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ABSTRACT 
The measurement of accumulated surface charge for thick specimens requires 
multipoint probe outputs to establish the inverse calculation for the determination 
of an  unknown charge distribution. Until now, studies on the various errors associ- 
ated with the measurement have been conducted only for simplified arrangements 
mainly in axisymmetric geometry where the charged surface is parallel to the 
ground. We have numerically analyzed a model measurement set-up more compa- 
rable to practical conditions by a highly effcient surface charge method. We have 
studied the effect of probe position, the induction from charge existing not directly 
beneath the (prohe) sensor and the difference in matrix components computed hy 
two numerical methods. In  particular, we have studied the accuracy of the recon- 
structed charge distributions by numerical simulations of the inverse calculation. 
I t  has been shown that the assumed measurement errors make much larger differ- 
ences in the reconstructed charge distributions, although the influence depends 
considerably on the assumed charge distribution. Reducing the condition number 
of the matrix improves the accuracy of the inverse calculation for uniform and lin- 
early changing charge distributions. 

1 INTRODUCTION 
OLID dielectrics are used as supports of stressed S conductors in any HV insulation system. In com- 

pressed SF, gas or vacuum insulation systems where high 
electric field is involved, charge accumulation on solid di- 
electrics may seriously influence surface discharge and in- 
sulation characteristics. Until recently, the reliable mea- 
surement of accumulated charge has been confined to thin 
specimens such as films and sheets. This is because in the 
atmosphere, surface charge makes serious problems only 
for thin specimens which hold their electrification for a 
long time on account of their large capacitance to ground. 
Little attention has been paid to thick specimens with 
small capacitance because of their short leakage time 
in the atmosphere. However, charge accumulation 
on the surface of solid insulating supports has now 
become a very significant problem under dry conditions 
such as in SF, gas or vacuum for the enclosed insula- 
tion systems now widely used in the electric power 
industry. 

In the measurement of accumulated charge for thin 
specimens mounted on a grounded conductor, a one- 

dimensional “uniform-field approximation” holds, and a 
probe output (induced charge on a sensor) corresponds 
uniquely to the accumulated charge (density) facing the 
probe. The measurement of accumulated surface charge 
is completely different for thick specimens such as solid 
supports (insulating spacers). It is necessary to form a ma- 
trix relationship between probe outputs and charge densi- 
ties in the whole system. The surface charge distribution 
is calculated from the probe outputs obtained by a multi- 
point measurement through use of the inverse matrix. To 
evaluate coefficients in the matrix for three-dimensional 
arrangements, we must also apply numerical field calcula- 
tion techniques. 

As far as we know, the idea of the matrix relationship 
was reported for the first time in [l]. Several papers have 
since been published about procedures based on the mul- 
tipoint measurement. Nevertheless, its principle is not fully 
understood. We consider this is mainly due to the com- 
plexity of the numerical method involved. One of us has 
published a paper on the principle of the surface charge 
measurement for thick specimens and, in particular, com- 
pared the mathematical expressions involved in the proce- 
dures adopted [2]. Until now, however, no quantitative 
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measurements have been successfully made for practical 
spacers or insulating supports due to other difficulties in 
the multipoint measurement. Accumulated charge mea- 
surements were reported on 500 kV dc GIS [3-51. But two 
of these papers adopted directly induced charge as a mea- 
sured value at each spot, which is not based on the multi- 
point measurement, thus neglecting the effect of the sur- 
rounding charge [3,41. One paper employed the multipoint 
measurement [SI, hut its principle is not correct as ex- 
plained in [2]. 

We have improved the calculation accuracy of the ma- 
trix components for a simple model arrangement by com- 
paring the values obtained through two numerical field 
calculation algorithms which should theoretically result in 
the same matrix [6,7]. The purpose of this paper is to ana- 
lyze the accuracy in measuring accumulated charge distri- 
butions by the multipoint measurement and the inverse 
calculation for more practical conditions. We have numer- 
ically simulated the reconstruction or  reproduction of the 
charge distributions by the probe outputs including mea- 
surement crrors with the matrix coefficients computed by 
a field calculation. It is well known the inverse calculation 
easily becomes unstable. Thus the distributions recon- 
structed from the square inverse matrix often differ signif- 
icantly from the assumed ones. By applying the singular 
value decomposition to the matrix and reducing the con- 
dition number of the matrix, we have reconstructed the 
assumed distributions more correctly in some cases. 

2 MODEL ARRANGEMENT 
In our previous papers, we have analyzed a model ar- 

rangement which simulates the measurement performed 
at the Central Research Institute of Electric Power Indus- 
try (CRIEPI) [SI. The measurement at CRIEPI was for 
the accumulated charge on the surface of a dielectric 
block. The block had a square upper surface of 2.5 X 2.5 
cm2 and a height of 1 cm. It was divided into 25 smaller 
blocks, with an upper area of 0.5X0.5 cm2. The upper 
surface of each smaller block was artificially charged to  a 
constant value. The charge densities directly measured by 
the Faraday cage technique were compared with those 
calculated from the probe outputs. We have already re- 
ported that the values of the matrix components calcu- 
lated through two algorithms agree well with each other 
for the model arrangement in which a probe is simply sim- 
ulated by a square plate (sensor) without a guard elec- 
trode [6,71. 

