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Abstract—This paper gives a new criterion for input—output stability N
of a class of nonlinear feedback systems. Roughly speaking, it is most f €
useful in such a practical situation where the nonlinearity in the systemis )
“almost time-invariant and memoryless” but with “slight time-variations ~ Fig. 1. Nonlinear feedback systeR, .
and dynamics.” It involves two free parameters and contains the circle
criterion and the Popov criterion as special cases. In fact, it extends these
two famous criteria in such a way that the conservatism of the circle for example, a system with a pure delay as the linear part of the
critel_rion can be rEdIUCEdIWhe” Itlheltime-\l/ariatir(])ns a”r? dygamics of the nonlinear feedback system. Second, a (stable) dynamical nonlinearity
nonlinearity are “relatively small.” It is also shown that the existence . . .
of the free parameters that fulfill the stability condition can be checked can algo be dealt W_lt_h by the _results Of_ this pgpe_r, W_h'Ch should be
exactly, by reducing it to a convex problem in the frequency domain. useful in robust stability analysis. The third motivation is more or less
pedagogical. Namely, by taking the input—output viewpoint, we can
reach the condition for stability fairly easily in a transparent manner.
The derived condition is the same as that obtained by the Lyapunov
stability setting except for some minor technical details, whereas the

I. INTRODUCTION derivation in that setting is more involved and less intuitive. Our

It is widely accepted that virtually all real systems are more dferivation in the input-output setting makes use of scaling among
less nonlinear; for example, the plant may be nonlinear becal88PS, which is reminiscent of the analysis or thefi.. problem
of its backlash characteristics, or the controller may be nonline4fth constant scaling [7]. The contribution of this paper, however,
because of the saturation of the actuator output. Since stability is {10t limited to the extension to the input-output setting; this paper
most fundamental property that is required of a control system, it}&S @ significant advance over the previous work in having shown

extremely important to have a sharp (or less conservative) stabilfﬁ? following: to check if the stab_ility condition is satisfi_ed can be
condition for nonlinear systems. réduced to a convex problem, which can be solved easily [1].

It is often possible to separate a nonlinear system into a linear! "€ notation used in this paper is standatd.denotes the space
part and a nonlinear part, which are connected with each Other_q;gLebesgue) square mte_grable functions over the nonnegative time
in Fig. 1. In many practical situations, the nonlinear part belond@terval, andL. denotes its extended space. Fok L, the L,-
to the class of so-called sector nonlinearities (see Section Il foP'M of f is denoted byl|f||, while for f &€ Luc, [[fllz,0, 77 i
details), and two types of stability conditions for such nonlinearitigdefined by
are well known: the circle criterion and the Popov criterion [2], [5]. 12
The circle criterion can be applied to a general sector nonlinearity . o T I dt ) 1
with memory (dynamics) and time-varying characteristics, while the £ llezo. 1y 2= /U IFOIFd ' (1)
Popov criterion can only deal with a memoryless time-invariant
sector nonlinearity. The price is that the condition the circle criteriohhe L;-induced norm of a system is denoted || if it is bounded
requires is much stronger than that required by the Popov criterioan L.. Also, A is defined as the set of functiorf§-) of the form

Recently, a more general stability condition was derived that
includes the above two famous existing conditions as special cases
[3], [4] and was referred to as the shifted Popov criterion. Roughly f(t) = Z fib(t —t:) + fa(t) @
speaking, the feature of the new criterion is that it can give a weaker =0
condition for stability tha_n the circle c_riterion d_oes when the nonline%here(s(‘) denotes the unit delta function, < #o < #; < --- are
part belongs to a certain class of time-varying (or state-dependeg%stamsf (t) = 0 for t < 0, and
sector nonlinearities (see Section Il for the details of the class). To ¢ '
consider such a class is natural and the criterion is powerful in many oo oo
practical situations where the nonlinear characteristics are almost Z |fi] < o0, / |fa(t)] dt < . ?3)
time-invariant but change slightly with time. i=0 0

Now, we are in a position to state the purpose of this paper.

