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Abstract—Design and fabrication of lateral SiC reduced surface
field (RESURF) MOSFETs have been investigated. The doping
concentration (dose) of the RESURF and lightly doped drain
regions has been optimized to reduce the electric field crowding
at the drain edge or in the gate oxide by using device simulation.
The optimum oxidation condition depends on the polytype: N2O
oxidation at 1300 C seems to be suitable for 4H-SiC, and dry O2

oxidation at 1250 C for 6H-SiC. The average inversion-channel
mobility is 22, 78, and 68 cm2 Vs for 4H-SiC(0001), (11�20), and
6H-SiC(0001) MOSFETs, respectively. RESURF MOSFETs have
been fabricated on 10- m-thick p-type 4H-SiC(0001), (11�20),
and 6H-SiC(0001) epilayers with an acceptor concentration of
1 1016 cm 3. A 6H-SiC(0001) RESURF MOSFET with a 3- m
channel length exhibits a high breakdown voltage of 1620 V and
an on-resistance of 234 m
 cm2. A 4H–SiC(11�20) RESURF
MOSFET shows the characteristics of 1230 V–138 m
 cm2.

Index Terms—Power device, power MOSFET, reduced surface
field (RESURF), silicon carbide (SiC).

I. INTRODUCTION

S ILICON carbide (SiC) has attracted increasing attention
as a promising wide bandgap semiconductor projected for

high-power devices [1], owing to its high electric breakdown
field, high thermal conductivity, and reasonable maturity of
crystals. Through recent progress in SiC device technology,
high-voltage (300–1200 V) Schottky-barrier diodes have been
commercially available [2]. In order to enjoy the full benefits
of SiC-based power electronic systems such as high-voltage,
low-loss, and high switching speed, SiC power switches are
strongly required. In particular, SiC power metal-oxide-semi-
conductor field effect transistors (MOSFETs) have been recog-
nized as an ideal power switch for a variety of voltage ranges,
at least below 3 kV. Several groups have demonstrated vertical
SiC power MOSFETs, which outperform the Si counterparts
[3]–[7]. On the other hand, lateral SiC power MOSFETs are
promising for high-voltage power integrated circuit (IC) appli-
cations in the future. Although several high-voltage lateral SiC
MOSFETs have been reported [8]–[10], both the on-resistance
and breakdown voltage have not reached the level achieved in
vertical SiC MOSFETs.

In this paper, the design issues and fabrication of lateral
SiC reduced surface field (RESURF) MOSFETs are inves-
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TABLE I
AVERAGE EFFECTIVE MOBILITY (cm =Vs) FOR 4H-SIC(0001), (11�20),

AND 6H-SIC(0001) MOSFETS. THE ACCEPTOR CONCENTRATION OF

P-TYPE EPILAYERS IS ABOUT 1�10 cm

tigated. MOSFETs have been processed on 4H-SiC(0001),
4H-SiC , and 6H-SiC(0001) substrates. An improvement
of effective channel mobility has been also tried by high-
temperature oxidation in O or N O. High breakdown voltages
(1020–1620 V) are realized in fabricated devices.

II. INCREASE OF EFFECTIVE CHANNEL MOBILITY BY

HIGH-TEMPERATURE OXIDATION

The performance of SiC power MOSFETs is generally
limited by a high channel resistance, or a low effective channel
mobility. Okuno et al. reported that the interface state density
for 4H-SiC(0001) MOS structures is reduced by increasing
the oxidation temperature to 1250 C [11]. On the other hand,
post-oxidation annealing or direct oxidation in NO has been
recognized as an effective process to improve the quality of
4H-SiC(0001) MOS interface [12]. More recently, the usage
of N O has been proposed for safety reason [13]. As another
approach, the authors’ group has found that -
exhibits superior MOS characteristics, especially processed
by wet oxidation [14]. In this paper, planar n-channel MOS-
FETs were fabricated on 4H-SiC(0001), - , and
6H-SiC(0001) with gate oxides grown by either dry O or N O
at high temperature in order to improve the channel mobility.

P-type epilayers with an acceptor concentration of 1–2
cm were used [15], [16]. Source and drain regions

were formed by P ion implantation at 300 C followed by
annealing in pure Ar at 1600 C for 30 min. The total implant
dose was 3 cm . Then, 50–70-nm-thick gate oxides
were grown. Oxidation was performed in dry O (10% diluted
in N ) or N O (also 10% diluted in N ) at 1250–1300 C.
Al was used as gate and ohmic contacts. The typical channel
length and width were 30 and 200 m, respectively.