Figure 1 shows the model arrangement for the analysis 
in this paper. The solid dielectric is not a block as in the 
previous papers hut a cube with a side of 2.5 cm, and a 
relative permittivity of 4. Although various shapes are used 
in practical insulating supports, we have adopted the cube 
to avoid the inclusion of too many parameters. The solid 
lies on a grounded plane ( h  = 0 cm), or it is situated 3 cm 
above the ground. These two situations are chosen to in- 
vestigate the effect of the ground. This is because al- 
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solid dielectric 
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I - - grounded plane 
Figure 1. Model arrangement. 

I I  

though a spacer usually lies on a grounded electrode, it is 
inserted between two grounded electrodes during charge 
measurement in a co-cylindrical arrangement. 

Figure 2 represents the cylindrical electrostatic probe 
consisting of a sensor (sensing plate) surrounded by a 
grounded guard electrode. The sensor is a disc 0.5 cm in 
diameter and 0.1 cm in thickness. The guard electrode is a 
cylinder of inner radius 0.35 cm and outer radius 0.45 cm 
with a length of 2 cm. In the measurement for thin speci- 
mens, a guard electrode is inevitably necessary to ensure 
the uniform field condition near the sensor, and thus 
commercial probes are always fitted with a guard elec- 
trode. However, in the multipoint measurement based on 
the matrix relationship, the guard is not always considered 
indispensable. As the previous calculation was performed 
for a simplified probe without a guard, we have also ana- 
lyzed the probe output without a guard in some cases of 
this study. In the actual measurement, the sensor is usu- 
ally grounded through a measuring capacitance. If the ca- 
pacitance is sufficiently large, the sensor is at a virtual 
ground. Therefore, the potential of the sensor is set to  
zero in this paper. The sensor of the electrostatic probe is 
located at a distance h,  from the side surface of the di- 
electric. This distance is kept at 0.3 cm in the present cal- 
culation up to section 5. 
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(4 (b) 
Figure 3. Labeling of subareas of the dielectric. (a) side facing 
probe: (bl rear side. 

Although actual charge densities change continuously 
on the surface, we approximate them as discrete values 
for the later inverse calculation. We divide the solid (cube) 
surface facing the probe and the rear (opposite side) sur- 
face as possible charged areas, respectively, into 25 subar- 
eas as shown in Figure 3. In this paper, we do not con- 
sider the charging in the other side surfaces. Each sub- 
area has an area of 0.5 X 0.5 cm2 = 0.25 cm2, while the 
area of the sensor is 0.196 cm2. Note that this subdivision 
of the surfaces is different from that in the numerical field 
calculation where the mesh must be finer to attain enough 
accuracy. Examples of the subdivision for the field calcu- 
lation are shown later in Figure 6. 

The’charge density o ( j )  on subarea j is assumed con- 
stant and the position of the probe is designated as i .  The 
probe output Wp(i), that is, the charge induced on the 
sensor at position i by d j )  is expressed as 

W,(i)  = A ( i , j ) d j )  (1) 
where the coefficient A(i, j )  is obtained by the numerical 
field calculation. Two numerical field calculation algo- 
rithms have been employed to evaluate the coefficient, 
namely, the direct method (called the matrix method I in 
[21 and [61) and the A-function method [9,101. 

For field calculation in the three-dimensional arrange- 
ment, we have applied the surface charge (simulation) 
method highly developed in our laboratory, which is briefly 
explained in the Appendix. Figure 4 shows the mesh used 
for the sensor of the probe in the field calculation. Figure 
5 represents the mesh for the guard electrode. Although 

(4 (b) 
Figure 4. Computational mesh for the sensor. (a) side; (b) upper 
and lower faces. 

(4 
Figure 5. Computational mesh far the guard electrude. (a) outer 
side: (b) sensor side-end (c) rear end. 
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Figure 6. Examples of computational mesh fur the solid surface. (a) 
mesh for Figure 7a; (b) mesh for Figure 7b or 7c; (c) mesh for com- 
puting matrix components. 

Figure 5 shows only the outside surface, the inside surface 
of the guard is also similarly subdivided. Figure 6 repre- 
sents three examples of the meshes for the solid surface 
of 2.5X2.5 cm2 facing the probe. The mesh pattern for 
the other surfaces of the cube not facing the probe is simi- 
lar to that of Figure 6a, but the finer mesh is only near 
the edge closer to the probe because the mesh pattern has 
little influence on the accuracy of the field calculation. 
The mesh patterns shown in Figure 6 are merely exam- 
ples. We have applied different mesh patterns for the solid 
in accordance with the assumed charge distributions. 

