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Performance Limiting Surface Defects
In SIC Epitaxial p-n Junction Diodes

Tsunenobu Kimoto, Nao Miyamoto, and Hiroyuki Matsunaiigmber, IEEE

Abstract—Effects of surface defects on performance of kV-class revealed to govern major characteristics of p—n diodes. New
4H- and 6H-SIC epitaxial p-n junction diodes were investigated. insights on defects harmful to the diode performance are
The perimeter recombination and generation, instead of the bulk ;

; T provided.
process, are responsible for forward recombination current and
reverse leakage current of the diodes, respectively. Mapping stud-
ies of surface morphological defects have revealed that triangular-
shaped defects severely degrade high-blocking capability of the Il. DIODE FABRICATION
diodes whereas shallow round pits and scratch give no direct . o . . .
impact. Device-killing defects in SiC epilayers are discussed 4'_"_ and 6H-SIC epitaxial p.-n _Junctlon diodes were
based on breakdown voltage mapping. Effective minority carrier fabricated on p/p/n~/n homoepitaxial layers grown on
lifetimes are mainly limited not by bulk recombination but by  heavily-doped n-type substrates (production grade) purchased

perimeter recombination. from Cree Research Inc. Epitaxial growth was performed
Index Terms—Carrier lifetime, high-power device, p-n diode, by atmospheric-pressure chemical vapor deposition (CVD)
silicon carbide, surface recombination. in a SiH;-CsHg-Hs system. Substrates withf §4H-SiC) or

3.5° (6H-SIC) off-angles were used to realize homoepitaxy
through step-flow growth (step-controlled epitaxy) [10]. The
growth temperature was 150@, at which a growth rate of
NIQUE potential of silicon carbide (SiC) has beem o,m/h was obtained. The net donor concentration of:ir2-
demonstrated in prototype devices projected to higkhick nitrogen (N)-doped n epilayers was determined to be
power, high-frequency, and high-temperature applicatiogsx 104 cm—3 for 4H=SiC and8 x 10 cm3 for 6H=SiC
[1]-[8]. In spite of recent rapid progress in this field, there stilhy capacitance—voltage (C-V) measurements. The doping
exist many remaining issues to be solved for wide commercigl,iformity over the substrates was abatf%. The aluminum

success of SiC technology. For example, performance-limiting|) acceptor concentrations of a 1;2n thick p-layer and a
factors in SiC devices have scarcely been understood, althoggh;,m thick p* layer were designed to bk x 10'8 cm—2

micropipes have been claimed to severely degrade higghd 1 x 1020 cm—3, respectively.

blocking capability of SiC devices [9]. It is not clear what pjodes were processed into a mesa structure with,an6
kind of defects existing in the material itself or being inducefeight by reactive ion etching (RIE) using &F O, gases
during device processing adversely affect the SiC deviggth an Al mask. The surface was passivated with 20-nm
perforr_nan(_:e. _ _ o thick thermal oxides grown by wet oxidation at 113G

In SiC bipolar devices, major mysteries include large leakor 1 h. Contact holes for P layers were formed by wet
age current (at least several orders of magnitude higher thaghing of the oxide with buffered HF. Al/Ti and Ni were
simple theoretical prediction) and too fast switching charagmployed as ohmic contacts on top payers and back-side
teristics (short minority carrier lifetime). Concerning SiC p-h-type substrates, respectively. Although as-deposited contacts
junction diodes, high breakdown voltages in the range frogxhibited ohmic characteristics, sintering at #@was made
1 to 4.5 kV have been reported for small diodes [3]-{Slo improve contact resistance and adhesion. The diode size
However, detailed analyses on current conduction mechanigigs varied over a wide range from 60 to 12@@ in diameter
and the influence of surface defects on diode performance hgyenvestigate size effects. A schematic illustration of a diode
not been reported. is shown in Fig. 1.

In the present paper, the authors investigate the effects ofigh-resolution current-voltage/4V’) characteristics were
surface defects on the current conduction, breakdown chargfeasured with a Keithley high-voltage source measure unit
teristics, and switching behavior of SiC epitaxial p-n junctiop37 in the voltage range up to 1 kV. Above 1 kV, a Sony-
diodes. Surface recombination and generation processes ®fgntronics high-power curve tracer 371A was used. High-

voltage reverse current-voltage characteristics were measured
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Fig. 1. Schematic illustration of a SiC p-n junction diode.

