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Stability Condition of a Class of Nonlinear Feedback
Systems: Reduction to a Convex Problem

Tomomichi Hagiwara, Yoshikazu Miyake,
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Abstract—This paper gives a new criterion for input–output stability
of a class of nonlinear feedback systems. Roughly speaking, it is most
useful in such a practical situation where the nonlinearity in the system is
“almost time-invariant and memoryless” but with “slight time-variations
and dynamics.” It involves two free parameters and contains the circle
criterion and the Popov criterion as special cases. In fact, it extends these
two famous criteria in such a way that the conservatism of the circle
criterion can be reduced when the time-variations and dynamics of the
nonlinearity are “relatively small.” It is also shown that the existence
of the free parameters that fulfill the stability condition can be checked
exactly, by reducing it to a convex problem in the frequency domain.

Index Terms—Circle criterion, convex optimization, input–output sta-
bility, Popov criterion.

I. INTRODUCTION

It is widely accepted that virtually all real systems are more or
less nonlinear; for example, the plant may be nonlinear because
of its backlash characteristics, or the controller may be nonlinear
because of the saturation of the actuator output. Since stability is the
most fundamental property that is required of a control system, it is
extremely important to have a sharp (or less conservative) stability
condition for nonlinear systems.

It is often possible to separate a nonlinear system into a linear
part and a nonlinear part, which are connected with each other as
in Fig. 1. In many practical situations, the nonlinear part belongs
to the class of so-called sector nonlinearities (see Section II for
details), and two types of stability conditions for such nonlinearities
are well known: the circle criterion and the Popov criterion [2], [5].
The circle criterion can be applied to a general sector nonlinearity
with memory (dynamics) and time-varying characteristics, while the
Popov criterion can only deal with a memoryless time-invariant
sector nonlinearity. The price is that the condition the circle criterion
requires is much stronger than that required by the Popov criterion.

Recently, a more general stability condition was derived that
includes the above two famous existing conditions as special cases
[3], [4] and was referred to as the shifted Popov criterion. Roughly
speaking, the feature of the new criterion is that it can give a weaker
condition for stability than the circle criterion does when the nonlinear
part belongs to a certain class of time-varying (or state-dependent)
sector nonlinearities (see Section II for the details of the class). To
consider such a class is natural and the criterion is powerful in many
practical situations where the nonlinear characteristics are almost
time-invariant but change slightly with time.

Now, we are in a position to state the purpose of this paper.
To put it briefly, the aim is to develop the parallel results to the
shifted Popov criterion under the setting of input–output stability;
Lyapunov stability was studied in the former work [3], [4]. There are
three motivations for such a research direction. First, it enables us to
deal with an infinite-dimensional system. Namely, we can consider,
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Fig. 1. Nonlinear feedback system�a.

for example, a system with a pure delay as the linear part of the
nonlinear feedback system. Second, a (stable) dynamical nonlinearity
can also be dealt with by the results of this paper, which should be
useful in robust stability analysis. The third motivation is more or less
pedagogical. Namely, by taking the input–output viewpoint, we can
reach the condition for stability fairly easily in a transparent manner.
The derived condition is the same as that obtained by the Lyapunov
stability setting except for some minor technical details, whereas the
derivation in that setting is more involved and less intuitive. Our
derivation in the input–output setting makes use of scaling among
loops, which is reminiscent of the� analysis or theH1 problem
with constant scaling [7]. The contribution of this paper, however,
is not limited to the extension to the input–output setting; this paper
has a significant advance over the previous work in having shown
the following: to check if the stability condition is satisfied can be
reduced to a convex problem, which can be solved easily [1].

The notation used in this paper is standard.L2 denotes the space
of (Lebesgue) square integrable functions over the nonnegative time
interval, andL2e denotes its extended space. Forf 2 L2, the L2-
norm of f is denoted bykfk, while for f 2 L2e, kfkL [0; T ] is
defined by

kfkL [0; T ] :=
T

0

kf(t)k2 dt

1=2

: (1)

TheL2-induced norm of a system is denoted byk � k if it is bounded
on L2. Also,A is defined as the set of functionsf(�) of the form

f(t) =

1

i=0

fi�(t� ti) + fa(t) (2)

where�(�) denotes the unit delta function,0 � t0 < t1 < � � � are
constants,fa(t) = 0 for t < 0, and

