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ABSTRACT

The electric field behavior, in particular the field intensification at a contact point, is very im-
portant in complex dielectric systems with gaseous or vacuum insulation. The paper describes
the electric field behavior at and near a contact point in various arrangements with a zero con-
tact angle when volume conductivity is present in the solid dielectric. Contact conditions are
separated into line, point, and surface contact. The effect of volume conductivity is investi-
gated analytically, and numerically by using the boundary element method. The electric field
behavior near a contact point principally depends on the absolute value of complex relative
permittivity, and volume conductivity usually promotes the field intensification. In the ar-
rangements of point contact or line contact, the position of peak electric field shifts from a
contact point when the volume conductivity is higher than a certain value, while in the ar-
rangement of surface contact, the position is usually more or less remote from the contact point,
whether volume conductivity is present or not.
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1 INTRODUCTION

V'ARIOUS insulation systems are now in extensive use, such as gase-
ous, liquid, solid, and vacuum. In all these systems, except for solid
insulation, a solid dielectric is required to provide support and separa-
tion of a stressed conductor. The electric field behavior near a contact
point between solid dielectric surface and an electrode (triple-junction
point) is very complicated, and often is much higher when compared
with the field without solid dielectric [1, 2]. It depends heavily on con-
tact conditions and material properties of the media.

The electric field behavior near a contact point has a strong effect on’
insulation design, particularly where a gaseous dielectric is involved.
This is because the dielectric strength of gaseous dielectrics substan-
tially decreases when partial discharge (PD) takes place due to the field
intensification inside the system. In practice, solid dielectric has more
or less conductivity which may affect the field behavior. Although the
field behavior has already been studied in detail in various contact con-
diticns, the effect of conductivity has not been fully analyzed until now.
When conductivity is involved, analytical solutions exist only for some
limited cases of the triplejunction problems. Although numerical field
calculations have been applied to a few problems, the understanding
of the effect of conductivity is far from satisfactory.

The triple-junction problems may be separated according to their
contact angle « into the following three categories:

1. o=90° (Figure 1(a))
2. 0<a<90° or 90<a<180° (Figure 1(b))
3. a=0° (Figure 1(c))

In the first category, although the presence of a solid dielectric may
alter the electric field distribution without the solid dielectric, field sin-
gularity does not take place.

The second category of arrangements with a contact angle 0<.<90°
or 90<a<180°, has been studied in the 2-dimensional case for both the
effect of permittivity 3, 4] and the effect of conductivity [5] by a group
including one of the authors. The electric field near a triple-junction
(contact) point approaches an infinite or zero value when the media are
perfect dielectrics without any conductivity, depending on the contact
angle and the permittivities of the media. They also report that the
presence of volume conductivity usually promotes the field singularity
near the contact point. ‘

The last category, the triple junction problem of a zero-angle contact
condition, has been investigated only for the effect of permittivity in
some typical arrangements [5, 6]. Although field intensification takes
place near a contact point, the electric field at the contact point is not
singular. The effect of the conductivity has not been investigated yet
for this contact condition.

In this paper, we analyze the effect of volume conductivity in var-
ious conditions. To make clear the general characteristics of the field
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Flgure1 Contact angle at a triple junction. (a) =90°, (b) 0<x<90°,
(0) a=0°.

distribution near a zero-angle contact point, it is to be noted here
that the contact conditions should be also divided into line contact
(2-dimensional case), point contact (axisymmetrical case), and surface
contact. We have applied the boundary element method with second
order curved elements as a numerical calculation method in the analy-
sis.

2 CALCULATION METHODS

2.1 THE BOUNDARY ELEMENT
METHOD

Numerical field calculation methods can be divided basically into
two main groups. The first one is the domain subdivision method such
as the finite difference method and the finite element method, and the
second one is the boundary subdivision method such as the charge sim-
ulation method and the boundary element method. The former is a
more general method, having flexibility so that it can be applied to any
problem, including nonlinear characteristics of media. The domain un-
der consideration is discretized into a number of cells. The solution
of the problem, usually potential, is approximated over the region and
then determined so as to satisfy the governing equations. The electric
field usually is calculated as a derivative of the approximated potential.

In the latter method, usually, only boundaries of the domain are sub-
divided (although domain subdivision is required in the case of inter-
nally charged insulators). Dimension of the final matrix is smaller than
the one in a corresponding domain subdivision method, but the ma-
trix is not usually sparse and needs more time to be solved. However,
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boundary subdivision methods are generally more accurate in calcu-
lating electric field. In this paper, we have used the boundary element
method (BEM), one of the boundary subdivision methods, to calculate
the electric field in all arrangements.

