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Robust Stability of Sampled-Data Systems Under Possibly
Unstable Additive/Multiplicative Perturbations

Tomomichi Hagiwara and Mituhiko Araki

Abstract—This paper applies the FR-operator technique to the robust
stability problem of sampled-data systems against additive/multiplicative
perturbations, where a reasonable class of perturbations consists of
unstable as well as stable ones. Assuming that the number of unstable
modes of the plant does not change, we show that a small-gain condition
in terms of the FR-operator representation (which is actually equivalent
to a small-gain condition in terms of the L2-induced norm) is still
necessary and sufficient for the sampled-data system to be robustly stable
againsthh-periodic perturbations, in spite of their possible instability. The
result is derived by a Nyquist-type of arguments. Next, a necessary and
sufficient condition for robust stability against linear time-invariant (LTI)
perturbations is also given. Furthermore, we show that if the plant is
either single-input or single-output, the condition can be reduced to a
readily testable form. Finally, we clarify when the small-gain condition
becomes a particularly poor measure for robust stability.

Index Terms—FR-operator, impulse modulation formula, LTI pertur-
bations, periodic perturbations, robust stability.

I. INTRODUCTION

The robust stability analysis andH1 control of sampled-data
systems were studied intensively over the past several years (e.g.,
[1]–[3], [6]–[10], [17], [19], [20], [23]–[26], and [28]–[30]). Many
of these studies use theL2-induced norm, and the small-gain theorem
has been the typical tool. Recently, however, frequency-domain
methods for sampled-data systems were developed, and their link to
theL2-induced norm method was established [2], [28]–[30] (see also
[8], [9], [11], [13], [15], [17], and [24] for other related frequency-
domain studies).

There are two main contributions included in this paper. The first is
to have derived the necessary and sufficient conditions for robust sta-
bility of sampled-data systems under possibly unstable perturbations
(it should be noted that we confine ourselves to additive/multiplicative
perturbations in this paper; unstable perturbations naturally arise in
these type of perturbations). When perturbations may be unstable, the
small-gain theorem cannot be applied, and hence no robust stability
conditions have been obtained. In this paper, under mild assumptions
(including the assumption that the number of unstable modes of the
plant does not change), necessary and sufficient conditions are derived
through a Nyquist-type of argument with the FR-operator technique
[2], making use of its frequency-domain nature. Section IV deals with
the case of linearh-periodic perturbations and Section V the case of
linear time-invariant (LTI) perturbations. It turns out that a small-
gain condition in terms of the FR-operator representation (which is
actually equivalent to one in terms of theL2-induced norm) is still
necessary and sufficient for the case of linearh-periodic perturbations,
in spite of their possible instability;note that this result extends the
one given in [25] and is a sampled-data counterpart to [5]. Similarly,
the necessary and sufficient condition for LTI perturbations extends
the one given in [9].

The second main contribution of this paper is to have clarified
when the small-gain condition becomes an extremely poor measure
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for robust stability analysis and synthesis against LTI perturbations.
The key for the success in obtaining this result is that we employed a
unified method (i.e., Nyquist-type of argument with FR-operators)
to deal with both linearh-periodic and LTI perturbations. The
observation of the obtained result leads us to an insight into the
design problem of a robustly stabilizing controller.

Although we use the FR-operator in this paper, it might be
possible to derive the same results using an essentially equivalent
notion (the frequency response operator defined via a lifting-based
transfer function [30]). In the present authors’ views, the advantages
of adopting the FR-operator in the very context of the problem
we study here seem to be as follows. First, the FR-operator is
an operator onl2, and as given in Section III-C, the notion of a
determinant can easily be introduced to it in a quite similar way to the
finite-dimensional case. Moreover, because of this, the interpolation
problems that we need to solve for the necessity arguments of
robust stability conditions reduce to intuitive and tractable ones
(Appendix B).