Fig. 3.  Semi-logarithmic plot of forward curreni-V" for an 800xm¢
6H-SIC p—n diode at room temperature. Separation of forward current into

500 prrrr ey "r ™ recombination and diffusion current components is shown.
T 200F [ e o I
£ [ |_SiCpndiode | _ ':' ] Q cn?, whereas the series resistance of the 6H-SiC diode was
< 300} psic P 6.05 mQ cn?. This better current handling capability of the
= g [ 4H-SiC diode is expected from much higher electron mobility
2 200 3 L along thec-axis in 4H-SiC than 6H-SiC [13]. According to the
§ 100; ’,'GH-SiQ_ previous report [13], the mobility parallel to theaxis (1) is
= : ) ] only one-third to one-fifth of the mobility perpendicular to the
= R r\ ] c-axis (e ) in 6H-SIC. 4H-SiC, however, shows an opposite
O 5005 :_\ Va(dH)=1744V 1

anisotropy:y is even higher tham, by 20%. Sinceu, of
[ Vg(6H)=2022V 1 4H-SIiC is two times higher than that of 6H-SIC, about 10

0010 b b b by 1y 0 times higher can be expected in 4H-SiC.
-2000-1500-1000 -500 0 5 10 ghery P

Bias Voltage (V)

B. Forward Characteristics

Fig. 2. Linear current/-V characteristics of 10@m¢ 4H- and 6H-SIiC

oo diodes at room temperature, Fig. 3 depicts the semi-logarithmic forwadl-V plot of

an 800pm¢ 6H-SIC diode at room temperature. In the
low voltage region from 1.6 to 2.2 V, the ideality factor
(n) equals 2.00, indicating that carrier recombination dom-
inates the current transport. Above 2.2 V, the gradient of
the plot increases with bias voltage before a series resistance
Room temperaturd —V characteristics of 10@um¢ 4H— comes into effect. The forward current was separated into
and 6H-SIC diodes with the highest breakdown voltages focombination and diffusion current components, as shown
this diode size are demonstrated in Fig. 2. The 4H-SIiC diode Fig. 3. First, the recombination current component was
exhibited a high breakdown voltage of 1744 V, which isletermined by the least square fitting 6V data in the
about 80% of the ideal value (2100-2200 V) predicted frotow voltage region by using an equation with= 2. Then,
the diode structure and breakdown field data [11]. A highéy subtracting the recombination current component from the
breakdown voltage of 2022 V was achieved for the 6H-Si€xperimental values denoted by closed circles, open circles, the
diode, probably owing to the slightly higher breakdown fieldeality factor of which equals 1.08 (diffusion current), were
for 6H-SIC [12]. The leakage current density was belowbtained. Thus, the current density intercepts were determined
10~> A/cm® up to 1.5 kV for 4H-SiC and 1.9 kV for to be 5.71 x10~*° and 7.11 x10=2% A/cm? for diffusion
6H-SIC diodes. All the diodes did not show any physicand recombination currents, respectively. Smaller “intercept”
damage such as crater creation after breakdown. Howewanrent densities of.15 x 10~** (diffusion) and 2.66 x
when the reverse current density exceeded 0.1-10 Aétrihe  10-2* A/cm? (recombination) were obtained for a 4H-SiC
breakdown voltage, the diodes showed significantly increasgidde with the same mesa size (not shown), mainly due to
leakage current or were not operational in the subsequéme lower intrinsic carrier concentration of 4H-S{6-10~°
measurements. This degradation may be caused by the lask®) than that of 6H-SiQ~10"7 cm™3).
of proper junction termination, resulting in the electric field In general, carrier recombination takes place in the depletion
crowding at the corners of mesa structures, etc. layer (bulk recombination) as well as on the surface or
A high current density of 500 A/ctncould be delivered perimeter of a device (surface recombination) [14]. The surface
at forward voltage drops of 4.98 V for 4H-SIiC and 6.91 Vecombination current follows the same bias-voltage depen-
for 6H-SIC diodes. In the 4H-SIC diode, current conductiotience as the bulk recombination current, being proportional
above 300 A/crh was limited by a series resistance of 1.09 o exp(qV/2kT) [14], where ¢, k, and T’ are the elemental

I1l. RESULTS AND DISCUSSION

A. Basic Performance of p-n Junction Diodes
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Fig. 4. Perimeter-area (P/A) ratio dependence of the pre-exponential factor : defect B

of recombination current density determined as the inter¢gpt) for (a)
4H-SiC and (b) 6H-SIiC p—n diodes.