In the BEM, the normal component of electric field and the potential
on all the boundary nodes are determined first. Then, the potential ¢
at any point p in the region can be expressed as

Cop) = /Enw dr +/¢— dr 1
where I is the boundary of the region, E the normal electric field
component on the boundary, C a constant that depends on the position
of p, w is the fundamental solution, and g—z is its normal derivative on
the boundary.

The fundamental solution w is defined separately for 2-dimensional
and axisymmetrical field analysis [8, 9]. In a twodimensional field, for
example, w = (1/27) In(1/r) where r is the distance between p and
the boundary point under consideration.

The BEM can be applied to an inhomogeneous domain by subdivid- -
ing the domain into regions of a homogeneous medium. The BEM then
is applied to each region. The values between two adjacent regions,
region 1 and 2, are related on the boundary surface by

¢1 = ¢2 )

(0’1 + iw61)En1 = (02 + iw52)En2 (3)

where o and ¢ are the conductivity and permittivity of each region, E,
the normal component of electric field, and w is the angular velocity.

Equations (1), (2), and (3) are the main equations in the BEM code
utilized to calculate electric field distribution in this paper.

2.2 CALCULATION PROCEDURES

Electric fields in arrangements with a zero-angle contact condition
tend to rise steeply near a contact point. Reference [7] gives an ana-
lytical solution for the arrangement of Figure 2(a) (shown later) in a
2-dimensional field. The analytical solution is obtained by placing an
infinite series of line dipoles at a distance Ry /n above the ground plane
and at a distance R below the ground plane where n = 1,2,3,. ...
The line dipole magnitude in the series decreases at the rate of (eq —
1)/(ea + 1). Obviously, when the relative permittivity &4 of the solid
dielectric is > 1, the decrease of the magnitude of the line dipoles is
very slow. As a result, the dipoles are very densely distributed, result-
ing in high magnitude just above the ground plane and rapld change
of electric field near the contact point.

In order to achieve correct calculation for arrangements with such
field behavior, we have had to implement the BEM with high accuracy
techniques. The accuracy of the BEM is determined mainly by element
quadratures. Distance between boundary surfaces becomes very small
near a contact point in these arrangements, thus causing the element
quadratures to be quasi-singular.

The log-L1 transformation method [10-12] has been adopted here
to evaluate quasi-singular quadratures involved in the BEM. Using the
method, we have reduced an error of the quadratures to <10~3%, even
in the case where the distance between an integrated element and a
calculation point is ~ 0.001x the element size.
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Figure 2. Line or point contact with o=0°. (a) Arrangement 2(a), (b)
Arrangement 2(b), (c) Arrangement 2(c).

3 CALCULATION
ARRANGEMENTS

We have analyzed the field behavior in the four arrangements shown
in Figures 2 and 3.

All'the arrangements in Figure 2 have been calculated for both the
2-dimensional and axisymmetrical cases. The contact condition is line
contact in the 2-dimensional case and point contact in the axisymmet-
rical case. The ranges of the relative permittivity €4 and the conduc-
tivity o4 of the solid dielectric are as follows: £4=4 to 12 and o4=1 to
20nS/m, with £4=2 or 4.

For simplicity, we will refer to these arrangements in this paper as
arrangement 2(a), arrangement 2(b), and arrangement 2(c).

Arrangement 2(a) is a cylindrical or spherical dielectric solid (g4,
o4) lying on a ground plane under a uniform field Eo. Arrangement
2(b) is, by symmetry, equivalent in the electric field to an arrangement
of a rounded (cylindrical or spherical) dielectric solid lying between
two plane electrodes separated by 2Rg (with a potential difference of
2¢p). Arrangement 2(c) also is equivalent to that of a rounded dielectric
solid lying between, and in contact with, two cylindrical or spherical
electrodes above and below. The ratio Ry /Ry of arrangement 2(c) is
set to 1 in this investigation.

Techaumnat et al.: Electric Field Behavior near a Contact Point

To investigate the field behavior in surface contact with a zero-angle
contact condition, we have calculated the arrangement shown in Fig-
ure 3 for the 2-dimensional case. Radius b of the rounded side has been
varied to examine the effect of the profile where the side has an ellipti-
cal cross-section. We have performed the calculation for the following
cases: b/a = 0.5, 1, 2, £4=4 10 12, and 04=1 t0 20 nS/m, with e4=4.
We will refer to this arrangement as arrangement 3 hereafter.

Figure 3. Surface contact with a=0°.

Most insulators used in practice show much lower conductivity in
the order of < 1pS/m. However, conductivity of an insulator increases
with increasing temperature and electric stress, often to the order of
nS/m. We have chosen the above values of conductivity to make clear
the general characteristics on the effect of conductivity. More impor-
tantly, the effect of conductivity becomes predominant with decreasing
source frequency to dc energization, although the calculation is per-
formed for 50 Hz ac.