To put it briefly, the aim is to develop the parallel results to the I
shifted Popov criterion under the setting of input—output stability; . . o
Lyapunov stability was studied in the former work [3], [4]. There are L€t us consider the nonlinear feedback systemshown in Fig. 1.

three motivations for such a research direction. First, it enables ug1gre:G denotes the linear part of the system, and we assume that it

deal with an infinite-dimensional system. Namely, we can considdf, ime-invariant. The nonlinear part of the system is denotedvby
and we assume that it can be modeled as the parallel connection of
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Fig. 2. Structure of the nonlinearity.

for eacht was considered as the deviation paf. Integrating the

wrhere No: Lz. — Lo is memoryless and time-invariant, Wh”esquare of the above over the time interj@l 7], we have
Ni: Ly, — Lo, is (possibly) dynamical and time-varying. We further

assume thaiV, belongs to the sectdr, 4] (a < b < o0), and Ny
belongs to the sectdr<,¢] (¢ > 0), where sectors are defined as
follows.

Definition 1 [5]: The memoryless time-invariant nonlinearii
is said to belong to thesector [a, b] if there exists a nonlinea
characteristic function,(-) such that

I Fill 7m0 71 < 22 Mlellapo, 71 (10)

which is nothing but (8). This implies that the class of the deviation
; Parts studied in [3] and [4] is a subset of the class we deal with here.

a< @ <b(e#0), v0(0) =0 (5) . MAIN ReESULT

q _ ¢ ht We use the following definition of input—output stability for the

an fo_(t_)_ = vo(e(t)) for each timet. , . ) systemX,, which is the same stability notion as that used in the
Definition 2 [5]: The (possibly) dynamical and time-varying non'Popov criterion in the input—output setting.

. L . .

linearity N1 is said to belong to theector(a, b] if Definition 3: ¥, is said to bepseudoL.-stable if there exists

I f1 = kellnoio 11 < rllelliap.27. YT >0, Ve € Ly, (6) SOmev such that

b
y
Remark 1: Definition 2 is stated in a general form for later use

. h | h . where ¢ denotes the derivative af.
Slnce_ Wwe assume t afl_ belongs to the symmetric sectre, <] as Then, we can obtain the following main result (see the Appendix
mentioned above, we in fact assume that

for the proof).
Al oo, 71 < Ellell oo, 71 VT >0, Ve € Lo.. @8) Theorem 1: Suppgse thay, g € A vyhere g is the impulse
response ofG and g denotes its derivative. Let/(s) denote the

The idea behind the above assumption is that many nonlinearitiggnsfer function ofG. Then, the nonlinear feedback system is
in practice are almost memoryless and time-invariant (as modeledfgeudaL.-stable if there exist a real numbgand a positive number
No) but with slight time variations and dynamics (as modeled by such that
N,). For example, suppose th#tt) = v(¢, e(t)) is true for each
t for some (probably unknown) time-varying nonlinear characteristic f8,p):= sup f.(6,p) <0 (12)
functionv(¢, -), where the graph af(¢, -) for each fixed: is known w€[0, o]
to lie within the shaded area of Fig. 3. Then, it is easy to see that w
can chooska = 0, b = 1, ande = 0.2 in the description ofV by where
No andN:1. On the other hand, if we were to model this nonlinearity ) A
only with N;, we would have to consider a much wider sector [0, full,p) = - (1 + - Re{(1 +J“6)G(f"“’)}>
1.2], which will make the stability analysis conservative [3], [4]. In be AL 2 o bep N A 2
the following, we assume = 0 and hence) > 0 without loss of + 2 (1 +jwf)Gw)]” + <i + T)|G(1w)| :
generality. Also,V, is called theprimary partand V; the deviation (13)
part of the nonlinearityN'.

Having described the setup of the system we deal with, the purpos
of this paper is to give a condition that ensures the input—
stability of the nonlinear feedback systet.