1

i=0

jfij <1;
1

0

jfa(t)j dt <1: (3)

II. PROBLEM SETUP

Let us consider the nonlinear feedback system�a shown in Fig. 1.
Here,G denotes the linear part of the system, and we assume that it
is time-invariant. The nonlinear part of the system is denoted byN ,
and we assume that it can be modeled as the parallel connection of
a memoryless time-invariant nonlinearity and a (possibly) dynamical
time-varying nonlinearity as in Fig. 2. Namely,f = N(e) satisfies

f = f0 + f1; fi = Ni(e) (i = 0; 1) (4)
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Fig. 2. Structure of the nonlinearityN .

where N0: L2e ! L2e is memoryless and time-invariant, while
N1: L2e ! L2e is (possibly) dynamical and time-varying. We further
assume thatN0 belongs to the sector[a; b] (a � b < 1), andN1

belongs to the sector[�"; "] (" > 0), where sectors are defined as
follows.

Definition 1 [5]: The memoryless time-invariant nonlinearityN0

is said to belong to thesector [a; b] if there exists a nonlinear
characteristic function�0(�) such that

a �
�0(e)

e
� b (e 6= 0); �0(0) = 0 (5)

and f0(t) = �0(e(t)) for each timet.
Definition 2 [5]: The (possibly) dynamical and time-varying non-

linearity N1 is said to belong to thesector [a; b] if

kf1 � kekL [0; T ] � rkekL [0; T ]; 8T � 0; 8 e 2 L2e (6)

where

k := (b+ a)=2; r := (b� a)=2: (7)

Remark 1: Definition 2 is stated in a general form for later use.
Since we assume thatN1 belongs to the symmetric sector[�"; "] as
mentioned above, we in fact assume that

kf1kL [0; T ] � "kekL [0; T ]; 8T � 0; 8 e 2 L2e: (8)

The idea behind the above assumption is that many nonlinearities
in practice are almost memoryless and time-invariant (as modeled by
N0) but with slight time variations and dynamics (as modeled by
N1). For example, suppose thatf(t) = �(t; e(t)) is true for each
t for some (probably unknown) time-varying nonlinear characteristic
function�(t; �), where the graph of�(t; �) for each fixedt is known
to lie within the shaded area of Fig. 3. Then, it is easy to see that we
can choose1 a = 0, b = 1, and" = 0:2 in the description ofN by
N0 andN1. On the other hand, if we were to model this nonlinearity
only with N1, we would have to consider a much wider sector [0,
1.2], which will make the stability analysis conservative [3], [4]. In
the following, we assumea = 0 and henceb � 0 without loss of
generality. Also,N0 is called theprimary part andN1 the deviation
part of the nonlinearityN .

Having described the setup of the system we deal with, the purpose
of this paper is to give a condition that ensures the input–output
stability of the nonlinear feedback system�a.

Remark 2: In [3] and [4], a time-varying (or linear-part-state
dependent) butmemorylessnonlinearity satisfying

kf1(t)k � "ke(t)k (9)

1To be more precise, we can actually choosea = 0:2; b = 1, and" = 0:2.

Fig. 3. An example of nonlinearity.

for eacht was considered as the deviation partN1. Integrating the
square of the above over the time interval[0; T ], we have

kf1k
2
L [0; T ] � "2kek2L [0; T ] (10)

which is nothing but (8). This implies that the class of the deviation
parts studied in [3] and [4] is a subset of the class we deal with here.

III. M AIN RESULT

We use the following definition of input–output stability for the
system�a, which is the same stability notion as that used in the
Popov criterion in the input–output setting.

Definition 3: �a is said to bepseudoL2-stable if there exists
some such that

f
y

� 
p
q
_q

(wheneverp; q; _q 2 L2) (11)

where _q denotes the derivative ofq.
Then, we can obtain the following main result (see the Appendix

for the proof).
Theorem 1: Suppose thatg; _g 2 A, where g is the impulse

response ofG and _g denotes its derivative. Let̂G(s) denote the
transfer function ofG. Then, the nonlinear feedback system�a is
pseudoL2-stable if there exist a real number� and a positive number
� such that

f(�; �) := sup
!2[0;1]

f!(�; �) < 0 (12)

where

f!(�; �) = � 1 + b � Ref(1 + j!�)Ĝ(j!)g

+
b"

2�
j(1 + j!�)Ĝ(j!)j2 + "2 +

b"�

2
jĜ(j!)j2:

(13)

Remark 3: Except for some minor technical details, the condition
(12) turns out to be essentially the same as that obtained in the
Lyapunov stability setting [3], [4]. Nonetheless, the above result
has an independent value, since it has some advantages over the
previous work, as mentioned in Section I; it can be applied to, e.g.,
infinite-dimensional systems, too.