For all the arrangements, 6 represents an angle starting from the

contact point when we describe the field distribution on a rounded di-
electric surface.

4 CALCULATION RESULTS

4.1 ANALYTICAL SOLUTION FOR
ARRANGEMENT 2(A)

An analytical solution for arrangement 2(a) in the 2-dimensional
case of (z, y) can be obtained by placing an infinite series of line dipoles
so as to satisfy the boundary conditions on the grounded plane and on
the dielectric surface. If we take 1 m as radius Rg and the center of the
cylinder as the origin of the coordinates (x, 4/), the electric field at any
point P(z, yo) inside the cylindrical dielectric can be expressed as
k{“l (cos@ - a, +siné - dy) s

n? 2mepel |72 @
where &/, is the complex relative permittivity of the cylindrical dielec-
tric as given below, M the magnitude of the line dipoles, Qn the posi-
tion vector of the line dipoles, @, and @ are unit vectors in the cylin-
drical polar coordinates, and a, k1, k2 are constant numbers.

E = an + Z k2M
n=1

They are expressed as
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Figure 4. Electric field distribution in arrangement 2(a) for the 2-
dimensional case. (a) Effect of permittivity eq when oq=0, (b) Effect
of conductivity o4 when e4=4, (c) Tangential electric field on the solid
dielectric surface when £4=4.

Figures 4(a), (b), and (c) present the electric field distribution in re-
lation to & on the solid dielectric side of the dielectric surface. Each
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electric field on the ordinate is normalized by the uniform field Ej.

Figure 4(a) shows that the electric field strength on the dielectric sur-
face decreases when the permittivity 4 increases, except at the contact
point. The field strength at the contact point is always equal to Ep and
independent of &4.

Figure 4(b) shows the effect of volume conductivity o4 on the elec-
tric field distribution when £4=4. Surprisingly, the electric field is not
always maximal at the contact point. This shift of the peak electric field
is noticeable when o4 2 10 nS/m.

Figure 4(c) presents the distribution of tangential electric field on
the surface. The tangential electric field is zero at the contact point due
to the zero-angle contact condition. The tangential electric field has
a higher peak value and decreases to zero over a smaller region with
higher conductivity.

In addition to the analytical solution, a numerical field calculation
has been carried out also for arrangement 2(a). We have confirmed
that the numerical results show good agreement with the analytical
solutions both in the values and positions of the peak electric field. For
example, the difference between the analytical solutions and numerical
results is ~ 1.9% for the peak electric field and 2.2% for the contact-
point electric field when 04=20 nS/m.

Results of the numerical calculation are described in the following
Sections.

42 EFFECTOFopIN
ARRANGEMENTS 2

We first concentrate on the electric field at a contact point. Calcula-
tion results of the arrangements in Figure 2 are shown in Figure 5.

) <+ Gg = 0 eenn
©-04=
&
3F (6020 e
Grazg- 2
_asf
§
&
2| 1
15F g
| L
(a) 2 4 6 8 10 1
Il
(Ef;))
6 (@
()
5
ST @
R
5 ©
S
®
w
al
Al e
§
s .
2 4 6 8 10 1
(b) &'l

Figure 5. Contact-point electric field in the arrangements of Figure
2. (a) 2-dimensional case, (b) Axisymmetrical case.

Figure 5(a) presents the relation between the contact-point electric
field strength on the solid dielectric side E.4 and the absolute value of
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complex relative permittivity e/, for arrangement 2(b) and arrangement
2(c) in the 2-dimensional case.

Figure 5(b) presents the corresponding relation for arrangement 2(a),
arrangement 2(b), and arrangement 2(c) in the axisymmetrical case.
E.q is normalized in the Figures by E¢;, the contact-point electric
field strength when /,=1. Hollow (rectangular, triangular and circular)
points in the Figures indicate E.q/ E.1 in the case of €4=2 while filled
poinis correspond to E.q/E.1 in the case of £4=4. These calculation
results are summarized as follows.

1. The contact-point electric field strength increases with higher €4 and
04 in both the 2-dimensional and axisymmetrical cases. This is in con-
trast to the corresponding contact-point field of arrangement 2(a) in the
2-dimensional case which is constant irrespective of £4 and 4.

2. E.q is approximately decided by |e;|. The same |e/;| makes E.q close
to each other among various values of o4. However, the larger o4
gives the lower Eq.

3. When |e}] is the same, E.q is higher in the axisymmetrical case than
in the 2-dimensional one.

An empirical expression has been proposed to approximate E .4 for
arrangements with a zero-angle contact condition without conductivity
as follows [5]. »

"B = Eclf(5d)
k 6)
eg+1 (
flea) == 2
where E; already was defined above, and & is a constant dependent
on the arrangement and assumed to lie between 0 and 1.