Table I summarizes the average effective channel mobility
obtained for planar inversion-type MOSFETs fabricated on
4H-SiC(0001), , and 6H-SiC(0001) epilayers. Typ-
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Fig. 1. Schematic structure of an SiC RESURF MOSFET simulated and fabri-
cated in this paper. Both RESURF and LDD regions are 10 �m long and 0.6 �m
deep. The p-type epilayer is 10 �m thick, doped to 1�10 cm . The typical
thickness of gate oxide and channel length are 100 nm and 3 �m, respectively.

ical mobilities obtained by conventional wet O oxidation at
1150 C are also shown for comparison. Dry O oxidation at
1250 C resulted in a high channel mobility of 68 cm Vs
for 6H-SiC(0001) MOSFET, but further increase in oxidation
temperature caused a decrease in mobility. In the case of
4H-SiC, dry O oxidation at high temperature did not bring the
improvement of channel mobility for both (0001) and .
Instead, direct oxidation by N O at 1300 C is very effective
to enhance the mobility of 4H-SiC MOSFETs. A very high
mobility close to 80 cm Vs was attained for 4H-SiC
MOSFETs by N O oxidation. This mobility improvement can
be correlated to the reduction of interface state density near the
conduction band edge. The detailed investigation on the MOS
interface properties and analysis on the interface structure will
be described in a subsequent publication.

III. STRUCTURE OPTIMIZATION OF SIC RESURF MOSFETS

Fig. 1 illustrates a schematic structure of SiC RESURF
MOSFET simulated and fabricated in this paper. Since it is not
easy to satisfy both high avalanching voltage in SiC and low
electric field strength in the gate oxide with a simple RESURF
structure [17], the lightly doped drain (LDD) region is intro-
duced near the n drain. This is basically the same structure as
“two-zone” RESURF reported by Banerjee et al. [18].

In this paper, both RESURF and LDD regions are 10 m long
and 0.6 m deep. The p-type epilayers are 10 m thick, doped
to 1 cm . The thickness of the gate oxide was 100 nm.
The channel length was fixed at 3 m. The doping concentra-
tion (dose) of the RESURF and LDD regions were optimized by
using device simulation (ISE-TCAD) to reduce the electric field
crowding at the drain edge and in the gate oxide. In the simula-
tion, material properties such as mobility and breakdown field
were assumed as those of 4H-SiC(0001), and anisotropy was ne-
glected. Since the properties of SiC depend on polytype as well
as crystal orientation, the optimum dose for 4H-SiC and
6H-SiC(0001) may be different.

Fig. 2 shows the equipotential lines for RESURF MOSFETs
(a) without LDD (single RESURF zone) and (b) with properly
designed LDD (two RESURF zones) at a high drain voltage
of 600 V. The RESURF dose is 3.6 cm in this partic-
ular case. For the MOSFET without LDD, severe electric field
crowding takes place at the drain edge as indicated by a dotted
circle in Fig. 2(a). By introducing LDD with a 7.8 cm
dose, the equipotential lines are more uniformly distributed in

Fig. 2. Equipotential lines for RESURF MOSFETs (a) without LDD (single
RESURF zone) and (b) with properly designed LDD (two RESURF zones) at
a high drain voltage of 600 V. The RESURF dose is 3.6�10 cm in this
particular case. The LDD dose shown in (b) is 7.8�10 cm . The step for
equipotential lines is 20 V.

Fig. 3. LDD dose dependencies of avalanching voltage and maximum oxide
field at the gate edge (point A in Fig. 1).

both RESURF and LDD regions as shown in Fig. 2(b). The
breakdown voltage simulated for MOSFETs with LDD was typ-
ically 50–80% higher than that for MOSFETs without LDD.

Fig. 3 depicts the LDD dose dependencies of the avalanching
voltage (inside SiC) and the maximum oxide field at the gate
edge (point A in Fig. 1) for MOSFETs with a fixed RESURF
dose of 3.6 cm or 6.0 cm . The avalanching
voltage was defined when the impact ionization integral along
an electric-force line reaches unity [19]. When the LDD dose is
varied, the avalanching voltage exhibits a peak while the oxide
field is almost constant. The maximum oxide field only depends
on the RESURF dose (a higher RESURF dose leads to an in-
creased oxide field). Thus, the optimum LDD dose can be easily
determined for a given RESURF dose, typically in the range
from 5 cm to 9 cm . Electric field crowding
occurs at the drain edge when the LDD dose is too low, and does
at the RESURF/LDD interface when the LDD dose is too high.

