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Robust Stability of Sampled-Data Systems Under Possibly
Unstable Additive/Multiplicative Perturbations

Tomomichi Hagiwara and Mituhiko Araki

Abstract—This paper applies the FR-operator technique to the robust
stability problem of sampled-data systems against additive/multiplicative
perturbations, where a reasonable class of perturbations consists of
unstable as well as stable ones. Assuming that the number of unstable
modes of the plant does not change, we show that a small-gain condition
in terms of the FR-operator representation (which is actually equivalent
to a small-gain condition in terms of the Ls-induced norm) is still
necessary and sufficient for the sampled-data system to be robustly stable
againsth-periodic perturbations, in spite of their possible instability. The
result is derived by a Nyquist-type of arguments. Next, a necessary and
sufficient condition for robust stability against linear time-invariant (LTI)
perturbations is also given. Furthermore, we show that if the plant is
either single-input or single-output, the condition can be reduced to a
readily testable form. Finally, we clarify when the small-gain condition
becomes a particularly poor measure for robust stability.

Index Terms—FR-operator, impulse modulation formula, LTI pertur-
bations, periodic perturbations, robust stability.

|. INTRODUCTION

The robust stability analysis anfl., control of sampled-data
systems were studied intensively over the past several years (e.g.,
[1]3], [6]-[10], [17], [19], [20], [23]-[26], and [28]-[30]). Many
of these studies use tHe -induced norm, and the small-gain theorem
has been the typical tool. Recently, however, frequency-domain
methods for sampled-data systems were developed, and their link to
the L,-induced norm method was established [2], [28]-[30] (see also
[8], [9], [11], [13], [15], [17], and [24] for other related frequency-
domain studies).

There are two main contributions included in this paper. The first is
to have derived the necessary and sufficient conditions for robust sta-
bility of sampled-data systems under possibly unstable perturbations
(it should be noted that we confine ourselves to additive/multiplicative
perturbations in this paper; unstable perturbations naturally arise in
these type of perturbations). When perturbations may be unstable, the
small-gain theorem cannot be applied, and hence no robust stability
conditions have been obtained. In this paper, under mild assumptions
(including the assumption that the number of unstable modes of the
plant does not change), necessary and sufficient conditions are derived
through a Nyquist-type of argument with the FR-operator technique
[2], making use of its frequency-domain nature. Section IV deals with
the case of lineah-periodic perturbations and Section V the case of
linear time-invariant (LTI) perturbations. It turns out that a small-
gain condition in terms of the FR-operator representation (which is
actually equivalent to one in terms of tHe-induced norm) is still
necessary and sufficient for the case of linegreriodic perturbations,
in spite of their possible instabilitynote that this result extends the
one given in [25] and is a sampled-data counterpart to [5]. Similarly,
the necessary and sufficient condition for LTI perturbations extends
the one given in [9].

The second main contribution of this paper is to have clarified
when the small-gain condition becomes an extremely poor measure

Manuscript received May 21, 1997.

The authors are with the Department of Electrical Engineering,
Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01, Japan (e-mail:
hagiwara@kuee.kyoto-u.ac.jp).

Publisher Item Identifier S 0018-9286(98)06117-0.

0018-9286/98$10.00 1998 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 43, NO 9, SEPTEMBER 1998 1341

for robust stability analysis and synthesis against LTI perturbations.
The key for the success in obtaining this result is that we employed a e H u P v F ¥ S
unified method (i.e., Nyquist-type of argument with FR-operators)
to deal with both linearh-periodic and LTI perturbations. The
observation of the obtained result leads us to an insight into the
design problem of a robustly stabilizing controller.