We have calculated the constant % in Equation (6) for arrangement
2(a), (b), and (c) where ¢/, is substituted for ¢4. When |e/;| > 8, k
takes almost the same value irrespective of whether volume conductiv-
ity exists or not.

Figures 6(a) and (b) show the peak electric field strength E,; nor-
malized by the contact-point electric field strength E., in the gaseous
dielectric side where E; = |e);| E¢q. Electric field strength in the gas-
eous dielectric side is presented here because in practice, electric field
in a gaseous dielectric is more important due to the possibility of PD
or breakdown. The peak field strength in the gaseous side E, takes
place at a very narrow wedge-like gap. The ratio of peak field strength
between both sides of the dielectric surface is not equal to |/, | because
of the tangential component of electric field. As shown in Figures 6(a)
and (b), |};|Z, 5.4, which corresponds to a conductivity of 10 nS/m,
leads to Eipg>E.q, ie. the shift of the position of E,4 from a con-
tact point. The calculation results also agree well with the analytical
solution for arrangement 2(a) mentioned in the previous Section. The
ratio of g/ Ec is also higher in the axisymmetrical case than in the
2-dimensional one.

4.3 ARRANGEMENT 3

Arrangement 3 has been calculated for the 2-dimensional case. This
is because electric field behavior of this arrangement for the axisym-
metrical case is considered very similar near a contact point to that for
the 2-dimensional case.

Electric field distributions in the solid dielectric side of the arrange-
ment are presented in Figure 7 for three values of b/a.

Techaumnat et al.: Electric Field Behavior near a Contact Point
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Figure 6. Peak electric field in the arrangements of Figure 2. for £4=4
and 04=0 to 20 nS/m. (a) 2-dimensional case, (b) Axisymmetrical
case.

E/E,, (solid dielectric side)

Figure 7. Field distribution in the arrangements of Figure 3 for the
2-dimensional case with £ 4=4 and 0 4=0.

The peak electric field of this arrangement is not at a contact point
even when conductivity does not exist in the solid dielectric. It is noted
that the distance between the contact point and the point of the peak
electric field increases with higher b/a.

Figure 7 also shows that increasing the ratio b/a greatly reduces the
peak electric field.

Figure 8 presents the contact-point electric field strength E4 nor-
malized by E.; when no conductivity exists. The constant & in Equa-
tion (6) determined for each b/a is compared with the numerical result
in Figure 8.

The effect of volume conductivity in the solid dielectric is presented
in Figure 9, which shows the ratio E,,; / E..; and E,,;/ E.; in the solid
dielectric side. The comparison of Figure 9(a) with Figure 6(b) indicates
that the peak E is higher than E,.4, even when no conductivity ex-
ists, and that the presence of conductivity significantly promotes this
characteristic, thus increasing Fyq/E¢q for |e/;[>4. This means that
in the case of surface contact, the effect of conductivity is much more
severe on F,, than on E,. '
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Figure 9. Peak electric field in the arrangements of Figure 3 for the
2-dimensional case. (a) Epg/FEcg, (b) Epg/Eec1.

On the other hand, Figure 9(b) shows that for the same value of |/,
the presence of conductivity only slightly increases Fpq / F.1 (the peak
field strength normalized by the contact-point field strength for ¢/, =
€4) compared with the value for no conductivity. Further comparison
of Epg/Ec: is made between line contact and surface contact when
£4=4, respectively, for arrangement 2(b) and arrangement 3 (b/a=1.0)
in Figure 10. E,q/ E.1 is higher by ~ 20% for arrangement 2(b) of line
contact than for arrangement 3 of surface contact.

5 CONCLUSIONS

The effect of the volume conductivity in the solid dielectric has been
investigated analytically and numerically on the field behavior in var-
ious arrangements with a zero-angle contact condition. The contact
conditions consist of point, line, and surface contact.

The electric field behavior or intensification near a contact point
principally depends on the absolute value of the complex relative per-
mittivity |e;| = |eq — ioq/weg]|. The peak electric field Epq or Ep,g
increases with |¢/;|, and volume conductivity usually promotes the field
intensification.
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Figure 10. Comparison of peak electric field Fyq/FEc1 between ar-
rangement 2(b) and arrangement 3 (b/a=1.0), for the 2-dimensional
case with 4=4 and 4=0 to 20 nS/m.

In the arrangements of point contact or line contact, the peak electric
field does not take place at a contact point when the volume conductiv-
ity is higher than a certain value.

In an arrangement of surface contact, the peak electric field usually
takes place at a place more or less remote from the contact point, even
when no conductivity exists.

The normalized peak value £y, / E; is higher for line contact than
for surface contact.

The peak electric field is considered to become infinite in all arrange-
ments when o4 becomes infinitely high.

These results give practically useful information to the insulation
characteristics, in particular, in the low frequency range, down to dc.
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