Now, when N is memoryless and time-invariant, so that the
deviation partN1 vanishes (and hence" = 0), the above condition
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reduces to the Popov condition

inf
!2[0;1]

b � Ref(1 + j!�)Ĝ(j!)g > �1: (14)

On the other hand, whenN is “totally time-varying and/or dynamic,”
so that the “primary part”N0 vanishes (and henceb = 0), it reduces
to the circle condition (or the small-gain condition)

sup
!2[0;1]

" � jĜ(j!)j < 1: (15)

(By the loop transformation technique [5], we can also verify that it
can represent the general form of the circle criterion as well.) This
implies that the above condition includes the Popov criterion and
the circle criterion as special cases and connects these two famous
criteria “continuously.” To quote the terminology used in [3] and [4],
the above theorem is a “shifted Popov criterion,” because we can
conclude stability by drawing a “shifted Popov locus,2” and checking
that it lies to the right of the line passing through the point�1 + j0
and with slope1=�. A difficulty in checking stability in this way
is that the shifted locus is dependent on� and �, and the line is
also dependent on� so that it is not obvious how to find appropriate
values for these two parameters. Unfortunately, no systematic way
for resolving this was given in [3] and [4], and hence stability was
checked on a trial-and-error basis (to be precise, the parameters� and
 were used there instead, where is equal to��1 in our notation).
In contrast, here we can give a simple solution to this difficulty;
checking the existence of the parameters that satisfy the condition
(12) can be reduced to a convex problem.

To see this, note that

@2f!=@�
2 @2f!=@� @�

@2f!=@� @� @2f!=@�
2

=
b"

�3
jĜ(j!)j2

�2!2 ��!2�
��!2� 1 + !2�2

� 0 (16)

is true for all� and� > 0. Hence,f!(�; �) is convex for each fixed
!, so that

f(�; �) := sup
!2[0;1]

f!(�; �) (17)

is convex, too. Therefore, existence of the parameters� and � that
prove stability via Theorem 1 can be checked readily with such
convex optimization algorithms as the cutting-plane algorithm and
the ellipsoid method [1].

The advantage of this convexity approach is obvious. For example,
for fixed b, we can readily determine, via the bisection search,
the upper bound of" for which Theorem 1 can assure stability.
Alternatively, the upper bound forb can also be determined for fixed
". Furthermore, for fixedb and", we can determine the “pure-delay
margin” of the system. Here, by “pure-delay margin,” we mean the
range of the extra pure delay�TL (which could be negative) that the
plantG can accommodate (on the top of the nominal pure delayTL0)
while stability of the feedback system is guaranteed. The calculation
of this margin is based on the observation that�TL affects only
the first term on the right-hand side of (13) and is carried out with
alternate iterations involving the modification of the functionf(�; �)

2This locus is obtained by drawing the Popov locus magnified by the factor
of b and shifting each point on the locus to the left by the amount of the second
and third terms on the right-hand side of (13).

Fig. 4. Shifted Popov locus for(�; �) = (1:61085; 3:29146).

and the optimization of that modified function. The details will be
explained in the following section with a numerical example.

IV. EXAMPLE

Let us consider the nonlinear feedback system of Fig. 1 with

Ĝ(s) =
5

(s+ 1)2(s+ 2)
e�T s (18)

where the nominal value of the pure delayTL is TL0 = 0:05, and the
sizes of the sectors associated with the nonlinear element are given
by b = 2 and " = 0:2. The circle criterion applied to this system
(with sector [�"; b + "] = [�0:2; 2:2]) cannot assure stability of
this system.