3 PROBE OUTPUT 
3.1 EFFECT OF MEASUREMENT 

POSITION 
Table 1 summarizes the probe outputs at several probe 

positions, when the charge density is constant on the whole 
surface of one side of the solid. The outputs are numeri- 
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Table 1. Calculated probe output versus measurement position, (a) 
h = 3 cm; (b) h = 0 cm. 

la) k = 3 cm 
output W.(i) [pC] - I -  

position i without the guard with the guard 

I 2.82 0.76 
7 3.52 0.97 
13 3.72 1.01 

(b) h = 0 cm 
output WJi) [pCI 

position i without the Euauard with the ward 7 

1 
7 
13 
19 

1.69 
2.14 
2.08 
1.57 

0.54 
0.69 
0.69 
0.56 

(4 (4 
Figure 7. Four tcst charge distributions. 

cal values calculated by superposing the electrostatic in- 
duction on the probe sensor based on equation (1) as the 
effect of the charge densities on the subareas. In Table 1, 
position i corresponds to a subarea number of Figure 3a. 
The charge density is 4 pC/cm2 on the whole surface of 
the side facing the probe as shown in Figure 7a. The charge 
on an area directly beneath the sensor is 0.78 pC unless 
the probe is at the edge of a cube side. 

As already mentioned, the calculation gives an almost 
constant probe output for thin specimens irrespective of 
probe position, when the solid surface is charged uni- 
formly at a constant density [2,81. On the other hand, the 
output for thick samples varies significantly with position 
as Table 1 shows. In the case of h = 3 cm, the highest 
output appears at the center of i = 13. The output de- 
creases by about 25% at the edge zone of i = l both for 
the sensor alone (without a guard electrode) and for the 
sensor with the guard. When the solid lies on the ground 
( h  = 0 cm), the output at i = 1 decreases by about 20% in 
comparison with that at i = 13, hut the highest output ap- 
pears at the higher location i = 7. This is due to  the charge 
of opposite polarity induced on the ground. In any calcu- 

Table 2. Calc.dated probe output for the charge distributions shown 
in Figure 7 (probe position i = 13). (a) h = 3 cm; (b) h = 0 cm. 

la) h = 3 cm 

OUlPUt WJi) [pCI 
charging without the guard with the guard 

(a) 3.72 1.01 
(b) 0.20 0.10 
(c) 3.51 0.91 
id) 14~4 3.67 

(b) h = 0 cm 
output WJi)  [pC] 

charging without the guard with the guard 

(a) 2.08 ' 0.69 
(b) 0.16 0.09 
(C) 1.92 0.59 
(d) 5.23 1.59 

lated case, the probe output without the guard is much 
higher than the corresponding charge of 0.78 pC direttly 
beneath the sensor. The guard electrode considerably re- 
duces the output, but the output still do not coincide with 
each other among various probe positions. 

The reason why the probe output varies at each posi- 
tion is that the output depends not only on the charge 
directly beneath the sensor; but also on the entire charge 
distribution. The effect of the surrounding charge is 
demonstrated in more detail in the following results. 

3.2 EFFECT OF CHARGE ON 
SURROUNDING SURFACES 

Table 2 compares the probe outputs for four cases of 
charge accumulation on the solid when the probe is situ- 
ated facing the center of the solid side (i = 13) at a dis- 
tance of 0.3 cm from the solid surface. Figure 7 shows the 
four charge distributions as follows: 

(a) charge on the whole surface of the side nearest the 
probe. 

(b) charge on a circular area of 0.5 cm in diameter at 
the center. 

(c) charge on the whole surface of one side except the 
area of (b). 

(d) charge on the whole surface of all six sides. 
In case (b), the charge exists only on an area directly 

beneath the sensor. The charge density is constant at 4 
pC/cm2 in all cases. It is self-evident that the probe out- 
put for case (a) shouJd he equal to  the sum of the corre- 
sponding values for cases (b) and (c). Co'mparing cases (a) 
and (b) reveals that the griater part of the output is in- 
duced by the charge not directly heneath the sensor. When 
the solid lies 3 cm above the ground, the ratio of these 
outputs 1s only about 5% for the measurement without 
the guard and 10% with the guard. In the case of the solid 
on the ground i h  = 0 cm), the corresponding values are 
about 8 %  without the guard and 13% with the guard. If 
the whole surface of the solid is charged, case (d), the 
contribution of the charge directly beneath the sensor fur- 
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ther diminishes to only 3-6% even in the measurement 
with a guard electrode. 

This effect of the surrounding charge has alrcady been 
reported for the simplified arrangement in axisymmetric 
geometry where the height of the block is considerably 
smaller than the side length and the charged surface is in 
parallel with the ground [&lo]. The present study analyf7es 
the effect for the charging on the side surface of the solid 
cube dielectric, which is much more comparable to a prac- 
tical insulating support. In this arrangement, the effect of 
the surrounding charge is much larger than in the flat slab 
dielectric. 

4 MULTIPOINT MEASUREMENT 
As explained above, a surface charge distribution is 

evaluated from the multipoint measurement and the in- 
verse calculation based on the matrix relationship as shown 
in equation (2). Since the inverse calculation is apt to be- 
come unstable, even a slight error may bring about a large 
difference in the calculated charge distribution. Conse- 
quently, it is very important to calculate coefficients (ma- 
trix components) as accurately as possible. Two numerical 
calculation algorithms have been employed to evaluate the 
components in the matrix, namely the direct method 
(called the matrix method I in 121 and [61) and the A-func- 
tion method [9,101. We briefly explain these methods be- 
low. Theoretically these two methods should result in the 
same matrix. In practice, however, these differ owing to 
numerical errors. We have previously reported the com- 
parison of the matrix components for the simple geometry 
computed by the two algorithms [6,71. 