Notation and Terms:kXk denotes the maximum singular value of
X if X is finite dimensional and thel2-induced norm ofX if it is
infinite dimensional. A system is denoted by a Roman/Greek capital
letter, e.g.,P and	, and its frequency-domain representation (includ-
ing theh-periodic counterpart if it ish-periodic; see Section III-B)
is denoted by putting a hat on it, e.g.,P̂ and	̂; a Roman letter is for
a continuous-time system while a Greek letter is for a discrete-time
system, in general. A mode of a continuous-time LTI system is an
eigenvalue of its state transition matrix and is unstable if it lies in
the closed right half-plane.

II. PROBLEM FORMULATION

The purpose of this paper is to study robust stability of the
sampled-data system�s shown in Fig. 1, which consists of the
continuous-time plantP , the anti-aliasing filterF , and the discrete-
time compensator	, together with the ideal samplerS and the
(arbitrary but given generalized) holdH, both operating at sampling
periodh synchronously. The nominal plant is denoted byP0, and the
actual plantP lies somewhere in a prescribed setP includingP0. In
this paper, we consider the case where the setP is described with
additive or multiplicative perturbations. Namely, we consider one of
the following equations:

P =P0 +W1�W2; P = P0(I +W1�W2)

P =(I +W1�W2)P0: (1)

Here, W1 and W2 are appropriate known stable weights, and�
denotes the perturbation, which lies in a prescribed set to be defined
later.

It is generally true that we must consider an unstable (as well
as stable)� unless we assume that the unstable part of the plant
is perfectly known, which is a strong assumption (for example, if
the location of an unstable mode is uncertain, we will be led to an
unstable additive perturbation). This motivates us to study the ro-
bust stability problem underpossibly unstableadditive/multiplicative
perturbations. The small-gain theorem cannot deal with this type
of perturbation, and this paper aims at establishing a Nyquist-type
approach to this problem. Throughout the paper, we make the
following assumptions.

A1) P0 is strictly causal and finite-dimensional LTI (FDLTI).
A2) P is strictly causal, finite dimensional, and is LTI or linear

h-periodic.

Fig. 1. Sampled-data system�s.

Fig. 2. Perturbed plant with an anti-aliasing filter.

A3) In (1), W1 andW2 are given stable causal FDLTI systems,
and � is a causal linearh-periodic system with the “L1-
norm” of �̂ being less than one:k�̂k1 < 1.

The definition of theL1-norm of the frequency-domain represen-
tation �̂ corresponding to the linearh-periodic system� will be
deferred to Section III-B.

By A2), it follows that the actual plantP can be associated with
a discrete-time state transition matrix over the interval[0; h] (i.e.,
the monodromy matrix). Let us call the number of the eigenvalues
of the monodromy matrix with magnitude no smaller than one, the
number of the unstable modes ofP . Now, our next assumptions are
as follows [A5) is assumed for simplicity].

A4) P has exactly as many unstable modes asP0.
A5) F is causal and FDLTI.

The mapping fromu to y coincides with that of the system shown
in Fig. 2, whereG is an appropriately formed FDLTI generalized
plant. Note that

G11 = 0 (2)

by (1). For thisG, we assume the following [A6) is standard from
[6], while A7) is for simplicity].

A6) The systemG21 from w to y is strictly causal.
A7) G12 andG21 have no modes on the imaginary axis.

The above assumptions are satisfied ifF is strictly causal and ifP0
andF have no modes on the imaginary axis. Finally, we assume the
following (most of the holds studied so far in the literature, including
the zero-order hold, satisfy it).

A8) H is a finite-responseC1 hold [2].

Definition 1: The set of� satisfying Assumptions A2)–A4) is
denoted by�. The set of plantsP corresponding to� is denoted
by P.

Definition 2: The sampled-data system�s is robustly internally
stable if 	 internally stabilizes anyP 2 P (in the sense of [6]
and [21]). It is uniformly robustly internally stableif it is robustly
internally stable and ifinfP2P �P > 0; sup

P2P �P < 0, where�P
and�

P
, respectively, denote the upper and lower gain margin in dB

corresponding to the plantP .
Now, our robust stability problem is posed as follows.
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Problem 1: Assume A1)–A8). Given an LTI compensator	 that
internally stabilizes the nominal plantP0, find a necessary and suf-
ficient condition for uniform robust internal stability of the sampled-
data system�s.