Although we use the FR-operator in this paper, it might be
possible to derive the same results using an essentially equivalEidt 1. Sampled-data system, .
notion (the frequency response operator defined via a lifting-based
transfer function [30]). In the present authors’ views, the advantages
of adopting the FR-operator in the very context of the problem A
we study here seem to be as follows. First, the FR-operator is
an operator orlz, and as given in Section IlI-C, the notion of a

F---"

determinant can easily be introduced to it in a quite similar way to the w z
finite-dimensional case. Moreover, because of this, the interpolation G
problems that we need to solve for the necessity arguments of u Y
robust stability conditions reduce to intuitive and tractable ones |

(Appendix B).
Notation and Terms:|| X || denotes the maximum singular value ofFig. 2. Perturbed plant with an anti-aliasing filter.
X if X is finite dimensional and th&-induced norm ofX if it is
infinite dimensional. A system is denoted by a Roman/Greek capital
letter, e.g.,P and¥, and its frequency-domain representation (includ- A3) In (1), W1 and W, are given stable causal FDLTI systems,
ing the h-periodic counterpart if it ish-periodic; see Section 1lI-B) and A is a causal lineah-periodic system with the Eo.-
is denoted by putting a hat on it, e.¢?,and ¥'; a Roman letter is for norm” of A being less than ondfA || < 1.
a continuous-time system while a Greek letter is for a discrete-timeThe definition of thel ..-norm of the frequency-domain represen-
system, in general. A mode of a continuous-time LTI system is aftion A corresponding to the linedi-periodic systemA will be
eigenvalue of its state transition matrix and is unstable if it lies igeferred to Section III-B.
the closed right half-plane. By A2), it follows that the actual planP can be associated with
a discrete-time state transition matrix over the inter@aln] (i.e.,
the monodromy matrix). Let us call the number of the eigenvalues
Il. PROBLEM FORMULATION of the monodromy matrix with magnitude no smaller than one, the
The purpose of this paper is to study robust stability of thaumber of the unstable modes Bf Now, our next assumptions are

sampled-data systerf, shown in Fig. 1, which consists of theaS follows [AS) is assumed for simplicity].

continuous-time planf?, the anti-aliasing filted”, and the discrete- A4) P has exactly as many unstable modesFas

time compensato’, together with the ideal sample$ and the A5) F is causal and FDLTI.

(arbitrary but given generalized) hold, both operating at sampling  The mapping from: to y coincides with that of the system shown

period” synchronously. The nominal plant is denotedfy and the i, Fig. 2, whereG is an appropriately formed FDLTI generalized
actual plant?” lies somewhere in a prescribed g&including Fo. In - pjant Note that

this paper, we consider the case where theTsé$ described with
additive or multiplicative perturbations. Namely, we consider one of
the following equations: G =0 (2)

P =P + W, AW, P = Po(I + Wi AWY) by (2). .For thi;G, we assume the following [A6) is standard from
N [6], while A7) is for simplicity].
P=(I4+W,AW,)P,. (1) ‘s atri
A6) The systen(s; from w to y is strictly causal.
A7) G2 andG2: have no modes on the imaginary axis.
Here, W, and W are appropriate known stable weights, add  The above assumptions are satisfie# ifs strictly causal and i,
denotes the perturbation, which lies in a prescribed set to be defingg 7 have no modes on the imaginary axis. Finally, we assume the

later. _ following (most of the holds studied so far in the literature, including
It is generally true that we must consider an unstable (as Wﬁl’e zero-order hold, satisfy it)

as stable)A unless we assume that the unstable part of the plant . -
is perfectly known, which is a strong assumption (for example, if AB) H is afinite-response’y hold [2].
the location of an unstable mode is uncertain, we will be led to anDefinition 1: The set of A satisfying Assumptions A2)-A4) is
unstable additive perturbation). This motivates us to study the rdenoted byA. The set of plants” corresponding tA is denoted
bust stability problem undggossibly unstabladditive/multiplicative by P.
perturbations. The small-gain theorem cannot deal with this typeDefinition 2: The sampled-data system. is robustly internally
of perturbation, and this paper aims at establishing a Nyquist-typgbleif ¥ internally stabilizes anyP € P (in the sense of [6]
approach to this problem. Throughout the paper, we make thad [21]). It isuniformly robustly internally stabléf it is robustly
following assumptions. internally stable and ifnfpcpr Fp > 0, suppcp £ < 0, Whererp
Al) P, is strictly causal and finite-dimensional LTI (FDLTI).  ands, respectively, denote the upper and lower gain margin in dB
A2) P is strictly causal, finite dimensional, and is LTI or linearcorresponding to the plan®.
h-periodic. Now, our robust stability problem is posed as follows.
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Problem 1: Assume A1)-A8). Given an LTI compensatdrthat