4.1 DIRECT METHOD (MATRIX 
METHOD I) [21 

This method directly combines accumulated charge on 
a surface of a solid dielectric with charge on a probe sen- 
sor induced by the surface charge. The probe output is 
expressed as a linear combination of the effects of all the 
charge in the system. If all the conductors in the system 
are grounded, then the probe output w, ( i )  at position i is 

N 

w,(i) = C A ( i , j ) d j )  ( 2 )  
j = 1  

where u ( j )  is a charge density at a subarea j when the 
charged surface area is divided into N subareas, each of 
which has a uniform charge density d j ) .  We can com- 
pute the coefficient A(i, j )  by applying a numerical field 
calculation method corresponding to the case of unit 
charge density on the subarea j. 

4.2 A-FUNCTION METHOD [9,101 

This method starts from the following relationship be- 
tween accumulated charge density d(? on an elementary 
surface area dS of the insulating specimen and the charge 

dq which dQ induces electrostatically on the sensor, 
dq = - AdQ= - AudS ( 3 )  

Hence the total induced charge on the sensor is 

The proportion coefficient is called the “A-function”, a 
dimensionless variable depending only on the location of 
dQ for the given arrangement. 

This method differs from the direct method in that the 
A-function giving the matrix Coefficients is calculated by 

div( t grad A) = 0 ( 5 )  
with the boundary conditions A =  1 on the sensor plate, 
A = 0 on all the other. electrode surfaces, and the continu- 
ity of the normal derivative of A on the dielectric inter- 
face. Equation ( 5 )  is simply Laplace’s equation for poten- 
tial A, and in brief the A-function corresponds to a func- 
tion representing the proportion of the resulting potential 
on the dielectric surface to the potential of the sensor. 
See [lo] for details. 

For a subarea j with a constant u( j ) ,  equation (4) can 
he rewritten as 

where S ( j )  designates the area of a subarea j .  By dis- 
cretizing the integral in  equation (61, it  can be shown that 
the total probe output at location i can also be expressed 
as 

N 

W,(i) = C a(i,i)u(i) (7 )  
j =  I 

where A(i, j )  is now given by 

4.3 MATRIX COMPONENTS BY THE TWO 
METHODS 

Table 3 compares several components calculated by the 
two methods for the arrangement of Figure 1 with h = 3 
cm. Since the true value of the component is unknown, 
the percentage difference D has been calculated as fol- 
lows, 

A,”, = ( A ,  + A J / 2  
D = IA, - AAl/.4a”e x 100 (9) 

Table 3. Comparison of matrix components ( h  = 3 cm). 
matrix component direct A-function difference [%I 
A(I,I)  0.1458R 0.14698 0.75 
A(13,11) 0.12269 0.12289 0.16 

A(1,26) 0.01673 0.01687 0.83 
A(13,38) 0.019~s 0.01930 0.26 
A(1.50) 0.01145 ani166 1.82 

A(1.25) 0.01294 0.01317 1.16 
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where A,> and A ,  are the coefficient computed by the 
direct method and the A-function method, respectively. In 
all the cases, the differences are below 2%. It must be 
noted that the differences of A(1, 1) and A(13, 13) are 
0.75% and 0.16%, respectively. These are diagonal matrix 
components, usually larger and more important than the 
other elements in the respective row and column. On the 
other hand, the difference of 4 1 ,  25) is roughly twice as 
large as that of A(1, 1). However, since the value itself is 
only one-tenth of A(1, I), the difference has less influ- 
ence on the inverse calculation than that of the diagonal 
component. Three matrix components A(1, 261, A(13, 38) 
and A(1,50) represent the coefficients between the probe 
output and the charge on the rear surface of the solid, as 
shown in Figure 3b. These components by the two meth- 
ods are also close to each other with the difference rang- 
ing from 0.2 to 1.8%. 

In the previous comparison for the simple geometly, the 
difference of diagonal components, A(1, 1) and A(13, 131, 
were smaller, 0.15% in minimum, than for present case. 
The larger difference is due to the more complicatcd ar- 
rangement in the present casc and the vely fine subdivi- 
sion in the previous calculation. However, thc differences 
below 0.8% for the diagonal components are considered 
sufficiently small in the following inverse calculations. The 
effect of the difference in matrix components is further 
discussed in Section 5. 

components, 413,131 and its neighbor A(13,14), and the 
ratio of A(13,14) to A(13,13) for each guard position. 
These values were calculated by the direct method. The 
coefficients calculated by the A-function method differed 
less than 0.7%. Table 4 indicates that the ratio decreases 
with decreasing h,, becoming smallest for h,  = 0.2 cm, 
although the difference is not vely large. Consequently, in 
the later calculations (Section 5 )  the guard electrode is 
situated at the distance of 0.2 cm from the solid surface 
while the sensor is recessed by 0.1 cm. 

5.2 REPRODUCED CHARGE 
DISTRIBUTION 

As described above, the numerical values of the matrix 
coefficients computed by the direct method are not identi- 
cal to the ones by the A-function method on account of 
numerical errors. Thus the two results obtained by the in- 
verse calculation will differ. The differences of the matrix 
components may give rise to more significant errors in the 
reproduced charge distribution through the inverse calcu- 
lation than the values themselves. By numerically simulat- 
ing the procedure, we have analyzed the charge distrihu- 
tion reconstructed or reproduced from the multipoint 
measurement and the inverse calculation with the compo- 
nents calculated by the two methods. The following four 
charge distributions have been investigated: 

(i) The whole surface of one side is uniformlv charecd - 
at a constant density of 4 pC/cm* as shown in Figure 7a. 