III. PRELIMINARIES

A. FR-Operator of Sampled-Data Systems

Let us consider the nominal sampled-data system shown in Fig. 3,
whereG is as introduced in the preceding section. It can be described
by the FR-operator representation [2], [15] as

G	(j') =
1

h
G12H(j') � �̂(ej'h) �G21(j');

' 2 (�!s=2; !s=2]=: I0 (3)

where!s := 2�=h denotes the sampling angular frequency,

'm := '+m!s (m = 0; �1; �2; � � �) (4)

G12H(j') :=

...
Ĝ12(j'�1)Ĥ(j'

�1)

Ĝ12(j'0)Ĥ(j'0)

Ĝ12(j'1)Ĥ(j'1)

...

(5)

G21(j') := [� � � Ĝ21(j'�1) Ĝ21(j'0) Ĝ21(j'1) � � � ]

(6)

and �̂ is given by

�̂ := 	̂(I � �̂0	̂)
�1; �0 :=SFP0H: (7)

Ĥ(s) denotes the “transfer matrix” of the holdH (e.g., Ĥ(s) =
(1 � e�sh)I=s for the zero-order hold).

For each' 2 I0, G	(j') defines a bounded operator onl2. Let
us denote the set ofG	(j')(' 2 I0) by G	, and define

kG	k1 := max
'2I

kG	(j')k (8)

where the norm in the right-hand side denotes the induced norm on
l2. kG	k1 is called theH1-norm of the FR-operatorG	 [2] and
is known to coincide with theL2-induced norm fromw to z of the
sampled-data system [2], [29].

An important property of (3) is that it defines a finite-rank operator
on l2.

B. FR-Operator ofh-Periodic Continuous-Time Systems

Next, let us quickly review the study of [27] on the frequency
response of anh-periodic continuous-time system and introduce the
notion of theL1-norm for �̂.

Without loss of generality (see [18] and [27]), let us employ the
following “realization” of �:

dx�
dt

= A�x� +B�(t)u�; y� = C�(t)x� +D�(t)u�

(9)
whereA� is a constant matrix andB�(t), C�(t), andD�(t) are
h-periodic matrices that are continuous and bounded on the interval
[0; h). In the following, it is enough to study the case whereA�

has no eigenvalues on the imaginary axis (i.e., the corresponding
monodromy matrix has no eigenvalues on the unit circle).

Fig. 3. Sampled-data system with the generalized plant.

Now, let us introduce the following Fourier series expansions:

B�(t) =

1

m=�1

B�me
jm! t; C�(t) =

1

m=�1

C�me
jm! t

D�(t) =

1

m=�1

D�me
jm! t: (10)

Next, let us define the infinite-dimensional Toeplitz matrices by

A� := diag[� � � A� A� A� � � � ]

B� :=

. ..
.. .

. ..
. .. B�0 B��1 B��2

. .. B�1 B�0 B��1

. ..

B�2 B�1 B�0

. ..
. ..

.. .
. ..

(11)

(similarly for C� andD�). Then, the steady-state transfer charac-
teristics of� can be described by

�(j') =C�(E(j')� A�)
�1B� +D�

E(j') =diag[� � � j'�1I j'0I j'1I � � � ]: (12)

It is easy to show that�(j') also defines a bounded operator on
l2 for each' 2 I0.

Definition 3: The L1-norm of �̂ is defined as k�̂k1 :=
max'2I k�(j')k. In particular, if � is bounded onL2, it is
also called theH1-norm of �̂.

It is easy to see that if� is FDLTI, the above definitions reduce
to the standard ones for theL1-norm andH1-norm of �̂. We can
also show that if� is bounded onL2, theH1-norm of �̂ and the
L2-induced norm of� coincide.