internally stabilizes the nominal plad,, find a necessary and suf- l, _i,
ficient condition for uniform robust internal stability of the sampled- G ’
data systent,. el g P Il s -oq
Ill. PRELIMINARIES
e O b ;

A. FR-Operator of Sampled-Data Systems

Let us consider the nominal sampled-data system shown in Fig.Fy. 3. Sampled-data system with the generalized plant.
whereG is as introduced in the preceding section. It can be described

by the FR-operator representation [2], [15] as . . . . .
y P P [21, [19] Now, let us introduce the following Fourier series expansions:

Gyliv) = G (je) M) - Gar(jp).

) =3
BA (1_) — Z BAm/C‘]nm.;Sw‘,7 CA (7") — Z OAm/C'“nwsf

[} € (—%)5/2H ;715/2] ::IO (3) m=—o00 m=—oco
wherew, := 27 /h denotes the sampling angular frequency, Da(t) = Z Dame’ ™" (10)
Pm 1= @ + muws (m =0, £1, £2, --+) (4) Next, let us define the infinite-dimensional Toeplitz matrices by
[ | A, = diagl - Aa Aa Aa -]
Gr2(jo—1)H(jp-1) |
Gle(J\P) = 512(7990)1?(7590) (5) BAO BA—l BA—Q
(i H (o .
2P H(jpy) By= 1" Bai Bao Ba- (1)
' L o 4 o Bas  Bar Bao
Ga(jo)=1[+ Gu(jo-1) Ga(jpo) Gai(jpr) -] . S
® ) ' T
(similarly for C, and D,). Then, the steady-state transfer charac-
and A is given by teristics of A can be described by
o A(jo) =CA(E(jp)— Ay) "'Ba + D,
A= - Ho‘l’)il, o := SFPyH. ) f(h?) fA(f(]\P) fA) DA T YA

H(s) denotes the “transfer matrix” of the hol (e.g., H(s) =
(1 — e *")I/s for the zero-order hold).

For eachy € Ty, Gy (j¢) defines a bounded operator tn Let
us denote the set @y (j¢)(¢ € Zo) by Gw, and define

1G9 loo := max [|Gy (F)| ®)
w€Iy

E(j¢) =diag[- - (12)

It is easy to show thaf\(j¢) also defines a bounded operator on
I, for eachy € Io.

Definition 3: The L..-norm of A is defined as||A|e:=
max,ez, ||[A(je)||. In particular, if A is bounded onL-, it is
also called theH..-norm of A.

It is easy to see that iA is FDLTI, the above definitions reduce
to the standard ones for the..-norm andH ..-norm of A. We can

jiP—LI ]"»901— ]"PLI ]

where the norm in the right-hand side denotes the induced norm g8o show that ifA is bounded orL., the H..-norm of A and the

l5. ||Gw|| is called theH..-norm of the FR-operato§y [2] and
is known to coincide with the.,-induced norm fromw to = of the
sampled-data system [2], [29].

Lo-induced norm ofA coincide.

C. Determinant of a Linear Operator oh

An important property of (3) is that it defines a finite-rank operator

on [,.

B. FR-Operator of:-Periodic Continuous-Time Systems

Next, let us quickly review the study of [27] on the frequenc;t
response of ath-periodic continuous-time system and introduce th

notion of the L.,-norm for A.