We applied the ellipsoid method to search for a point(�; �) that
satisfies the condition (12), taking the initial ellipsoid as the circle
with radius 100 centered at(0; 1) (this value of(�; �) corresponds to
the circle criterion mentioned above). After 17 iterations, we reached
the point (�; �) = (1:61085; 3:29146) such that (12) is satisfied.
Namely, the feedback system considered here is assured to be pseudo
L2-stable. The associated shifted Popov locus is shown in Fig. 4; we
can verify that the shifted Popov locus lies to the right of the critical
line.

In general, to identify the pure delayTL of a system exactly is
a hard task, and hence it is practically very important that stability
is assured for some relatively wide range ofTL around its nominal
valueTL0. As we already stated at the end of the preceding section,
we can determine the range ofTL for which we can assure stability.
The method is illustrated below, using the same example. To make
clear that the underlying time delay isTL, the functionf!(�; �)
defined in (13) will be denoted byfT! (�; �), and similarly,f(�; �)
defined in (12) will be denoted byfT (�; �) in the following.

Continuing the iterations to search for the optimal point
(�; �) = (�1; �1) that minimizes the functionfT (�; �), we obtain
(�1; �1) = (0:868918; 1:98249), for which we naturally have
fT (�1; �1) < 0. Noting that the change ofTL affects only the
first term on the right-hand side of (13), we can compute, for each!,

the smallest positive�TL(!) such thatfT +�T (!)
! (�1; �1) = 0,

if it exists (see Fig. 5)—if no such�TL(!) exists, then define
�TL(!) = 1. We now define

TL1 = TL0 + inf
!2[0;1]

�TL(!) = 0:145346: (19)

Then, obviously, we havefT (�1; �1) = 0. But, optimizing the
function fT (�; �), we obtainfT (�2; �2) < 0 for (�2; �2) =
(0:808146; 1:72389). Then, using the same procedure as before,
we can obtainTL2(>TL1) such thatfT (�2; �2) = 0. Again opti-
mizing the functionfT (�; �) and repeating the same procedures,
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Fig. 5. Computation of �TL(!) and �TL(!) (� = �1 +
(b"=2�)j(1 + j!�)Ĝ(j!)j2 + ("2 + (b"�=2))jĜ(j!)j2, �TL(!) =
�1=!, �TL(!) = ��2=!).

we obtain the nondecreasing sequencefTL0; TL1; TL2; � � �g, which
converges toTL = 0:146877. It is obvious that stability is assured
for anyTL such thatTL0 � TL < TL, because for eachTL, one of
(�k; �k) (k = 1; 2; � � �) satisfiesfT (�k; �k) < 0. This procedure
can be applied to the general case, too.

Similarly, starting from(�01; �
0
1) := (�1; �1), we can compute

the smallest negative�TL(!) such thatfT +�T (!)
! (�01; �

0
1) = 0,

if it exists (see Fig. 5)—if no such�TL(!) exists, then define
�TL(!) = �1. Defining

T 0L1 = TL0 + sup
!2[0;1]

�TL(!) (20)

we obtainT 0L1 = �1:955 65 < 0. Hence, we can see that stability is
assured also for anyTL such that0 � TL � TL0. In the general case,
if T 0L1 > 0, then we optimizefT (�; �). We would generally obtain
fT (�02; �

0
2) < 0 for some (�02; �

0
2), and then we would obtain

T 0L2(< T 0L1) using the same procedure. Repeating the procedure, we
can obtain the nonincreasing sequencefTL0; T

0

L1; T
0

L2; � � �g, which
converges toTL (needless to say, ifT 0Lk < 0 for somek, we can
stop the iteration and setTL = 0). This way, we can obtain the lower
boundTL of TL for which stability can be assured.

V. CONCLUSION

In this paper, we studied the input–output stability problem of a
class of nonlinear feedback systems and gave a stability criterion
with two free parameters. It includes the circle criterion and the
Popov criterion as special cases and is most useful in such a practical
situation where the nonlinearity in the system is almost time-invariant
and memoryless but with slight time-variations and dynamics. It is
also shown that the existence of suitable free parameters that fulfill the
stability condition can be checked readily by a reduction to a convex
problem in the frequency domain. With this convexity approach,
we can compute exactly the upper bound for the size of the sector
nonlinearity for which we can assure stability. Furthermore, we can
also compute the “pure-delay margin” of the system.