C. Determinant of a Linear Operator onl2

As mentioned before, we aim to develop a Nyquist-type of argu-
ment in this paper. To this end, the notion of the determinant of a
“return difference FR-operator” seems indispensable. Although such
a notion is not necessarily standard for general linear operators, the
following results of [4] and [12] suffice for our purpose (a more
elementary treatment is given in [14]).

Consider the operatorI � T , whereT is a finite-rank operator.
Then, T has a finite number (in fact, no larger than its rank) of
nonzero distinct eigenvalues. The set of such eigenvalues is denoted
by �(T ). For each� 2 �(T ), there exists an integerk� such that
ker(T � �I)k = ker(T � �I)k (8k > k�), and thealgebraic
multiplicity �� := dim(ker(T � �I)k ) is finite.

Definition 4: The determinant of the operatorI � T , which we
denote byD(I; T ), is defined as

D(I; T ) :=
� 2�(T )

(1� �i)
� (13)

where�(T ) denotes the set of distinct nonzero eigenvalues ofT .
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Fig. 4. Discrete-time equivalent�d of �s.

Remark 1: If T is an operator on a finite-dimensional space, we
haveD(I; T ) = det(I � T ).

The following result plays an important role.
Proposition 1: If either S or T is finite-rank, thenD(I; ST ) =

D(I; TS).

IV. NECESSARY AND SUFFICIENT CONDITION FOR ROBUST STABILITY

In this section, we derive a necessary and sufficient condition for
robust stability of�s through a Nyquist-type of argument. Let us
consider the discrete-time system�d shown in Fig. 4, where� is
defined by� := SFPH. Note that� is LTI even thoughP may not
be. Here, we have the following result, which basically follows from
[21, Proposition 7].

Proposition 2: �s is internally stable if and only if�d is.
Now, internal stability of�d can be checked by the discrete-time

Nyquist stability criterion, and under the assumption

A0) 	 internally stabilizesP0;

we obtain the following result by Assumption A4) (with any kind of
possible unstable cancellations that might occur for some� 2 �
taken into account [14]).

Proposition 3: Under Assumption A0),�s is uniformly robustly
internally stable if and only if

inf
'2I ;P2P

j det (I � �̂(ej'h)	̂(ej'h))j > 0: (14)

Next, let us relate condition (14) toG
	
(j') and�(j') introduced

in Section III. To this end, note that̂� = �̂0 + �̂� from (2), where
�� = SG21�G12H (note thatSG21�G12H is LTI). Then, it is
routine to show that, under A0), (14) is equivalent to

inf
'2I ;�2�

j det(I � �̂(ej'h)�̂�(e
j'h))j > 0: (15)

Here, we have

det(I � �̂(ej'h)�̂�(e
j'h)) = D(I; �(j')G

	
(j')): (16)

To see this, observe

D(I; �(j')G
	
(j'))

= D I; �̂(ej'h) �
1

h
G21(j')�(j')G12H(j') (17)

by Proposition 1 and (3). By the impulse modulation formula forh-
periodic systems [see (36) in Appendix A], (16) follows readily since
�̂�̂� is a finite-dimensional matrix.

To summarize the above, we obtain the following robust stability
condition:

inf
'2I ;�2�

jD(I; �(j')G
	
(j'))j > 0: (18)

By restating the above condition, we can obtain the following main
result of this section.

Theorem 1: Under Assumption A0), the sampled-data system�s

is uniformly robustly internally stable if and only if

kG	k1 = max
'2I

kG
	
(j')k < 1: (19)

Remark 2: Since kG	k1 coincides with theL2-induced norm
from w to z of the sampled-data system shown in Fig. 3 (as
mentioned in Section III-A), (19) is nothing but the small-gain
condition in terms of theL2-induced norm. What is important here
is that the condition has been derived by taking into account unstable
perturbations. A similar condition stated in [25, Th. 5.1] was derived
by considering only stable perturbations. Also note that, unlike in
[25], our perturbation set� does not contain, for example, any
sampled-data systems, which are not natural as perturbations for a
continuous-time plant.