Remark 2: In [3] and [4], a time-varying (or linear-part-state
dependent) bumemorylessonlinearity satisfying

P
<7 |¢ | || (wheneve, ¢, ¢ € L2) (11)

where ‘
q

k:=(0b+a)/2, r:=(b—a)/2. @)

Remark 3: Except for some minor technical details, the condition
OUtpHIZ) turns out to be essentially the same as that obtained in the
Lyapunov stability setting [3], [4]. Nonetheless, the above result
has an independent value, since it has some advantages over the
previous work, as mentioned in Section I; it can be applied to, e.g.,
1A @ < elle®)]] Q) infinite-dimensiovnz_il systems, too. o _

Now, when N is memoryless and time-invariant, so that the

1To be more precise, we can actually choase 0.2, b = 1, ands = 0.2.  deviation partV, vanishes (and hence= 0), the above condition
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reduces to the Popov condition “——————————— —

02 e e -~

inf (b Re{(1 +jwb)Gljw)} ) > —1. (14) —

w€[0, oo

On the other hand, wheN is “totally time-varying and/or dynamic,”
so that the “primary part’N, vanishes (and hende= 0), it reduces
to the circle condition (or the small-gain condition)

sup (€|G(]w)|> < 1. (15) : . . L

w€[0, (X)] -12 -1 ~08 -08 04 2.2 o 02
. . . Fig. 4. Shifted Popov locus fdi, p) = (1.61085, 3.29146).

(By the loop transformation technique [5], we can also verify that it
can represent the general form of the circle criterion as well.) This
implies that the above condition includes the Popov criterion arind the optimization of that modified function. The details will be
the circle criterion as special cases and connects these two fam@yglained in the following section with a numerical example.
criteria “continuously.” To quote the terminology used in [3] and [4],
the above theorem is a “shifted Popov criterion,” because we can IV. EXAMPLE
conclude stability by drawing a “shifted Popov locisind checking et us consider the nonlinear feedback system of Fig. 1 with
that it lies to the right of the line passing through the peirit+ ;0
and with slopel/é. A difficulty in checking stability in this way . 5 .
is that the shifted locus is dependent érand p, and the line is G(s) = m et (18)
also dependent ofr so that it is not obvious how to find appropriate

values for these two parameters. Unfortunately, no systematic Walare the nominal value of the pure delBy is 77,0 = 0.05, and the

for resolving this was given in [3] and [4], and hence stability wagj; o5 of the sectors associated with the nonlinear element are given
checked on a trial-and-error basis (to be precise, the parandeders by b = 2 and= = 0.2. The circle criterion applied to this system

1 were used there instead, wheiés equal top ™" in our notation). (with sector[—=, b + =] = [~0.2, 2.2]) cannot assure stability of

In contrast, here we can give a simple solution to this difficultyj,;q system.

checking the existence of the parameters that satisfy the conditioqu applied the ellipsoid method to search for a paintp) that

(12) can be reduced to a convex problem. satisfies the condition (12), taking the initial ellipsoid as the circle
To see this, note that with radius 100 centered &b, 1) (this value of(#, p) corresponds to

the circle criterion mentioned above). After 17 iterations, we reached

the point(d, p) = (1.61085, 3.29146) such that (12) is satisfied.

9% f./06%  0%f.]/08 ap}
Namely, the feedback system considered here is assured to be pseudo

8 f./000p & f./0p”

_ be |é('jw)|2{ p2,{J2 _pr‘g ‘ } >0 (16) L,-stable. The associated shifted Popov locus is shown in Fig. 4; we
P —pw’6 14+ W% | = can verify that the shifted Popov locus lies to the right of the critical
line.
is true for all§ andp > 0. Hence,f..(¢, p) is convex for each fixed  |n general, to identify the pure deldf, of a system exactly is
w, so that a hard task, and hence it is practically very important that stability
is assured for some relatively wide rangeTof around its nominal
F8,p):= sup f.(8,p) (A7) valueTy,. As we already stated at the end of the preceding section,
wEl0, o] we can determine the range Bf for which we can assure stability.

