$ (respectively, $|\Gamma(T)|>1)$ for sufficiently small T if $\sigma<0$ (respectively, $\sigma>0$). Here, from (19) and $\gamma=j \beta$, we have

$$
\begin{equation*}
\sigma=\Re(\xi)=\Re\left(\gamma c b / 12 G^{\prime}(\gamma)\right) \tag{25}
\end{equation*}
$$

In the following, we assume that the relative degree of $G(s)$ is one so that $c b \neq 0$. Then, $|\Gamma(T)|<1$ (respectively, $|\Gamma(T)|>1$) if $c b$ and $\Re\left(\gamma / G^{\prime}(\gamma)\right)$ have opposite signs (respectively, the same sign). Here, let us rewrite $G(s)$ in the form

$$
\begin{equation*}
G(s)=\tilde{N}(s)\left(s^{2}-\gamma^{2}\right) / D(s) \tag{26}
\end{equation*}
$$

where $\tilde{N}(s)$ and $D(s)$ are coprime polynomials. Then, we can easily verify that

$$
\begin{equation*}
\gamma / G^{\prime}(\gamma)=D(\gamma) / 2 \tilde{N}(\gamma) \tag{27}
\end{equation*}
$$

Next, let us rewrite $1 / G(s)$ in the form

$$
\begin{equation*}
\frac{1}{G(s)}=\left(p_{1} s+p_{0}\right)+\frac{q(s)}{\tilde{N}(s)}+\frac{r_{1} s+r_{0}}{s^{2}-\gamma^{2}} \tag{28}
\end{equation*}
$$

TABLE I
$|\Gamma(T)|$ for Example

T	$\|\Gamma(T)\|$ for $G_{1}(s)$	$c\|l\| l$	
0.01	1.0000000417		$\|\Gamma(T)\|$ for $G_{2}(s)$
0.1	1.0000413	0.01	0.9999999583
0.5	1.00407	0.1	0.9999578
1	0.9987	0.5	0.99323

where $q(s)$ is an appropriate polynomial whose degree is less than that of $\tilde{N}(s)$. Then, we can easily show that $c b=1 / p_{1}$. Furthermore, substituting (26) into (28), multiplying the both sides by $s^{2}-\gamma^{2}$, and letting $s=\gamma=j \beta$, we readily obtain $\Re(D(\gamma) / \tilde{N}(\gamma))=r_{0}$.

Combining the above arguments, we are led to the following stability condition of $\Gamma(T)$.
Theorem 2: Suppose that the relative degree of $G(s)$ is one and let $\gamma(\neq 0)$ be a simple zero of $G(s)$ on the imaginary axis. Then, the corresponding zero $\Gamma(T)$ of $G_{T}(z)$ satisfies $|\Gamma(T)|<1$ (respectively, $|\Gamma(T)|>1$) for sufficiently small T if p_{1} and r_{0} have opposite signs (respectively, the same sign), where p_{1} and r_{0} are given by (28).

We study simple examples to illustrate the above theorem.
Example: For the stable minimum phase systems

$$
\begin{align*}
& G_{1}(s)=\frac{(s+1)\left(s^{2}+4\right)}{s^{4}+3 s^{3}+10 s^{2}+16 s+13} \tag{29}\\
& G_{2}(s)=\frac{(s+1)\left(s^{2}+4\right)}{s^{4}+3 s^{3}+10 s^{2}+14 s+11} \tag{30}
\end{align*}
$$

we have

$$
\begin{align*}
& \frac{1}{G_{1}(s)}=(s+2)+\frac{1}{s+1}+\frac{3 s+1}{s^{2}+4} \tag{31}\\
& \frac{1}{G_{2}(s)}=(s+2)+\frac{1}{s+1}+\frac{3 s-1}{s^{2}+4} \tag{32}
\end{align*}
$$

Therefore from Theorem 2, we can conclude that for sufficiently small T, the $\Gamma(T)$ corresponding to $\gamma=2 j$ lies outside the unit circle for $G_{1}(s)$ and inside the unit circle for $G_{2}(s)$. This is demonstrated in Table I.

IV. Comments on the Case Where γ Is a Multiple Zero

When γ is a multiple zero of $G(s)$, it is easy to see that (8) becomes indefinite with respect to η and that (10) reduces to the quadratic equation for only η (i.e., ξ vanishes in the equation) given by

$$
\begin{equation*}
G^{\prime \prime}(\gamma)\left(\eta-\gamma^{2} / 2\right)^{2} / 2-\gamma c b / 12=0 \tag{33}
\end{equation*}
$$

where $G^{\prime \prime}(s):=(d / d s)^{2} G(s)$. Therefore, if γ is a zero with degree two so that $G^{\prime \prime}(\gamma) \neq 0$, then we can obtain two values of η from the above equation, each of which corresponds to one of the two "branches" of $\Gamma(T)$.