APPENDIX

PROOF OF THE MAIN RESULT

To prove Theorem 1, note in view of Fig. 2 that�a (Fig. 1) can
be rearranged, using the same� as in Theorem 1, into�b shown in
Fig. 6, whereM� denotes the multiplier with transfer function

M̂�(s) = 1 + �s: (21)

Fig. 6. Introduction of a multiplier (the case of nonnegative�)—�b.

We can prove Theorem 1 based on this block diagram. (Here, we
confine ourselves to the case of nonnegative�. If � < 0, we need to
rearrange Fig. 1 into Fig. 7 and employ slightly modified arguments,
but the details are omitted.)

It is easy to see that�a is pseudoL2-stable if �b is L2-stable
for the inputsp, q, and ~q = q + � _q. Now, since the nonlinear
part N0M

�1
� again belongs to the sector[0; b] in the sense of

Definition 2 (see [6]), it can be regarded as the parallel connection
of the linear gainb=2 and a new nonlinearityN2 belonging to the
sector[�b=2; b=2]. Then, further rearranging the block diagram of
�b (Fig. 6) using these two new elements instead ofN0M

�1
� , we

can obtain the feedback system�c shown in Fig. 8. Furthermore, it
is easy to see that�b is L2-stable forp, q, and ~q if and only if �c

is for the inputsv = p � b~q=2 andw = [q; ~q]T .
Now, we can apply the small-gain theorem to�c if the linear

systemGm is L2-stable. We first show that if (12) is satisfied, then
the small-gain condition holds for the feedback system�c; thatGm

is in factL2-stable if (12) holds will be confirmed later.
Instead of dealing with�c directly, however, we further apply a

loop transformation and introduce a nonzero scaling parameter. To
make the arguments transparent, let us introduce

� := "1=2; � := b1=2: (22)

SinceN1 belongs to the sector[�"; "] = [��2; �2], andN2 belongs
to the sector[�b=2; b=2] = [��2=2; �2=2], the system�c is L2-
stable if the system�d shown in Fig. 9 isL2-stable for anyN1s

belonging to the sector[��; �] and anyN2s belonging to the sector
[���=2; ��=2], where �( 6=0) is the scaling parameter. Therefore,
by applying the small-gain theorem to�d, we can conclude that
the system�c is L2-stable (and hence the system�a is pseudo
L2-stable) if

kGsk < kNsk
�1: (23)

Now, we have the following lemma.
Lemma 1: kNsk

2 � " + b�2=4.
Proof: Denote, with abuse of notation, the input and output

of Ns by u = [u1; u2]
T and y, respectively. Then, we have

y = N1su1 + N2su2, so that

kyk2 � (kN1sk � ku1k+ kN2sk � ku2k)
2

� kN1sk
2 + kN2sk

2 ku1k
2 + ku2k

2

� �2 + �2�2=4 kuk2

= "+ b�2=4 kuk2: (24)

Q.E.D.
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Fig. 7. Introduction of a multiplier (the case of negative�).

Fig. 8. Equivalent transformation of Fig. 6—�c.

Fig. 9. Introduction of scaling into Fig. 8—�d.

By the above lemma and (23), together withkGsk =
sup! kĜs(j!)k, we have only to show that, for� := (2�)1=2, the
condition (12) is equivalent to

sup
!2[0;1]

kĜs(j!)k
2

= sup
!2[0;1]

�Ĝ(j!) 1 +
b

2
M̂�(j!)Ĝ(j!)

�1 2

+
�

�
M̂�(j!)Ĝ(j!) 1 +

b

2
M̂�(j!)Ĝ(j!)

�1 2

< ("+ b�2=4)�1: (25)

Recalling (22), this can be checked by direct computations.
Finally, the proof becomes complete by showing thatGs is L2-

stable if the condition (12) is satisfied. To prove this, we have
only to show that the second subsystem ofGs, namelyM�G(1 +
bM�G=2)

�1, is L2-stable [sinceM�1
� is L2-stable by (21)]. Now,

since the condition (12) implies (14) and sinceM�G is L2-stable by
the assumptiong; _g 2 A, it follows from (a version of) the passivity
theorem [5] thatM�G(1+bM�G=2)

�1 is L2-stable. This completes
the proof.
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