Without loss of generality (see [18] and [27]), let us employ thd

following “realization” of A:

dra
dt

= A zA + Bg(t)’LLA, ya = OA(t)iL'A + DA(t)uA

9)

As mentioned before, we aim to develop a Nyquist-type of argu-
ment in this paper. To this end, the notion of the determinant of a
“return difference FR-operator” seems indispensable. Although such
a notion is not necessarily standard for general linear operators, the
ollowing results of [4] and [12] suffice for our purpose (a more
glementary treatment is given in [14]).

Consider the operataf — T', whereT is a finite-rank operator.
hen, T has a finite number (in fact, no larger than its rank) of
nonzero distinct eigenvalues. The set of such eigenvalues is denoted
by ¢(T). For each\ € «(T), there exists an integdr, such that
ker(T — AD* = ker(T — AI)**("k > k), and thealgebraic
multiplicity y := dim(ker(T" — AI)**) is finite.

Definition 4: The determinant of the operatdr— T, which we

where A is a constant matrix an@a (t), Ca(t), and Da(t) are denote byD(I, T), is defined as

h-periodic matrices that are continuous and bounded on the interval

[0, 2). In the following, it is enough to study the case whete

has no eigenvalues on the imaginary axis (i.e., the corresponding
whereos (T') denotes the set of distinct nonzero eigenvalue® of

monodromy matrix has no eigenvalues on the unit circle).

DI, T):=

H (1— )\,:)“Ai

A €0(T)

(13)
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Remark 2: Since [|Gw||- coincides with theL.-induced norm
from w to z of the sampled-data system shown in Fig. 3 (as
mentioned in Section IlI-A), (19) is nothing but the small-gain
condition in terms of thel»-induced norm. What is important here
G le--u is that the condition has been derived by taking into account unstable
perturbations. A similar condition stated in [25, Th. 5.1] was derived
by considering only stable perturbations. Also note that, unlike in
[25], our perturbation seA does not contain, for example, any
sampled-data systems, which are not natural as perturbations for a
Remark 1: If T is an operator on a finite-dimensional space, weontinuous-time plant.

i

I ---

F==="=7

'
1
|
1

Fig. 4. Discrete-time equivalerit; of ;.

haveD(I, T) = det(I — T). Proof—i) Sufficiency:The proof is fairly standard, and the de-
The following result plays an important role. tails are omitted. .
Proposition 1: If either S or T is finite-rank, thenD(I, ST) = i) Necessity: Supposd|Gull- > 1,i.e.,[|Gg(i¢)ll > 1 for some
D(I, TS). @ € Zo. Then, for any=; > 0, there exists, y, and~y such that
vw=Gyle)z.  zll=1lyll=1,v>1-e. (20)

IV. NECESSARY AND SUFFICIENT CONDITION FOR ROBUST STABILITY

In this section, we derive a necessary and sufficient condition fc
robust stability of¥; through a Nyquist-type of argument. Let ugﬁ
consider the discrete-time systeny shown in Fig. 4, wherdl is
defined byl := SF PH. Note thatIl is LTI even thoughP may not

('et us define A, :=(1/v)zy". Then, it readily follows that
Gy(je)z = x. Also, we have|lA|| = 1/y < 1/(1 — &1).
is implies that for any> > 0, there existsA, of the formaz, y7
such that||A,|| < 1+ = and

be. Here, W_e_have the following result, which basically follows from DI, AGy(j9)) = 0. (21)
[21, Proposition 7]. ) ) )
Proposition 2: I, is internally stable if and only &, is. By Lemma B2 in Appendix B, there exista, € A such that
Now, internal stability of£, can be checked by the discrete-timdl2A /(1 + £2) — Ay (j¢)|| < 2. Thus, it follows that
Nyquist stability criterion, and under the assumption A — AL (i
1A — Ay (o)l

AO) V¥ internally stabilizesFy;

<A, —A /(T + =)+ 1A /(1 + 22) — A, (5
we obtain the following result by Assumption A4) (with any kind of 12, i/ 2+ 118,/ 2 272l

possible unstable cancellations that might occur for sdme A < 2€2. (22)
taken into account [14]). . o This together with (21) implies that (18) fails. Q.E.D.
~ Proposition 3: Under Assumption A0)¥; is uniformly robustly |y [17], the present authors and their colleague directly dealt with
internally stable if and only if (19) to derive an equivalent discrete-tinke.. condition. For other
inf [det (I — ﬁ(e””)\if(e”’h))| > 0. (14) earlie_r_ arguments which studied the equivaldnt-induced norm
»€Lo,PEP condition, see, e.g., [3], [20], [23], and [26].