Proof—i) Sufficiency:The proof is fairly standard, and the de-
tails are omitted.

ii) Necessity: SupposekG	k1 � 1, i.e.,kG
	
(j')k � 1 for some

' 2 I0. Then, for any"1 > 0, there existsx, y, and such that

y = G
	
(j')x; kxk = kyk = 1;  > 1� "1: (20)

Let us define �
1
:= (1=)xy�. Then, it readily follows that

�
1
G
	
(j')x = x. Also, we havek�

1
k = 1= < 1=(1 � "1).

This implies that for any"2 > 0, there exists�
1

of the formx
1
y�
1

such thatk�
1
k < 1 + "2 and

D(I; �
1
G
	
(j')) = 0: (21)

By Lemma B2 in Appendix B, there exists�2 2 � such that
k�

1
=(1 + "2)��

2
(j')k < "2. Thus, it follows that

k�
1
��

2
(j')k

� k�
1
��

1
=(1 + "2)k+ k�

1
=(1 + "2)��

2
(j')k

< 2"2: (22)

This together with (21) implies that (18) fails. Q.E.D.
In [17], the present authors and their colleague directly dealt with

(19) to derive an equivalent discrete-timeH1 condition. For other
earlier arguments which studied the equivalentL2-induced norm
condition, see, e.g., [3], [20], [23], and [26].

V. ROBUST STABILITY AGAINST LTI PERTURBATIONS

In the preceding section, we studied the “general” case where the
perturbation� is linearh-periodic. Since the nominal plant is LTI,
however, it would be more reasonable to assume that� is also
LTI [8], [9], [24]. Hence, in this section, we derive a necessary
and sufficient condition for robust stability against LTI (actually
FDLTI) perturbations. Also, we compare the obtained condition with
the small-gain condition (19) and clarify when the latter becomes
particularly poor.

We denote the subset of� consisting of LTI perturbations by
�LTI. It is obvious that the uniform robust internal stability condition
is given by (18) with� replaced by�LTI

inf
'2I ;�2�

jD(I; �(j')G
	
(j'))j > 0: (23)

Here, for� 2 �LTI, we have

�(j') = diag[� � � �̂(j'�1) �̂(j'0) �̂(j'1) � � � ]: (24)

As is clear from the above structure of�(j'), the necessary and
sufficient condition (23) turns out to be a highly structured�-type of
condition, as pointed out in [9] (for the case of stable perturbations).

A. Robust Stability Condition Against LTI Perturbations

Using Proposition 1, together with (3) and (24), let us rewrite (23)
as

inf
'2I ;�2�

j det(I � �̂�(e
j'h))j > 0 (25)
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where

�̂�(e
j'h):=

1

h

1

m=�1

�̂(ej'h)Ĝ21(j'm)�̂(j'm)

� Ĝ12(j'm)Ĥ(j'm): (26)

In view of (25), let us fix' 2 I0 and consider the set of the series
f�̂(j'm)g in m satisfying det(I � �̂�(e

j'h)) = 0, which we
denote by�̂' (for ' = 0, we consider only those series such that
�̂(j'0) is real and�̂(j'�m) is the complex conjugate of̂�(j'm),
similarly for ' = !s=2). Then, we define

�('):= inf
f�(j' )g2�

sup
m

k�̂(j'm)k ; �('):=�(')�1: (27)

Now, we can obtain the following theorem.
Theorem 2: Under Assumption A0), the sampled-data system�s

is uniformly robustly internally stable against the LTI perturbations
�LTI if and only if

� := max
'2I

�(') < 1: (28)

Proof: The sufficiency part is easy to prove. The proof of
the necessity part is done by contradiction. Suppose that� � 1.
Then, there exists some' 2 I0 such that for any"1 > 0,
there exists a seriesf�̂1(j'm)g 2 �̂' satisfyingk�̂1(j'm)k <
1 + "1(