(ii) Only the subarea j = 13 (of 0.5 x0.5 cm’) in Figure 
3a is charged uniformly at 4 pC/cm2. 

(iii) The subareas j = 12 and 14 are charged uniformly 

5 INVERSE CALCULATION 
5.1 EFFECT OF THE GUARD 

ELECTRODE POSITION 
As already explained, the guard electrode is not consid- 

ered indispensable to ensure the quasi-uniform condition 
in the multipoint measurement. Therefore, we have exam- 
ined the effect of the position of the guard electrode by 
changing h, shown in Figure 2 to smaller than 0.3 cm, hut 
with the sensor still at 0.3 cm. This means that the guard 
projected beyond the face of the sensor.  when^ the guard 
elcctrode approaches the solid surface too closely, there is 
the possibility of a discharge, leading to incorrect read- 
ings. For this reason, the distance between the guard and 
the surface was limited to 0.2 cm at the closest. 

It is well known that a matrix is bctter conditioned when 
its diagonal component has a value larger than the other 
components in the corresponding row or column. A bet- 
ter-conditioned matrix more effectively suppresses the en- 
largement of the errors involved in the inverse calculation, 
as explained later. Table 4 shows the values of two matrix 

Table 4. Effect of the guard electrode position ( h  = 3 cm). 
h, [cm] A(13,13) A(13,14) A(13,14)/.4(13,13) 

0.3 0.12269 0.06299 0.52 
0.25 0.10481 0.04859 0.47 
0.2 0.08999 0.037UY 0.41 

at 4 pC/cm2 and - 4  pC/cmZ, respectively. 
(iv) The whole of the front side is charged at a density 

which changes smoothly (explained in detail later). 
The solid is situated at 3 cm above the ground ( h  = 3 

cm). Twenty-five ( =  5x5) probe outputs are the values 
as computed by the surface charge method. The differ- 
ences betwecn the diagonal components Ai,;) (i = 1-25) 
of the two matrices calculated by the two methods are 

Table 5 shows the charge distribution thus obtained by 
the inverse calculation for case (i). The layout of the table 
matches the layout of Figure 3a. There is a charge of 1 pC 
( =  4 pC/cm2 x0.25 cm’) in each subarea. The charge 
distribution reproduced from equation (2) with the matrix 
components by the direct method has given reasonably ac- 
curate values where the largest error is only 1.3%. On the 
other hand, the result derived from the matrix by the A- 
function method is a little worse with a maximum error of 
about 3%. 

Table 6 presents in the same way the distribution calcu- 
lated with the matrix inverse by the two methods for case 
(ii), which has local charge accumulation only at the cen- 
ter subarea j = 13. The direct method reproduces the as- 
sumed distribution correctly, with no error in the subarea 

0.38-0.65%. 
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Table 5. Charge distribution reproduced for Figure l a  ( h  = 3 cm). 
(a) direct method (in pC); (b) A-function method (in pC). 

(a) direct method 
n 994 I no 0.933 1.00 0.994 ~ ~~ .... . 
1.00 1.01 0.987 1.01 1.00 
0.993 0.987 1.01 0.987 0.993 
1.00 1.01 0.987 1.01 LOO 
0.994 1.00 0.993 1.00 0.994 

(b) A-function method 
0.968 0.994 0.968 0.994 (1.9m 
0.994 1.03 0.992 1.03 0.994 
0.968 0.992 0.994 0.992 0.968 
0.994 1.03 0.992 1.03 0.994 
0.968 0.994 0.968 0.994 0.968 

-Y 
Figure 8. Coordinates far the front side of the cube. 

Table 6. Charge distribution reproduced for charge on subarea j = 

13 ( h  = 3 cm). (a) direct method (in pC); (b) A-function method 
(in pC). 
(a) direct method 

5.18-5 -ME-5 1.OE-4 -ME-5 5.1E-5 
- 1.9E-5 2.18-4 -3.68-4 2.18-4 -1.98-5 

- 1.9E-5 2.1E-4 -3.6E-4 2.1E-4 -1.9E-5 
5.1E-5 -1.9E-5 1.OE-4 -1.9E-5 5.1E-5 

1.0E-4 -3.68.4 1.00 - 3 . 6 ~ - 4  i . n ~ - 4  

(b) A-function method 
-4.28-4 4.8E-4 - 1.58-3 4.88-4 -4.28-4 

4.98-4 -3.58-3 6.18-3 -3.58-3 4.98-4 
- 1.5E-3 6.18-3 0.986 6.lE-3 -1.5E-3 

4.98-4 -3.5E-3 6.lE-3 -3.58-3 4.98-4 
- 4. IE-4 4.98-4 - 1.5E-3 4.9E-4 -4.1E-4 

of j = 1 3  and very small values in the other subareas. 
However, the A-function method gives a value lower by 
1.4% in the subarea j = 13, and larger values by one order 
of magnitude in the other subareas. 