200pm

charge, the Boltzmann constant, and the absolute temperatfife > Typical morphological defects observed on the grown surface: shal-
low round pit (defect A), “carrot”-like groove (defect B), and triangular-shaped

respectively. Thus, the pre-exponential factor of recombinati%oves or depression (defect C).
current [;*¢ is given by the sum of these components as

follows: AW oo Nyn; generally decreases Wit_h inc_reasing _dev_ice area. NeudEck
I = ‘#ZA +gspLsni P (1) al. have reported that micropipes originating from SiC wafers
cause pre-avalanche point failure in high-voltage junction
assuming one deep trap at midgap. Here devices, being the most harmful defect in SiC materials [9].
v, thermal velocity of carriers; The authors have also observed that when SiC p—n or Schottky
N, trap concentration; barrier diodes meet micropipes, most of those diodes exhibit
o capture cross section of the deep trap; reduced §0 ~ 50% lower) breakdown voltage and large
W effective depletion width where the carrier recombindeakage current. In some cases, however, a diode without
tion is significant; any micropipes breaks down at a reverse voltage much lower
n; intrinsic carrier concentration; than that of a diode containing one or two micropipes. Thus,
sp surface (perimeter) recombination velocity; the relationship between specific defects and high-voltage
L, surface diffusion length. performance of SiC devices has not been fully elucidated.

The first term in the right side of the equation denotes the bulkTo investigate the effects of surface morphological defects
recombination current proportional to the diode argaand on the diode performance, the authors made mapping of
the second term the surface recombination current proportionabrphological defects of SiC epilayers after the mesa-etching
to the perimeter lengtt?. Dividing (1) by areaA yields the process by RIE. Fig. 5 shows typical morphological defects
following equation: observed on the grown surface: shallow round pit (defect A),
e G WomoNon; p “carrot”-likg groove (defect B), _and triang_ular-ghaped grooves
4+ gspLn;—. (2) or depression (defect C). Notice that Fig. 5 is not represen-
A 2 A . . )
tative of epilayers and most area is much more smooth. The
By plotting J5¢ of several diodes with different perimeter-areg@ensities of defects A, B, and C afex 103, 70, and 50
(P/A) ratios, the contribution of bulk and surface recombem~2, respectively. Although the formation mechanism of
nation can be distinguished. Fig. 4 represents the P/A rafjese defects is not made clear, the defects may be created
dependence of the pre-exponential factor of recombinatigiyough the disturbance of step flow during epitaxial growth by
current density determined as the intercept for (a) 4H-SiC agghstrate’s defects, particles, etc. [15]-[18]. Another surface
(b) 6H-SIC diodes at room temperature. The clear P/A rafisfect observed was “scratch” (not shown), which is line-
dependency reveals that major recombination occurs at g}paped surface damage introduced by a polishing process and
perimeter (sidewall of mesa) and not at the junction interfage yecorated by epitaxial growth. All the diodes investigated
(bulk), especially in small diodes. From thig* intercept, the ;; this study are micropipe-free.
pre-equnential factor of bulk recombir;ation curre_nt density Fig. 6 demonstrates the reverde-V characteristics of
was esUma;ged to 29'28 x 1072* Alem” for 4H-SiC and  gayeral 400um¢ 4H-SIC p-n diodes at room temperature.
4.52 > 107 Alem” for 6H-SIC diodes, respectively. Theryg giodes with defect A or scratch showed very low leakage
slope of the plot gives the, L, product of1.2 x 10% ¢M®/S et |ess than TGA/cm? at —500 V. This current was

__ Jrec __
= Jicc =

for 4H-SiC and 18 crfs for 6H-SIC. comparable to that of small diodes (60-2pfn¢), which
o contain no visible morphological defects, and was close to a
C. Reverse Characteristics noise level of the present measurement system. No correlation

One severe problem which high-power SiC device techndietween breakdown voltage and the number of defect A and
ogy has been facing is that high breakdown voltage can beratch in each diode was observed, suggesting that defect
achieved only for small devices and that breakdown voltage and scratch do not give direct impact on the reverse
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characteristics. The breakdown voltage does not depend on

the number of defects, but may be limited by the existence of
“device-killing defects,” even if there is only one. In contrast,

the existence of defect B seems to cause the increase in 50

leakage current, and the influence is much more pronounced —~ ,,[ ST Iwitr: de]lect [Acl 7
for defect C. To clarify the influence of morphological defects, S L no defect B
histograms of leakage current density-at00 V were made § 0 7
from 43 4H-SiC diodes (400-1200m¢), and are shown ‘:é’ 201 .
in Fig. 7. As can be seen, the defect B and, especially, E ok 1
defect C cause the increase in leakage current. Although some ol Lo I L I I I
diodes with defect C exhibited rather low leakage current of 10-1%10-° 108 107 10 105 104 102 102 10~ 10°
1079 ~ 10719 A/cm? at —100 V, the breakdown voltages of Current Density at -100V (A/cm?)