Next, let us relate condition (14) G, (j¢) andA(j ) introduced

in Section lll. To this end, note thdf = II;, + ®a from (2), where V. ROBUST STABILITY AGAINST LTI PERTURBATIONS
Pa = SGuAGLH (note thatSGx AGH is LTI). Then, itis | the preceding section, we studied the “general” case where the
routine to show that, under A0), (14) is equivalent to perturbationA is linear h-periodic. Since the nominal plant is LTI,
inf | det(I — f\(e”"’)(im(e”h))l > 0. (15) however, it would be more reasonable to assume thais also
wE€Tg, AEA LTI [8], [9], [24]. Hence, in this section, we derive a necessary
Here, we have and sufficient condition for robust stability against LTI (actually

o ) ) FDLTI) perturbations. Also, we compare the obtained condition with
det(T = A(e’*")®a(e’?")) = D(I, A(j¢)Gy(iv)).  (16) the small-gain condition (19) and clarify when the latter becomes
particularly poor.

We denote the subset @k consisting of LTI perturbations by
DI, A(Je)Gy (i) Ar711. Itis obvious that the uniform robust internal stability condition

< ene 1 _ ' ' is given by (18) withA replaced byAi 1
= D(L INCAE EGm(N)é(N)GmH(N)) (17) . / , ,
inf DI, A(jp)Gy(Ge))] > 0. (23)

P€Lg, AEATTT

To see this, observe

by Proposition 1 and (3). By the impulse modulation formula/fer
periodic systems [see (36) in Appendix A], (16) follows readily sincklere, forA € Arrr, we have

AdA is a finite-dimensional matrix. Alio) = diagl--- Alio Alios) Alior) - 24
To summarize the above, we obtain the following robust stability Ale) 6l Up-1) Alivo) Alier) i (24)
condition: As is clear from the above structure &(j¢), the necessary and

sufficient condition (23) turns out to be a highly structuretype of

DA, Ale)Gwlie)] > 0. (18) condition, as pointed out in [9] (for the case of stable perturbations).

inf
€Ty, AEA
By restating the above condition, we can obtain the following main - . . )
result of this section. A. Robust Stability Condition Against LTI Perturbations
Theorem 1: Under Assumption A0), the sampled-data sysfém Using Proposition 1, together with (3) and (24), let us rewrite (23)
is uniformly robustly internally stable if and only if as

Gr — ‘ P . inf t(I — LJeh
19wl = max [|Gy ()l <1 (19) e b ldet(I = Ta (7)) > 0 (25)
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where Note thatn(e’?") = n(e™7*") and that the above infinite sum
R v 1 & . converges for eaclyr € Z, and defines a continuous function with
Ta(e?#"):= - > Ao (Gom)A(Tom) respect top by A6)—A8). Thereforey(e¢’#") can be approximated
. by |6(e’¥")| with a discrete-time stable transfer functidhz).
-Gz (i) H(jom)- (26) SinceA(z) is a closed-loop discrete-time transfer function, we can

(approximately) solve an even harder problem of robust stabilization
In view of (25), let us fix, € Zo and consider the set of the seriegainst LTI perturbations [i.e., the problem of findifigthat achieves
{A(jom)} in m satisfying det(I — Ta(e’*")) = 0, which we (32)] by solving a discrete-timél-. problem with the weigh(=).
denote byA, (for ¢ = 0, we consider only those series such thajctyally, this method is nothing but the one proposed by the present
A(jgo) is real andA(je ) is the complex conjugate ak(j¢.),  authors in their previous study on robust stabilization of (multirate)
similarly for ¢ = w./2). Then, we define sampled-data systems [1], where the condition (32) was regarded as

o < . only sufficient.
X(py= inf <p ||A<mn>||), poy=x(o)™" @7)
{AGGem)IEA, \ m ) o
) ) B. When Does the Small-Gain Condition Become a Poor Measure?
Now, we can obtain the following theorem.