The reproduced distribution for case (iii), in which both 
positive and negative charges exist, is represented in Table 
7. The distribution obtained by the direct method has the 
values in subareas 12 and 14 identical with the original 
ones, while the A-function method gives a difference of 
1.3%. 

In case (iv), the front surface of the cube has a charge 
density which changes continuously as a linear function of 

Table 7. Charee distribution reoraduced far oositive charge on sub- 
I Y 

area j = 12 and negative on j = 14 ( h  = 3 cm). (a) direct method (in 
pC); (b) A-function method (in PO. 

(a) direct method 

-3.98-6 6 . 4 ~ - 5  0.0 - 6 . 4 ~ - 5  3 . 9 ~ - 6  
1.2E-4 -2.28-4 0.0 2.2E-4 - 1.2E-4 

1.2E-4 ' -2.2E-4 0.0 2.2E-4 - 1.2E-4 
- 1.48-4 1.00 0.0 -1.00 i . 4 ~ - 4  

-3.8E-6 6 . e ~  0.0 - 6 . e ~  3 . m ~  

(b) A-function method 
4.4E-4 -8.8-4 2.4E-8 8.88-4 -4.48-4 

-4.3E-3 5.RE-3 -2.98-8 -5.RE-3 4.38-3 ~- ~ ~~~~ ~~ 

5.2E-3 0.987 5 . 7 ~ - 8  -0.987 -5.28-3 
-4.3E-3 5.8E-3 2.0E-8 -5.8E-3 4.38-3 

4.48-4 -8.88-4 -8.28-9 8.88-4 -4.48-4 

(8) (b) 
Figure 9. Charge distribution (iv). (a) charge density in pC/cmZ; (b) 
charge distribution integrated over each subarea in pC. 

the coordinates. We define coordinates 7 and p (- 1 5 7. 
p s 1) for the side of the solid facing the probe as shown 
in Figure 8. Then, the charge density on the surface is 
expressed as 

u =(1-7)(1-p)u0/4 (10) 

where uo = 4 pC/cm2. Figure 9a shows the charge density 
distribution corresponding to equation (101, while Figure 
9b shows the result if the same charge density is dis- 
tributed uniformly on each subarea, corresponding to 
Table Xa. 

Numerical values are given in Table Sa. These values 
have been computed by the numerical integration of u in 
each subarea. Table 8b shows the result inversely calcu- 
lated with the matrix by the direct method by considering 
a constant charge density in each subarea as in equation 
(2). Similar values for the A-function method are given in 
Table Xc. Although the reproduced distribution consists of 
discrete values in 25 subareas, the results in Tables 8h and 
Xc agree well with those in Table 8a with the differences 
below 4% at the subareas where the accumulated charge 
is larger than 0.1 pC. Comparing the results by the two 
methods, the A-function method leads to smaller differ- 
ences than the direct method in most subareas charged to 
a value larger than 0.1 pC. In the other subareas, the dif- 
ferences of the direct method are smaller than those of 
the A-function method, but the values of charge them- 
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Table 8. Assumed and reproduced charge distributions for Figure 
9a (h  = 3 cm). (a) assumed distribution (in pC); (b) direct method (in 
pC); (c) A-function method (in PO. 

(a) assumed distribution [pCI 
0.810 0.630 0.450 0.270 0.090 

0.450 0.350 0.250 0.150 0.050 
0.270 0.210 0.150 0.090 0.030 
0.090 0.070 0.050 0.030 0.010 

0.630 0.490 0.350 0.210 0.070 

(b) direct method [pC] 

0.837 0.641 0.456 0.279 0.077 
0.641 0.490 0.345 0.214 0.059 
0.4Sh 0.345 0.252 0.14R 0.041 ~ ~~ ~~ ~ 

0.279 0.214 0.148 OI095 0.026 
0.077 0.059 0.041 0.026 0.006 

(c) A-function method loCl .1 . 
0.822 0.636 0.447 0.276 0.073 
0.636 0.494 0.347 0.217 0059 
0.447 0.347 0.249 0.149 0.038 
0.276 0.217 0.149 0.097 0.026 
0.073 0.059 0.038 0.026 0.004 

selves are very small in these subareas. As a whole, the 
A-function method seems to reproduce the linearly dis- 
tributed charge density more correctly. 

In cases (i) to (iii), the assumed distributions are de- 
rived more accurately by the direct method. In the mea- 
surement of practical supports, however, the charge distri- 
bution is neither constant nor discrete, hut changes con- 
tinuously on the surface. Therefore, the result for Figure 
9a suggests that the A-function method may he more suit- 
able for actual measurements, though more examination 
is necessary. 

5.3 EFFECT OF A MEASUREMENT 
ERROR OF PROBE OUTPUT 

The probe output in practice will'contain measurement 
errors, which, as already mentioned, may often bring larger 
errors in the inverse calculation. We have examined this 
point for a few typical cases given in Section 5.2 by intro- 
ducing artificial errors in some of the probe outputs. Table 
9 shows the result of the inverse calculation with the in- 

Table 9. Effect of error in probe output on reproduced charge dis- 
tribution for case (i). (a) -5% error at position i = 1; (b) -5% error 
at position i = 13. 

