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Parallel Processing of 3-D Eddy Current Analysis
with Moving Conductor Using Parallelized

ICCG Solver with Renumbering Process
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Abstract—A new parallelized ICCG scheme is applied to a finite
edge element analysis of a 3-d eddy current problem with a moving
conductor. In the new method, the global matrix is automatically
reordered to the matrix form appropriate to parallel processing.
The method requires no particular pre-processing step. It is shown
that the newly proposed method has a better parallel efficiency
than the Block ICCG method because of a higher preconditioning
effect.

Index Terms—Eddy current analysis, moving conductor, par-
allel processing, parallelized ICCG solver.

I. INTRODUCTION

CURRENTLY, 3-D finite element (FE) analyzes are often
carried out for electrical machines with moving conductor

parts [1]–[4]. These analyzes require a large number of compu-
tations in order to treat the transient behavior of the eddy current
in the moving conductor. When a large-scale problem needs to
be solved in high resolution, one approach is to utilize a parallel
processing technique.

There are several strategies for parallel processing in FE ana-
lyzes [5], [6]. One of the most efficient methods is based on the
concept of domain decomposition [5]. This method, however,
requires a pre-processing step. Moreover, the number of pro-
cessors is limited in the analysis of a moving conductor since it
is preferable to treat one moving part as a single domain. We,
therefore, intend to introduce a parallelized solver after assem-
bling the global matrix without any particular pre-processing
[6]. In this case, we can easily utilize various techniques [2]–[4]
for simulating moving materials developed on a uni-processor
machine. The parallelized solver described here can easily be
applied to general eddy current analyzes.

The ICCG method is one of the most popular linear solvers
for FE analyzes, but the parallel processing with the ICCG
method is difficult due to forward–backward substitutions [7].

The present paper proposes a new parallel-processing tech-
nique of the ICCG solver, that we call the Parallelized ICCG
method with Renumbering Process (PICCG-RP). This new
technique modifies the global matrix into a form similar to the
dissection ordering case [8], using a renumbering process.

In this study, a parallelized eddy current FE analysis with
a moving conductor is carried out on the parallel computer
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Fig. 1. Block IC factorized matrices (on 3 processors).

HITACHI SR2201. Our results show that the new method can
attain a higher preconditioning effect than the Block ICCG
method (BICCG) used in [6], [9].

The matrix is first divided into blocks of rows, named
here as“interior parts,” and blocks of rows named
as“interface parts,” as is shown in Fig. 2(a), where is given
by the following equation.

(1)

Next, the matrix is reordered to the form shown in Fig. 2(b),
which is similar to a global matrix assembled with a dissec-
tion ordering. The vectors are also divided into segments cor-
responding to the matrix. Theth processor deals with the row
blocks and vector segments of theth interior and interface parts.
Though this renumbering process implies a kind of domain de-
composition in the analyzed model, users of this solver do not
need to take the decomposition into account, unlike the usual do-
main decomposition method. The renumbering process is per-
formed automatically in the solver, and no pre-processing for
the domain decomposition is required.

II. PARALLELIZED ICCG METHOD

In the present paper, we investigate a symmetric posi-
tive-definite linear system derived from the FE formulation.
It is assumed that the global coefficient matrix of the linear
system is a band matrix and that nonzero entries can be located
irregularly in the band. The number of processors, the band
width, and the dimension of the global matrix are denoted by

, , and , respectively.
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Fig. 2. Renumbering process (on 3 processors).

A. Parallel Processing of the PCG Method

The Preconditioned CG (PCG) method, in particular the
ICCG method, is the most popular and effective iterative
solver for symmetric positive-definite linear systems. The PCG
method involves four main kernels: 1) preconditioning, 2) inner
products, 3) matrix-vector products, 4) vector updates. The
latter three kernels are easily parallelized with the communica-
tions, which depend on the band width, by dividing the vectors
(the solution vector, the residual vector, etc.) intosegments.
On the other hand, it is usually problematic to parallelize the
preconditioning kernel, though this difficulty depends on the
kind of preconditioner. In the case of the IC preconditioning
that is generally used, the preconditioning kernel consists of
forward–backward substitutions that are difficult for parallel
processing.

In the following subsections, we investigate the parallel pro-
cessing of the ICCG method, paying special attention to the sub-
stitutions.