However, if the degree of γ as a zero of $G(s)$ is greater than two so that $G^{\prime \prime}(\gamma)=0$, and if the relative degree of $G(s)$ is one so that $c b \neq 0$, then (33) admits no solution η unless $\gamma=0$. This is because the expansion of $\Gamma(T)$ in (5) is not always adequate when γ is a multiple zero; the branches of $\Gamma(T)$ do not admit Taylor expansions, in general. This is not surprising in view of the theory of algebraic functions [2]; the expansion of $\Gamma(T)$ would require fractional power of T, in general, if γ is a multiple zero.

V. Conclusion

The properties of the zero $\Gamma(T)$ of $G_{T}(z)$ corresponding to the zero γ of $G(s)$ are investigated and are applied to derive a new stability condition of $\Gamma(T)$ for sufficiently small T.

ACKNOWLEDGMENT

The author is indebted to Prof. Y. Hayakawa for his motivation to the study through discussions.

References

[1] K. J. Åström, P. Hagander, and J. Sternby, "Zeros of sampled systems," Automatica, vol. 20, no. 1, pp. 31-38, 1984.
[2] G. A. Bliss, Algebraic Functions, New York: Dover, 1966.
[3] Y. Fu and G. A. Dumont, "Choice of sampling to ensure minimum-phase behavior," IEEE Trans. Automat. Contr., vol. 34, no. 5, pp. 560-563, 1989.
[4] J. W. Grizzle and M. H. Shor, "Sampling, infinite zeros and decoupling of linear systems," Automatica, vol. 24, no. 3, pp. 387-396, 1988.
[5] P. Hagander, "Comments on 'Conditions for stable zeros of sampled systems," IEEE Trans. Automat. Contr., vol. 38, no. 5, pp. 830-831, 1993.
[6] T. Hagiwara and M. Araki, "On preservation of strong stabilizability under sampling," IEEE Trans. Automat. Contr., vol. AC-33, no. 11, pp. 1080-1082, 1988.
[7] ,"Controllability indices of sampled-data systems," Int. J. Syst. Sci., vol. 19, no. 12, pp. 2449-2457, 1988.
[8] , "Properties of limiting zeros of sampled-data systems," Trans. Inst. Elec. Engineers Japan, vol. 110-C, no. 4, pp. 235-244, 1990.
[9] __, "Limiting properties of zeros of sampled-data systems," in Communication, Control and Signal Processing, in Proc. 1990 Bilkent Int. Conf. New Trends Communication, Contr., Signal Processing, E. Arikan, Ed. New York: Elsevier, 1990, pp. 998-1004.
[10] T. Hagiwara, T. Yuasa, and M. Araki, "Stability of the limiting zeros of sampled-data systems with zero- and first-order holds," Int. J. Contr., vol. 58, no. 6, pp. 1325-1346, 1993.
[11] S. Hara, H. Katori, and R. Kondo, "The relationship between real poles and real zeros in SISO sampled data systems," IEEE Trans. Automat. Contr., vol. 34, no. 6, pp. 632-635, 1989.
[12] S. Hara, R. Kondo, and H. Katori, "Properties of zeros in digital control systems with computational time delay," Int. J. Contr., vol. 49, no. 2, pp. 493-511, 1989.
[13] Y. Hayakawa, S. Hosoe, and M. Ito, "On the limiting zeros of sampled multivariable systems," Syst. Contr. Lett., vol. 2, pp. 292-300, 1983.
[14] M. Ishitobi, "Stable zeros of sampled low-pass systems," Int. J. Contr., vol. 57, no. 6, pp. 1485-1498, 1993.
[15] R. E. Kalman, Y. C. Ho, and K. S. Narendra, "Controllability of linear dynamical systems," Contributions Differential Equations, vol. 1, no. 2, pp. 189-213, 1962.
[16] M. Kimura, "Preservation of stabilizability of a continuous timeinvariant linear system after discretization," Int. J. Syst. Sci., vol. 21, no. 1, pp. 65-91, 1990.
[17] Ü. Özgüner and E. J. Davison, "Sampling and decentralized fixed modes," in Proc. ACC, 1985, pp. 257-262.

[^0]: Manuscript received April 5, 1994; revised September 15, 1994.
 The author is with the Department of Electrical Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01, Japan.

 Publisher Item Identifier S 0018-9286(96)00984-1.

[^1]: ${ }^{2}$ The expansion is possible in principle, but to express its coefficients in an explicit compact form seems nontrivial.