Theorem 2: Under Assumption AQ), the sampled-data systém
is uniformly robustly internally stable against the LTI perturbation
Ay if and only if

It was demonstrated in [8] and [9] by an example that the small-
gain condition could become extremely poor as a measure for robust
stability analysis against LTI perturbations. In order to be more
guantitatively specific, and also to get some insight into the synthesis

= max u(p) < 1. (28) problem of robustly stabilizing controller, let us comp#i&,, (j¢)l|
#E€To0 with 1(¢) and clarify when the former becomes much larger than

Proof: The sufficiency part is easy to prove. The proof othe latter (i.e., when the small-gain condition becomes particularly
the necessity part is done by contradiction. Suppose ghat 1. inappropriate).
Then, there exists some € I, such that for anys: > 0, Suppose for simplicity that the plant is single-input. ThéR,(j¢)
there exists a seriefA1(jom)} € A, satisfying[|A1(jem)|| < becomes a rank-one matrix so that its norm can be computed easily
1+ =, (Ym). Therefore, by Lemma B1 in Appendix B, there exists - 172
a sequencd A} of systems inArrr such that||A; (jem)/(1+ T RdehN A 2
21) = Aok (Gom)|| < e1(m = 0, £1, - --, £F). It follows that G (G0l = < > A G Gonl )

m=—oc
2

141 (Gom) = Aok (Gom) | 1A Gem) = At (Gom)/(1421)]] > Y
+||A1(j97177)/(]-+51)_A2k(j“}9m)|| ( Z ||(1/h)G13(JP7n)H(JQ7n)|| ) . (34)

<2 (m=0, %1, -, £k). (29) T
. v Comparing this with (30), we naturally hayi&ry ()|l > u(y) by
Therefore, for any:(>0), we have| det(I — Ta,, (e’*"))| < = for the Schwarz inequality, where the equality holds if and only if the
small enoughe; and large enouglht by A6)-A8). This means that alignment condition

(25) fails. Q.E.D. < oA , . . v
In special cased7y (j¢) becomes a rank-one matrix so that the A" )G (Gpm)| = exll(1/R)Gr2(om) H (Gom)l ("m)
set A, becomes convex and(y) can be computed analytically. (35)

Theorem 3: Suppose that the plant is a single-input system. Then . .
1i(¢) is attained and is given by is satisfied for some constant. It is similar for the single-output

case.
We can interpret the above arguments as follows. Namely,
in view of the alignment condition, the small-gain condition
could become very poor if the ratio dfA(e’*")Ga1 (jom)|| to
1(1/h)Gh2(jom)H ()| varies remarkably with those: that
Theorem 4: Suppose that the plant is a single-output system. Théarrespond to the significant terms in the summations. The example
() is attained and is given by in [8] and [9] can be explained by this observation, where it was
- shown that the small-gain condition could become extremely poor
_ CorGom 1/MGiaCiom)H(iom)A(e’?™)||. by changing the bandwidth of the filteF' [note that F" affects
p@) = > NG Gem) I(1/B)G2(pm) H Gpm)Al?" )| Cor Goom) bUL MO Crra( o) i (35)]
(31) Now, let us consider the following rule of thumb about the choice
of the filter F': take the bandwidth of" to be equal tav, /2 (which
It follows from Theorems 2-4 that if the plant is either singlefollows from the sampling theorem). For the typical case wligris
input or single-output, we can readily check robust stability of thghe zero-order hold, the bandwidth &F is also aboutv, /2. Hence,
sampled-data systeri;, given ¥. In particular, if the plant is under these conventional choices, the above observation suggests that
single-input/single-output, then (30) and (31) coincide and the robyRkre is not enough reason to believe that the small-gain condition
stability condition (28) reduces to is an overly poor measure. To put it reversely, as long as we follow
max ”A(ewh)” ) n(e,,g,h) <1 (32) the rule of thumb, the_rg seems to be a _moderate reason to :_aldhere
€Ly to the small-gain condition (19) [because it may not pay to design a
%ontroller based on the exact but much involved condition (32)].