The RESURF dose dependencies of the avalanching voltage
and the oxide field are plotted in Fig. 4, where the influences of
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Fig. 4. RESURF dose dependencies of avalanching voltage and maximum
oxide field. The influences of MOS-interface charge (Q ) is also presented.

MOS-interface charge is also presented. Negative charge
was assumed because of electron trapping at the interface. In this
simulation, the LDD dose was fixed at 6 cm . To keep
the oxide field below 3 MV/cm for long-term reliability, the
RESURF dose should not exceed 5 cm in the case of
an ideal MOS interface . The optimum RESURF dose
shifts toward a higher value with increasing the interface charge,
because the negative interface charge enhances the depletion
of the RESURF region. In fact, a negative interface charge of
1 cm actually causes the shift of both plots toward the
high RESURF dose side by 1 cm . When the RESURF
dose is low, the electric field strength shows a sharp peak at
the RESURF/LDD interface in an electric field analysis. On
the other hand, if the RESURF dose is increased too much,
the RESURF region fails to be depleted, leading to an abrupt
drop of avalanching voltage. The oxide field increases with the
RESURF dose, because the voltage drop inside the RESURF
region is reduced and the potential at the gate edge of RESURF
region is increased for a high RESURF dose.

IV. FABRICATION OF RESURF MOSFETS

RESURF MOSFETs were fabricated on 10 m-thick p-type
4H-SiC(0001), , and 6H-SiC(0001) epilayers doped to
1.2 cm [15], [16]. The RESURF and LDD regions
were formed by N implantation with a dose of 4.0 and
8.7 cm , respectively. High-dose P implantation at
300 C was employed to form the source/drain regions. Post-im-
plantation annealing was performed at 1600 C in Ar for 20
min. About 2- m-thick SiO films deposited by plasma chem-
ical vapor deposition (CVD) were used as an implantation mask.
In order to reduce the channel resistance, the gate oxides for
6H-SiC(0001) MOSFETs were formed by dry O oxidation at
1250 C, and the oxides for 4H-SiC(0001) and MOS-
FETs by N O oxidation at 1300 C, as described in Section III.
The typical channel length and width were 3 m and 200 m, re-
spectively. Al was used as gate and ohmic contacts. Ohmic char-
acteristics can be obtained with Al metal when it is deposited on
highly-doped n -SiC.

Fig. 5. Output characteristics of (a) 6H-SiC (0001) and (b) 4H-SiC(11�20)
RESURF MOSFETs fabricated in this paper.

Fig. 5 represents the output characteristics of (a) 6H-
SiC(0001) and (b) 4H-SiC RESURF MOSFETs
fabricated in this paper, where normal on-state operation
and high-voltage blocking performance are observed. The
threshold voltage was 1.0 V for 6H-SiC(0001) and 6.1 V for
4H-SiC RESURF MOSFET, respectively. The 6H-SiC
MOSFET exhibited a high breakdown voltage of 1620 V,
while the breakdown voltage for 4H-SiC(0001) and
MOSFETs were 1020 (not shown) and 1230 V, respectively.
The higher breakdown voltage for the 6H-SiC device may be
partly attributed to the higher breakdown field along the
direction of 6H polytype [20]. However, it is also known that
the negative charge at the MOS interface of 6H-SiC is lower
than that of 4H-SiC. As indicated in Figs. 3 and 4, the interface
charge significantly influences the optimum RESURF/LDD
doses and thereby the breakdown voltage of MOSFET. To
clarify this effect, both 4H- and 6H-SiC RESURF MOS-
FETs fabricated with various RESURF/LDD doses should be
compared. The absolute values of breakdown voltage experi-
mentally obtained were higher than simulated values by 20%
in the case of 4H-SiC devices. The reason for this difference
might be ascribed to the reduced electric field crowding due
to differences in experimental and simulated doping profiles
caused by channeling effects in ion implantation and/or lateral
diffusion of impurities during annealing. Since the breakdown
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Fig. 6. Specific on-resistances for various SiC RESURF MOSFETs as a
function of electric field in gate oxide.

was reversible for all the devices fabricated, the breakdown
seems to be limited not by oxide failure but by avalanche inside
SiC, probably near the drain edge.