. t00. Theref ist f th ateasd » that The method is illustrated below, using the same example. To make
IS convex, 100. 1herelore, existence ol the parameteasdy ha ear that the underlying time delay &, the function f..(4, p)

ST I |
prove stability via Theorem 1 can be checked readily with suciLg o in (13) will be denoted by™ (4, p), and similarly, (6, p)
convex optimization algorithms as the cutting-plane algorithm a fined in (12) will be denoted biTL (9’ p)' in the foIIowi’ng. ’

the ellipsoid method [.1]' . . . Continuing the iterations to search for the optimal point
The advantage of this convexity approach is obvious. For examp, 8

_ inimi iorf Lo i
for fixed b, we can readily determine, via the bisection searc 9:‘/25 (il"(%{;éggtlr;Iq‘_gézefgt)hef;?n\fvﬁgh wg-’npa)t'u\:ﬁly? b;z:\?e
the upper bound of for which Theorem 1 can assure stability.Tle’O(e‘l‘ p1) < 0. Not;ng that th,e change df,. affects only the
Alternatively, the upper bound fdrcan also be determined for ﬁxedfirst term on the right-hand side of (13), we can compuite, for each
E. Furtherfmc;]re, for fixed and Lb we candd?termine the “pure—dela);{ e smallest positive\T’, («v) such that’ TAAT L) (g, pi) — 0
margin” of the system. Here, by “pure-delay margin,” we mean t ? ) . - o . ’ o
range of the extra pure delay7;, (which could be negative) that theﬂ exists (see Fig. 5)—if no SUCMAT'7 (w) exists, then define
plantG can accommodate (on the top of the nominal pure délay AT1{w) = co. We now define
while stability of the feedback system is guaranteed. The calculation .
of this margin is based on the observation thsf; affects only Tin =T+ wGi[I(Jlfoo] AT (w) = 0.145346. (19)
the first term on the right-hand side of (13) and is carried out with "

alternate iterations involving the modification of the functifi#, p) . —r o
Then, obviously, we havg' "' (81, p1) = 0. But, optimizing the

function f721(8, p), we obtain f 21(8s, p2) < 0 for (s, p2) =
2This locus is obtained by drawing the Popov locus magnified by the factg)[l)‘&)8 146, 1.72389). Then, using the same procedure as before,

of b and shifting each point on the locus to the left by the amount of the seco@ can obtairil7.>(>771) such thatf "2 (65, p2) = 0. Again opti-
and third terms on the right-hand side of (13). mizing the functionf"22(8, p) and repeating the same procedures,
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Fig. 5. Computation of AT, (w) and AT, (w) (A = -1 + Fig.6. Introduction of a multiplier (the case of nonnegatye->;.

(be/20)|(1 + jwb)G(jo)? + (2 + (bep/2))|G(jw)?, AT (w) =
1 fw, ATy (w) = —¢2/w).
We can prove Theorem 1 based on this block diagram. (Here, we
confine ourselves to the case of nonnegafivéef # < 0, we need to
we obtain the nondecreasing sequefigo, T1.1, T2, - - -}, which  rearrange Fig. 1 into Fig. 7 and employ slightly modified arguments,
converges td’; = 0.146877. It is obvious that stability is assured but the details are omitted.)
for any T, such thatT,o < T:, < T, because for eachy,, one of It is easy to see thakL, is pseudoL.-stable if ; is Lq-stable
Ok, pr) (k= 1,2, ---) satisfiesf'~ (4, px) < 0. This procedure for the inputsp, ¢, and¢ = ¢ + 64. Now, since the nonlinear
can be applied to the general case, too. part NoM; ' again belongs to the sectdd, b] in the sense of
Similarly, starting from (63, p7) := (61, p1), we can compute Definition 2 (see [6]), it can be regarded as the parallel connection
the smallest negativaT',, () such thatf. = 2T=) g pry =, of the linear gainb/2 and a new nonlinearityV. belonging to the
if it exists (see Fig. 5)—if no such\T';(w) exists, then define sector[—b/2, b/2]. Then, further rearranging the block diagram of
AT (w) = —oo. Defining ¥, (Fig. 6) using these two new elements insteacﬂth(jl, we
can obtain the feedback systé shown in Fig. 8. Furthermore, it
is easy to see that, is L.-stable forp, ¢, andq if and only if X.