8m). Therefore, by Lemma B1 in Appendix B, there exists
a sequencef�2kg of systems in�LTI such thatk�̂1(j'm)=(1 +
"1)� �̂2k(j'm)k < "1(m = 0; �1; � � � ; �k). It follows that

k�̂1(j'm)��̂2k(j'm)k �k�̂1(j'm)��̂1(j'm)=(1+"1)k

+ k�̂1(j'm)=(1+"1)��̂2k(j'm)k

< 2"1 (m = 0; �1; � � � ; �k): (29)

Therefore, for any"(>0), we havej det(I � �̂� (ej'h))j < " for
small enough"1 and large enoughk by A6)–A8). This means that
(25) fails. Q.E.D.

In special cases,G	(j') becomes a rank-one matrix so that the
set�̂' becomes convex and�(') can be computed analytically.

Theorem 3: Suppose that the plant is a single-input system. Then
�(') is attained and is given by

�(') =

1

m=�1

k�̂(ej'h)Ĝ21(j'm)kk(1=h)Ĝ12(j'm)Ĥ(j'm)k:

(30)

Theorem 4: Suppose that the plant is a single-output system. Then
�(') is attained and is given by

�(') =

1

m=�1

kĜ21(j'm)kk(1=h)Ĝ12(j'm)Ĥ(j'm)�̂(e
j'h)k:

(31)

It follows from Theorems 2–4 that if the plant is either single-
input or single-output, we can readily check robust stability of the
sampled-data system�s, given 	. In particular, if the plant is
single-input/single-output, then (30) and (31) coincide and the robust
stability condition (28) reduces to

max
'2I

k�̂(ej'h)k � �(ej'h) < 1 (32)

where�(ej'h) is a real-valued nonnegative function defined on the
unit circle

�(ej'h) :=

1

m=�1

kĜ21(j'm)kk(1=h)Ĝ12(j'm)Ĥ(j'm)k: (33)

Note that �(ej'h) = �(e�j'h) and that the above infinite sum
converges for each' 2 I0 and defines a continuous function with
respect to' by A6)–A8). Therefore,�(ej'h) can be approximated
by j�̂(ej'h)j with a discrete-time stable transfer function̂�(z).
Since �̂(z) is a closed-loop discrete-time transfer function, we can
(approximately) solve an even harder problem of robust stabilization
against LTI perturbations [i.e., the problem of finding	 that achieves
(32)] by solving a discrete-timeH1 problem with the weight̂�(z).
Actually, this method is nothing but the one proposed by the present
authors in their previous study on robust stabilization of (multirate)
sampled-data systems [1], where the condition (32) was regarded as
only sufficient.

B. When Does the Small-Gain Condition Become a Poor Measure?

It was demonstrated in [8] and [9] by an example that the small-
gain condition could become extremely poor as a measure for robust
stability analysis against LTI perturbations. In order to be more
quantitatively specific, and also to get some insight into the synthesis
problem of robustly stabilizing controller, let us comparekG	(j')k
with �(') and clarify when the former becomes much larger than
the latter (i.e., when the small-gain condition becomes particularly
inappropriate).

Suppose for simplicity that the plant is single-input. Then,G	(j')
becomes a rank-one matrix so that its norm can be computed easily

kG	(j')k =

1

m=�1

k�̂(ej'h)Ĝ21(j'm)k
2

1=2

�

1

m=�1

k(1=h)Ĝ12(j'm)Ĥ(j'm)k
2

1=2

: (34)

Comparing this with (30), we naturally havekG	(j')k � �(') by
the Schwarz inequality, where the equality holds if and only if the
alignment condition

k�̂(ej'h)Ĝ21(j'm)k = c1k(1=h)Ĝ12(j'm)Ĥ(j'm)k (8m)

(35)

is satisfied for some constantc1. It is similar for the single-output
case.