(a) -5% error at oosition i = 1 

0.69 
1.11 

1.11 0.98 1.01 1.00 
1.01 0.99 1.02 1.01 

0.98 0.99 1.01 0.99 0.99 
1.01 
I nn 

1.02 0.99 1.01 1.01 
i n i  099 i n i  ion 

(b) -5% error at position i = 13 

1.00 1.01 0.98 1.01 1.00 
1.01 1.00 1.12 1.00 1.01 
0.98 1.12 0.46 1.12 0.98 
1.01 1.00 1.12 1.00 1.01 
1.00 1.01 0.98 1.01 1.00 
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Table 10. Effect of error in probe ,output at position. i = 13 on 
reproducied charge distribution for case (ii) of charging an  j =  13. 

4.9E-4 8.58-4 -2.4E-3 8.5E-4 4.9E-4 
8.5E-4 -1.lE-3 2.0E-2 -LIE-3 8.5E-4 

-2.4E-3 2.OE-2 0.917 2.0E-2 -2.4E-3 
8.5E-4 -1.lE-3 2.0E-2 - l.lE-3 8.58-4 

8.5E-4 4.hE-4 4.68-4 8.5E-4 -2.4E-3 

Table 11. Effect of error in probe output at position i =  12 on re- 
produced charge distribution for case (iii) of positive charge on 
subarea j = 12 and negative on j = 14. 

8.1E-4 - 2.OE-3 7.0E-4 1.9E-4 2.5E-4 
8.28-4 7.9E-5 - 7.5E-4 1.7E-2 - LIE-3 

1.5E-2 0.933 1.7E-2 - 1.00 8.5E-4 
-7.354 1.7E-2 - LlE-3 8.2E-4 7.7E-5 

8.1E-4 -2.OE-3 7.OE-4 1.8E-4 2.4E-4 

Table 12. Effect of error in probe output on reproduced charge dis- 
tribution for cast (iv). (a) -5% error at position i = I; (b) -5% 
error at position i = 13. 

(a) -5% error at position i = 1 

0.702 0.687 0.452 0.282 0.078 
0.687 0.488 0.348 0.215 0.060 
0.452 0.348 0.253 0.149 0.042 
0.282 0.215 0.149 0.095 0.027 
0.078 0.060 0.042 0.027 0.007 

(b) -5% error at position i = 13 
0.838 0.642 0.452 0.280 0.078 

0.452 0.380 0.115 0.183 0.037 

0.078 0.061 0.037 0.027 0.007 

0.642 0.487 0.380 0.212 0.061 

0.280 0.212 0.183 0.092 0.028 

verse by the direct method for case (i), when the probe 
output differs by 5% from the correct value at the probe 
position i = l  or i=13.  The error brings differences of 
31% and 54% at subareas j = 1 and j = 13, respectively, 
much larger than 5%. Moreover, a difference of over 10% 
occurs at the neighboring subareas. In the same way, Ta- 
bles 10 and 11 give the reproduced distribution with the 
probe outputs including 5% error at the position i = 13 in 
case (ii) and at i = 12 in case (iii), respectively. These ta- 
bles reveal that the effect of the measurement error is 
much lower for local charging. 

For case (iv), Table 12 gives the charge distributions 
calculated when the probe output has an error of 5% at a 
position i = 1 or i = 13. It can he seen that compared with 
the values in Table Sa, the inverse calculation magnifies 
the error at or near the corresponding subarea. In particu- 
lar, the relative difference at subarea j = 13 is fifty times 
larger than without the assumed measurement error. Table 
13 shows similar results for cases (i) and (iv) when the 
probe output has bipolar errors, that is, - 1% error at the 
positions of odd number and 1% error at the positions of 
even number. It can be seen that these errors of only 1 %  
give rise to a relative difference of about 20% in all suhar- 
eas for case (i). In case (iv) of the continuous distribution, 
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Table 13: Effect of alternate positive and negative errors of t 1% in 
probe output. (a) distribution for case li) (in pC); (b) distribution 
for case (iv) (in pC). 

la) distribution for case (i) 
0.88 1.17 0.82 1.17 0.88 

1.17 0.79 1.22 0.79 1.17 
0.88 1.17 0.82 1.17 0.88 

1.17 0.79 1.22 0.79 1.17 
0.82 1.22 0.77 1.22 0.82 

lb) distribution for case (iv) 

0.322 0.162 0.197 0.054 0.053 
0.052 0.092 0.010 0.053 0.012 

the charge distribution again shows large differences ex- 
cept for j = I compared with the values in Table sa. It is 
very difficult in practice to measure probe outputs within 
an accuracy of 1%. 

5.4 REDUCTION OF MATRIX CONDITION 
NUMBER 

As explained above, the measurement error has a large 
influence on the reproduced charge distribution. The con- 
dition number of a matrix is defined as the ratio of the 
largest singular value of the matrix to the smallest non-zero 
one. As well known in matrix calculations, the condition 
number should be as low as possible in order that the 
measurement errors have less effect un the result of the 
inverse calculation. A diagonal unit matrix has the small- 
est condition number equal to unity, which corresponds to 
the best condition for the inverse calculation. The smaller 
the condition number, the more reliable is the inverse cal- 
culation. There is a possibility of reducing the enlarging 
effect of measurement errors by diminishing the condition 
number of the corresponding matrix. Reducing the condi- 
tion number has nothing to do with the right-hand side 
input vector in equation (21, which is used as an input in 
the inverse calculation. The condition number becomes 
smaller if we set to  zero any singular value in the matrix 
much smaller than the largest one, which may lead to  a 
reduction of the effect of measurement errors. However, 
the resulting matrix is no longer identical to  the original 
one, so that the reproduced distribution may also be dif- 
ferent from the one to be measured. There remains a 
problem as to  what extent smaller singular values should 
be set to zero. 