Tr, =T s AT (w 20) . , ,
i Lo+ ,Jg[‘épx] AL.(w) (20) is for the inputsv = p — b¢/2 andw = [g, c]]T.
Now, we can apply the small-gain theorem ¥ if the linear
we obtainT’,, = —1.95565 < 0. Hence, we can see that stability isSYSt€MG o is L-stable. We first show that if (12) is satisfied, then

assured also for ani, such thab) < 71, < Tyo. In the general case, _thg small-gain cond_ition holds for _the feedbgck systemthat G,
if T/, > 0, then we optimizg/]‘il(e, »). We would generally obtain 1S in fact LQ-stablt_a if (1'2) holc_is will be confirmed later.
?T;ll(%’ b)) < 0 for some (6, p), and then we would obtain Instead of dea]mg Wltf}T_)C directly, however, we further apply a
T.,(< T},) using the same procedure. Repeating the procedure, Uagp transformation and introduce a nonzero scaling parameter. To
can obtain the nonincreasing sequefi@zo. T}, Ty, - - -}, which make the arguments transparent, let us introduce
converges tdl’;, (needless to say, if7, < 0 for somek, we can 12 / 12
stop the iteration and s&t;, = 0). This way, we can obtain the lower ni=e’'", Bi=0"" (22)
boundZ;, of T, for which stability can be assured.
SinceN; belongs to the sectdr<, <] = [—»?, *], and N, belongs
to the sectof—b/2, b/2] = [-5%/2, 3%/2], the systenE, is Lo-
V. CONCLUSION stable if the systenE, shown in Fig. 9 isL.-stable for anyN;

In this paper, we studied the input-output stability problem of Belonging to the sectdr. 7] and any/V,, belonging to the sector
class of nonlinear feedback systems and gave a stability criterion?$/2. 3¢/2], where£(#0) is the scaling parameter. Therefore,
with two free parameters. It includes the circle criterion and thy applying the small-gain theorem 5., we can conclude that
Popov criterion as special cases and is most useful in such a practifgl System¥. is L,-stable (and hence the system, is pseudo
situation where the nonlinearity in the system is almost time-invariafe-stable) if
and memoryless but with slight time-variations and dynamics. It is
also shown that the existence of suitable free parameters that fulfill the [|Gs|| < || Ns ||’1. (23)
stability condition can be checked readily by a reduction to a convex
problem in the frequency domain. With this convexity approach, Now, we have the following lemma.
we can compute exactly the upper bound for the size of the sectoLemma 1: ||V, ||* < ¢ + bg?/4.
nonlinearity for which we can assure stability. Furthermore, we can Proof: Denote, with abuse of notation, the input and output
also compute the “pure-delay margin” of the system. of N, by u = [u1, us]* and y, respectively. Then, we have

Yy = Nisup + 17\725u2, so that

oroor P i ol < Ul sl 1Nl o)
o . : <INl + [1N2a 1) (laa lI” + [Ju*)
To prove Theorem 1, note in view of Fig. 2 that, (Fig. 1) can 9 o N
be rearranged, using the sarthas in Theorem 1, int&, shown in < (487 /4)lull
Fig. 6, whereM, denotes the multiplier with transfer function =(e+ b£2/4)||u||2. (24)

My(s) =1+ 6s. (21) Q.E.D.
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Fig. 8. Equivalent transformation of Fig. 6.
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Fig. 9. Introduction of scaling into Fig. 83;.

By the above lemma and (23), together wihG.,||

sup,, |G+ ()|, we have only to show that, faf := (2p)'/?, the

condition (12) is equivalent to

sup |G, ()|
w€[0, o]

= sup
w€[0, o]

+

3
<(e4+be7/4)7".

Recalling (22), this can be checked by direct computations.
Finally, the proof becomes complete by showing thatis L.-

. b o~ . -1
600 (14§ do(j1G) )

B oo A booa
2 a6 (14§ At

2

)

(1]
(2]
(3]

(4]
(5]
(6]

(7]

stable if the condition (12) is satisfied. To prove this, we have

only to show that the second subsystemaf, namely M, G(1 +
bM,G/2)7t, is L»-stable [sinceM; ' is L,-stable by (21)]. Now,
since the condition (12) implies (14) and sink® G is L.-stable by

the assumption, ¢ € A, it follows from (a version of) the passivity
theorem [5] that\ls G (1 +bMy G /2) ' is Lo-stable. This completes

the proof.
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