We can interpret the above arguments as follows. Namely,
in view of the alignment condition, the small-gain condition
could become very poor if the ratio ofk�̂(ej'h)Ĝ21(j'm)k to
k(1=h)Ĝ12(j'm)Ĥ(j'm)k varies remarkably with thosem that
correspond to the significant terms in the summations. The example
in [8] and [9] can be explained by this observation, where it was
shown that the small-gain condition could become extremely poor
by changing the bandwidth of the filterF [note that F̂ affects
Ĝ21(j'm) but not Ĝ12(j'm) in (35)].

Now, let us consider the following rule of thumb about the choice
of the filterF : take the bandwidth of̂F to be equal to!s=2 (which
follows from the sampling theorem). For the typical case whereH is
the zero-order hold, the bandwidth of̂H is also about!s=2. Hence,
under these conventional choices, the above observation suggests that
there is not enough reason to believe that the small-gain condition
is an overly poor measure. To put it reversely, as long as we follow
the rule of thumb, there seems to be a moderate reason to adhere
to the small-gain condition (19) [because it may not pay to design a
controller based on the exact but much involved condition (32)].

VI. CONCLUSION

In this paper, we gave necessary and sufficient conditions for
robust stability of sampled-data systems under possibly unstable
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Fig. 5. Sampled-data system including anh-periodic continuous-time sys-
tem.

additive/multiplicative perturbations. The results were established by
a Nyquist-type of argument applied to the frequency-domain method
of sampled-data systems developed recently in [2] and [28]–[30], and
the robust stability problems for linearh-periodic perturbations and
LTI perturbations were dealt with in a unified manner. Furthermore,
the relationship between the two problems was clarified, and some
insight into the design problem of a robustly stabilizing controller
was obtained.

APPENDIX A
IMPULSE MODULATION FORMULA FOR h-PERIDOIC SYSTEMS

Consider the open-loop sampled-data system shown in Fig. 5,
where� is linearh-periodic andG12 andG21 are LTI and satisfy
A7). We further assume A8). Let us define the LTI discrete-time
system�� :=SG21�G12H. Our purpose here is to relatê��(ej'h)
to Ĥ(j'm), Ĝ12(j'm), Ĝ21(j'm), and�(j').

We can show the relation

�̂�(e
j'h) =

1

h
G21(j')�(j')G12H(j') (36)

which we call theimpulse modulation formulafor h-periodic systems
(the proof can be found in [14]). If� is LTI, by (24) it reduces to
the well-known formula for LTI systems [22]

�̂�(e
j'h) =

1

h

1

m=�1

Ĝ21(j'm)�̂(j'm)Ĝ12(j'm)Ĥ(j'm): (37)

In the above, we assumed thatG21�G12 is strictly causal. If this
is not the case,w1 may be discontinuous at sampling instants so that
half of the direct feedthrough matrix ofG21�G12H evaluated as the
limit from the right of t = 0 must be added to the right-hand side
of (36) and (37) in that case.

APPENDIX B
SOME RESULTS ON APPROXIMATE INTERPOLATION

In this Appendix, we give some results on approximate interpo-
lation of given frequency response data by the frequency-domain
representation of a finite-dimensional system. The proofs can be
found in [14] and [16].

Lemma B1: Suppose that any' 2 I0 and complex matrices (of
the same size)Dm with kDmk < 1(m = 0; �1; � � � ; �k) are given
(for ' = 0, we assume thatD0 is real andD�m is the complex
conjugate ofDm, similarly for ' = !s=2). Then, for any" > 0,
there exists a stable causal FDLTI system� such that

k�̂k1 < 1; kDm � �̂(j'm)k < " (m = 0; �1; � � � ; �k)

k�̂(j'm)k <" (jmj > k): (38)

Lemma B2: Suppose that any' 2 I0 and � = xy� such that
k�k < 1 are given, wherex andy are infinite-dimensional vectors.
Then, for any" > 0, there exists a stableh-periodic system�1

described by (9) such that

k�̂1k1 < 1; k���
1
(j')k < ": (39)
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