We have reduced the condition number from 19.4 to 
10.7 in this way and applied it for the cases with the bipo- 
lar errors as given in Table 13. Table 14 shows the distri- 
bution reproduced by applying the matrix so obtained in 
the cases corresponding to Table 13. Comparison with 
Table 13 indicates that the reduction of the condition 
number has suppressed the effect of measurement errors, 
resulting in a better reproduction of the charge distribu- 

Table 14. Effect of reducing the condition number. (a) distribution 
for case (i) (in pC); lb) distribution for CBSC (iv) (in pC). 

(a) distribution for case (i) 
0.98 1.01 0.98 1.01 0.98 

0.98 1.00 0.97 1.00 0.98 
1.01 1.03 1.00 1.03 1.01 

1.01 1.03 1.00 1.03 1.01 
0.98 1.01 0.98 1.01 0.98 

(b) distribution for case (iv) 

0.818 0.654 0.451 0.276 0.079 
0.654 0.4R8 0.345 0.224 0.053 
0.451 0.346 0.242 0.152 0.041 
0.276 0.223 0.152 0.091 0.029 
0.079 0.053 0.041 0.029 0.003 

tions. However, the reduction of the condition number has 
not always given better results in our analysis. The matrix 
with the reduced condition number has brought about 
larger differences in cases (ii) and (iii) than the original 
one. 

6 CONCLUSIONS 
H E  measurement of surface charge has not yet been T performed quantitatively for any practical high volt- 

age supports. We have numerically analyzed a measure- 
ment system with a practical probe for thick specimens by 
applying the highly efficient surface charge method devel- 
oped in our laboratoty. The principal results are summa- 
rized as follows. 

1. The calculated probe output varies significantly with 
the measuring position of the probe even if the solid sur- 
face is charged uniformly at a constant density. This is 
due to the effect of the surrounding charge not directly 
beneath the sensor, which is more serious in the arrange- 
ment with a thick specimen than with a flat slab. 

2. We have compared the matrix components com- 
puted by the two numerical algorithms called the direct 
method and the A-function method, and have achieved 
differences of the diagonal components by the two meth- 
ods which are below 1%. 

3. We have used the calculated probe outputs as the 
inputs to the inverse calculation. The direct method re- 
produces the constant charge densitics with a largest error 
of 1.3%, smaller than the A-function method. In the casc 
of a continuously changing charge distribution, the A- 
function method gives better results. 

4. Measurement errors, or errors in probe outputs, may 
cause much larger errors in the reconstructed charge dis- 
tribution. The charge distribution is assumed to be con- 
stant and change smoothly. The reconstruction by the 
probe outputs with measurement errors of only f 1% re- 
sults in quite different charge distributions with differ- 
ences of over 20% in some subareas. On the other hand, 
the measurement error is not cnlarged so much when thc 
surface is charged locally. 
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5. The reduction of the condition number of the matrix 
lessens the effect of output errors in some cases, which 
improves the reconstruction of the charge distribution. In 
particular, when the whole of the solid side is charged 
uniformly, we have successfully reconstructed the as- 
sumed distribution with the largest difference of 3% from 
outputs including measurement errors of i 1%. 

7 APPENDIX 
7.1 FIELD CALCULATION 

The numerical field calculation for Figure 1 needs a very 
fine division of the surfaces and boundaries, much finer 
than shown in Figure 3. We apply the following novel 
techniques which have been developed for the surface 
charge method in our laboratory. 

(a) The solid dielectric in a cubic shape can he simu- 
lated accurately with only plane elements. The electro- 
static protie having curved surfaces is represented hy both 
curved and planar elements. The triangular curved sur- 
face element is expressed by a third-order shape function 
with nine degrees of freedom, while a quadrangular one is 
simulated by a third-order serendipity function with twelve 
degrees of freedom. 

(b) Each subdivided element has a second-order charge 
density distribution with six degrees of freedom for a tri- 
angular element and eight degrees of freedom for a 
serendipity-typc quadrangular one. This application of 
higher-order representation functions improves the accu- 
racy of the field calculation. However, the important point 
to note is  that the higher-order charge density representa- 
tion oftcn needs nodes at the cdges of the solid. The 
boundary condition on a dielectric surface, the continuity 
of the normal component of tlux density, cannot be de- 
fined at the edges where the normal direction is indefi- 
nite. Consequently, we apply non-conforming elements at 
the edges of the solid. This technique permits discontinu- 
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ity of the charge density between neighboring elements, 
thus making it possible to use the higher-order function 
for charge density representation. We also apply non-con- 
forming elements at the boundary of two subareas since a 
discontinuous charge distribution is often assumed be- 
tween subareas. 
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