these diodes were significantly lower than average (see Fig. 6). ©)

In fact, no diodes which contain defect C could t_)IOCk VOItag%g. 7. Histograms of leakage current density—t00 V for 4H-SiC p—n
over 600 V. The large leakage of a few diodes with only defegfdes which contain morphological defects of (a) defect A, (b) defects A
A may be caused by some other bulk defects which were rfge B, and (c) defects A and C.
visible and not counted in this study. These investigations have
revealed that defect C and probably defect B as well shoulte capacitance recovery transients [19]. From Bjel ratio
be eliminated to ensure a high production yield of high-powelependence of the recovery time, three carrier generation
SiC devices. mechanisms in the capacitors were identified: bulk, surface and
Though “good” SiC p—n diodes without any defects B andefect-induced generations. They found that defect-induced
C showed low leakage current, the current level is larger thgeneration is the most dominant and bulk generation has the
simple theoretical prediction by more than ten orders of magmallest contribution. The present study revealed that surface
nitude. As recombination current could be divided into bulnd defect-induced (e.g. defects B and C) generations are also
and surface (perimeter) recombination components (Fig. 4)deminating in high-voltage SiC devices.
similar analysis was applied to the leakage current, which isFig. 9 shows the diode-area dependence of breakdown volt-
correlated with a carrier-generation process. Fig. 8 depicts thge for 4H-SIC diodes, obtained from measurements of to-
perimeter-area (P/A) ratio dependence of the leakage currtally 210 devices. The average, maximum, and minimum
density at—100 V of good 4H-SiC diodes without defectdreakdown voltages obtained for each size are represented.
B and C at two different temperatures. The leakage curreftte breakdown voltage showed rapid decrease when the
is proportional to the P/A ratio, indicating that the perimetattiode area exceeded 05x 10~2 cm?, which the authors
generation is responsible for the leakage. The almost zafefine as the “critical device area.” If defects detrimental
intercept of the plot means that the bulk generation process taa high-voltage SiC devices are uniformly distributed, the
deep defect centers is negligible. Heating the diodes resultéshsity of the device-killing defects can be estimated to
in the steeper slope of the plot, due to thermal activatidre 12 x 102> cm~2, given as the inverse of the critical
of perimeter generation. Thus, leakage current of SiC diodesvice area. This defect density is much higher than a typical
may be governed by the perimeter generation, suggesting timatropipe density of 50-100 cnd observed in commercial
surface passivation is a critical issue to reduce the leakageoduction-grade SiC wafers. And it should be reminded that
Wang et al. have investigated the carrier generation meclal the diodes measured in this study are micropipe-free.
anism in 4H- and 6H-SIC n—p-n storage capacitors froRtom these facts, the authors conclude that a micropipe is



KIMOTO et al.: PERFORMANCE LIMITING SURFACE DEFECTS IN SiC EPITAXIAL p-n JUNCTION DIODES 475

Device Diameter (um) report [21]. In contrast, defect A seems to be true surface
(10 251000800 40 200 morphological defects created during CVD. A detailed analysis
will be published elsewhere.

20| |4H-SIC pn diode| ¢

D. Carrier Lifetime
15} ]

In high-voltage bipolar devices, a long minority carrier
1ol ‘/’ 466K | lifetime is crucial to attain effective conductivity modula-
tion and thereby reduced on-state power dissipation. Previous
sl ] studies on the switching characteristics of SiC p-n junction
/" 406K diodes have shown very short minority carrier lifetimes in the

Current Density at -100V (A/cm?)

range from 30-80 ns [12], [22], [23]. Recently, Neudeck has
pointed out the possibility that perimeter recombination may
be responsible for poor effective minority carrier lifetimes

Fig. 8. P/A I’E_ltiO _dependence of the leakage current densitv 810 V  in 4H-SIiC p"_n diodes with breakdown voltages of a few
of good 4H-SiC diodes at two different temperatures. The leakage C“"Tﬂ',indreds volts [24] In this study the authors separate bulk and
is proportional to the P/A ratio, indicating that the perimeter generation IS ; !