&S]

nle) = > A" G Gpw) L/ )G r2(ipm) H (Gpm)|l-

m=—oco

(30)

m=——oco

Wheren(cf""h) is a real-valued nonnegative function defined on th

unit circle

o VI. CONCLUSION

= Z 1G22 (G om )L/ R)G12(Gom) H (Fom)ll. (33) In this paper, we gave necessary and sufficient conditions for
m=—o0 robust stability of sampled-data systems under possibly unstable

(e’
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Fig. 5. Sampled-data system including asperiodic continuous-time sys-
tem.

additive/multiplicative perturbations. The results were established by
a Nyquist-type of argument applied to the frequency-domain method
of sampled-data systems developed recently in [2] and [28]-[30], and!
the robust stability problems for lineérperiodic perturbations and

LTI perturbations were dealt with in a unified manner. Furthermore,
the relationship between the two problems was clarified, and some
insight into the design problem of a robustly stabilizing controller[4]
was obtained. [5]

APPENDIX A
IMPULSE MODULATION FORMULA FOR h-PERIDOIC SYSTEMS

6]
Consider the open-loop sampled-data system shown in Fig. ?7]
where A is linear h-periodic andG2 and G2y are LTI and satisfy
AT). We further assume A8). Let us define the LTI discrete-timejg
system®a :=SG21 AG12’H. Our purpose here is to reIaieA(eNh)
t0 H(jom), Gra(pm), Gar(jom), and A(je).

We can show the relation [e]

oa(e’) = Gn( P)A(JP)G12H(j¢) (36) [10]
. . . - [11]
which we call thampulse modulation formultor h-periodic systems
(the proof can be found in [14]). IA is LTI, by (24) it reduces to
the well-known formula for LTI systems [22] [12]
[13]
bae") = Z Go1(pm) MG 9 )Grz(jpm) H(jom). (37)
meTE [14]

In the above, we assumed that; AG» is strictly causal. If this
is not the casey; may be discontinuous at sampling instants so thts]
half of the direct feedthrough matrix 6f21 AG,2 H evaluated as the
limit from the right of ¢ = 0 must be added to the right-hand side[16]
of (36) and (37) in that case.

[17]
APPENDIX B

SOME RESULTS ON APPROXIMATE INTERPOLATION

In this Appendix, we give some results on approximate interpé%s]
lation of given frequency response data by the frequency-domain
representation of a finite-dimensional system. The proofs can [®]
found in [14] and [16].

Lemma B1: Suppose that any € Z, and complex matrices (of
the same sizep,,, with ||D...|| < 1(m =0, £1, ---, £k) are given

. ; [20]
(for = 0, we assume thaby is real andD_,, is the complex
conjugate ofD.,, similarly for ¢ = w,/2). Then, for any= > 0,
there exists a stable causal FDLTI systémsuch that [21]
IAlle <L 1Dm = AGpm)ll <& (m=0,£1 -, £k)
Aljem)|l <= k). [22]
IAG o)l < (|m| > k) (38) 23]

Lemma B2: Suppose that any € 7, and A = zy™ such that
IA]| < 1 are given, where: andy are infinite-dimensional vectors. [24]
Then, for anye > 0, there exists a stablé-periodic systemA,
described by (9) such that 25]

JAilo <1, A=A Gyl <= (39)
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