Fig. 6 shows the specific on-resistances for various SiC
RESURF MOSFETs as a function of electric field in the
gate oxide. Here, the electric field in the oxide was defined
simply as the gate voltage divided by the oxide thickness

, because this field is reached in the oxide above the
gate-source overlapping region. The on-resistance at an oxide
field of 3.0 MV/cm was 234 m cm for 6H-SiC(0001),
241 m cm for 4H-SiC(0001), and 138 m cm for
4H-SiC RESURF MOSFETs. These characteristics are
one of the best performances reported for lateral SiC MOSFETs
[21]–[23]. Furthermore, the on-resistances for 6H-SiC(0001)
and 4H-SiC MOSFETs are lower than the classical
“Si limit.” However, the on-resistances are far from the level
expected from the material potential. A rough estimation of
the resistance components by using test elements indicates
that the channel resistance governs about 40%, 65%, and 45%
of total resistances for 6H-SiC(0001), 4H-SiC(0001), and
4H-SiC MOSFETs, respectively. It also turns out that
the contact resistance cannot be neglected in these devices:
Contribution to the total on-resistance is about 10%–20%.
Further improvements of the MOS interface and/or shortening
the channel length will lead to a decreased on-resistance.

Fig. 7 shows the temperature dependence of the specific
on-resistance for 4H-SiC(0001), 4H-SiC , and 6H-
SiC(0001) RESURF MOSFETs fabricated in this paper. The
on-resistance is taken at an oxide field of 3.0 MV/cm. The
on-resistances for 4H-SiC and 6H-SiC(0001) RESURF
MOSFETs increase at elevated temperature, because both
channel and bulk resistances increase due to enhanced phonon
scattering. However, the on-resistance for the 4H-SiC(0001)
MOSFET decreases from room temperature to 100 C, because
the channel resistance, the dominant component, is decreased
owing to reduced electron trapping. Above 100 C, phonon
scattering becomes more dominant, and the on-resistance
turned to increase with increasing temperature. The breakdown
voltage exhibited a positive temperature coefficient for all of
the measured MOSFETs. For example, the breakdown voltage
increased from 1620 V at 20 C to 1740 V at 150 C, indicating
that the breakdown is governed by an avalanche phenomenon

Fig. 7. Temperature dependence of (a) specific on-resistance and (b) break-
down voltage for 4H-SiC(0001), 4H-SiC(11�20), and 6H-SiC(0001) RESURF
MOSFETs fabricated in this paper. The on-resistance is taken at an oxide field
of 3.0 MV/cm.

in SiC, and not by oxide breakdown. The breakdown voltages
of 4H-SiC MOSFETs at 150 C were also about 6–9% higher
than those at room temperature. Although this phenomenon can
be interpreted by avalanche breakdown, the reduced negative
charge at the MOS interface at elevated temperature might
cause the change of electric field distribution, and may also
contribute to the increased breakdown voltage.

V. CONCLUSION

Structure optimization and fabrication of RESURF MOS-
FETs on 4H-SiC(0001), 4H-SiC , and 6H-SiC(0001)
have been investigated. By utilizing N O oxidation at 1300 C,
the effective channel mobility was improved to 22 and
78 cm Vs for 4H-SiC(0001) and , respectively. Dry O
oxidation at 1250 C resulted in an effective channel mobility
of 68 cm Vs for 6H-SiC. The optimum doping concentra-
tions (doses) of the RESURF and LDD regions to reduce the
electric field crowding at the drain edge or in the gate oxide
were estimated by using device simulation. RESURF MOS-
FETs were fabricated on 10 m-thick p-type 4H-SiC(0001),

, and 6H-SiC(0001) epilayers doped to 1 cm .
A 6H-SiC(0001) RESURF MOSFET with a 3- m channel
length exhibited a high breakdown voltage of 1620 V and an
on-resistance of 234 m cm . A 4H-SiC RESURF
MOSFET showed the characteristics of 1230 V–138 m cm ,
which is better than that of 4H-SiC(0001) MOSFET, owing to
the higher channel mobility in the 4H-SiC device.
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