e 1
0 50 100 150 200 250
Perimeter/Area Ratio (cm™)

responsible for the leakage. perimeter contribution to minority carrier lifetimes in kV-class
4H- and 6H-SIC diodes.
2000 e e The minority carrier lifetimes were determined by a conven-
r 1 tional switching analysis of p—n diodes [25]. In the turn-off
= r , switching waveform of p-n diodes, the storage time;
1600 maximum
“gj, I ] showing relatively constant reverse current is observed, due to
§ 1200 . the minority carrier (hole in this case) storage in the lightly-
< - average . doped m layer. The minority carrier lifetime, is given by
& 800 5 the following equation [25]:
K S -
% 400} W\N 7 Tp = & 2 3)
I ] {{erf1<1+ ! )}
S TR TR Ir/IF

\ ) ) _ .
Diode Area (cm?)  [x107] Here,Ir andIy are the reverse current during storage time and

Fig. 9. Diode-area dependence of breakdown voltage for 4H-SiC diod83€ forward on-state current, respectively, and erf is the error
obtaim_ed_ from measurements of a total qf 210 diodes. T_he average, maximfymction. SiC diodes were typicaIIy switched from forward
and minimum breakdown voltages obtained for each size are representedbias voltages of-3—4 V with 10-100 Alcrf current densities

to reverse bias voltages 6f10-20 V.
not the only device-killing defect in SiC material. Chelnokov Fig. 10 denotes typical switching characteristics of two
et al. have come to the same conclusion based on devigg—SiC diodes with different diode sizes, showing a longer
fabrication using micropipe-free Lely platelets [20]. Althougl$torage time for a larger diode. Taking account of the ef-
the triangular-shaped surface defects (defect C) adverstgigt of perimeter recombination, the minority carrier lifetime
affect the high-voltage blocking capability as shown in Figs. @stimated from the switching characteristics (“effective hole
and 7, the defect density (50 ci?) is also too low to lifetime”) 7, can be given by [24]
explain the device-area dependence in Fig. 9. The authors 1 1 P
made mapping of breakdown voltage, and tried to correlate — = +spZ 4)
the observed breakdown voltage with the type or number of o7

specific morphological defects in each diode, leading to Rgherer and s, are the intrinsic hole lifetime determined by
success except for the clear negative impact of defect C. Flk recombination and the surface recombination velocity,
example, it is hard to explain the large variation of breakdowspectively. The P/A ratio dependencies of the inverse of
voltage (min: 722 V, max: 1744 V) for 10@m¢ diodes, effective hole lifetimeg1/7,) for (a) 4H-SiC and (b) 6H-SiC
almost all of which are completely morphological defect freeare represented in Fig. 11. The clear P/A ratio dependence
Besides, a 40@m¢ diode with a few tens of defect A and oneof 1/7, revealed that perimeter recombination is dominant in
defect B showed a breakdown voltage (1102 V) higher thamall diodes, in agreement with the recent work [24]. From
several surface-defect free 1pfnh¢ diodes (800-900 V). the 1/7, intercepts of the plots, the bulk hole carrier lifetimes,
To clarify these puzzling results, detailed correlation bavhich reflect the intrinsic material quality, were determined to
tween breakdown voltage and bulk defects (dislocation, stadde 0.33us for 4H-SIC and 0.3%:s for 6H-SiC. This result
ing faults, etc.) as well as passivation is now under investigia- encouraging for a few kV device application, because the
tion. The authors’ preliminary etching experiment by molteperimeter recombination will play a smaller role in real high-
KOH revealed that the defect C includes a perfect dislocatipower switching devices which require large device areas to
near the apex of the triangle and partial dislocation pairs g&in high-current capability. The intrinsic hole lifetimes are,
the ends of the triangle base, in good agreement with a reckatvever, still not enough to realize effective conductivity
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Fig. 11. P/A ratio dependence df/r, obtained for (a) 4H-SiC and (b)
6H-SIC p-n diodes at room temperature.

mainly limited by the perimeter recombination instead of bulk
recombination.

The present study has demonstrated that surface or perimeter
properties can limit SiC device performance, since the material
quality of SiC epilayers has been improved to a high level.
Surface passivation together with device-structure design may
become a critical issue to extract the intrinsic potential of SiC
in real devices. Another remaining issue is the identification
of device-killing defects and their elimination.
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