B. Block ICCG Method

The Block ICCG method (BICCG) is one of the parallel-pro-
cessing techniques of the ICCG method. This method divides
the global matrix into submatrices and performs the IC fac-
torization for the local submatrix in each processor, with the
entries between different processors being ignored in the fac-
torization. This block IC factorization results in the precondi-
tioner matrices and , as shown in Fig. 1. forward–back-
ward substitutions with the matrices can be performed in par-
allel without communications. The BICCG method, however,

Fig. 3. IC factorized matrices (preconditioner matrices).

suffers from a decline in its preconditioning effect since the ig-
nored entries in the factorization increase in proportion to the
number of processors.

C. Parallelized ICCG Method with Renumbering Process

In the present paper, we propose a new technique that we
call the Parallelized ICCG method with Renumbering Process
(PICCG-RP). In the PICCG-RP, the global matrix is reordered
to an appropriate form for parallel processing. Since no entries
are neglected in the PICCG-RP, it is expected that this technique
will attain a higher preconditioning effect than the BICCG.

Fig. 3 shows the preconditioner matricesand , which
are the IC-factorized matrices of the reordered matrix. The
forward–backward substitutions with these preconditioner
matrices can be performed in parallel as follows (see Fig. 4):

• Step 1: The forward substitution for the interior part is
performed in parallel in each processor.
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Fig. 4. Parallelized forward–backward substitutions (on 3 processors).

• Step 2: The upper-side entries of the computed vector
segment are communicated from theth processor to the
( -1)th processor.

• Step 3: The forward and backward substitutions for the
interface part are carried out in parallel.

• Step 4: The vector segment for the interface part is com-
municated from theth processor to the (+1)th processor.

• Step 5: The backward substitution for the interface part is
performed in parallel in each processor.

Consequently, one set of forward–backward substitutions can
be executed in parallel with the two communications that shift
the vector entries to adjacent processors. Moreover, these
communications can be overlapped with the computations. If
the load balance is considered for theth processor, which is
excluded from computations of the interface parts, the rows of
the th interior part are increased.

The other kernels (matrix-vector products, update vectors,
inner products) are also carried out in parallel.

Fig. 5 shows a flow chart of an analysis using the PICCG-RP.
The renumbering cost for the global matrix is about the same as
the cost of one matrix-vector product and is negligible in terms
of the total computation time. The renumbering costs of the vec-
tors are trivial and also negligible. Moreover, these renumbering
processes can be parallelized. While the cost of the IC factor-
ization is amortized over the iterations as with the usual ICCG
method, the factorization of the reordered matrix can be car-
ried out in parallel with overlapping rows between adjacent
processors.

III. M ODEL AND FORMULATION

Fig. 6 shows the analyzed model, which is a simplified model
of an eddy current break system. The conductor is assumed to
start moving at with velocity . The exiting current is DC
10 A.

The model is discretized by first-order brick-type edge ele-
ments. When using a moving coordinate system, the basic equa-
tion is

(2)

where , , , and are the magnetic vector potential, the per-
meability, the electrical conductivity, and the exiting current, re-
spectively [4]. The term for the electric scalar potential is elim-
inated because of the edge element formulation. By using the
backward difference method, the time derivation term is dis-
cretized in the moving conductor region as follows:

(3)

where
is the time interval,
is the position on the fixed coordinate system,
is the velocity of the conductor, and
represents the magnetic vector potential at the
time [4].
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Fig. 5. Flow chart of analysis using PICCG-RP.

Fig. 6. Analyzed model.

Applying the Galerkin method to (2), we finally obtain the fol-
lowing global linear system.

(4)

(5)

(6)

(7)

where
is the number of elements,
is the element,

is the unknown vector of the potential at
, and

represents the previous potential .
While the global coefficient matrix [ ] is constant,
the right-hand side of (4) changes in the conductor region at
each time step. The effect of the eddy current induced by the
movement of the conductor is taken into account in computing
the right-hand side of the equation.

IV. NUMERICAL RESULTS

Parallelized eddy current analyzes are carried out on the dis-
tributed memory parallel computer HITACHI SR2201. Table
I lists the analysis conditions and the discretization data. The
original global matrix is assembled with a natural ordering. The
program code is written in FORTRAN language with the MPI
library. The convergence criterion of the ICCG method is given
by , where and are the right-hand side
vector and the residual vector, respectively.
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TABLE I
ANALYSIS CONDITIONS AND DISCRETIZATION DATA

Fig. 7. Time-dependent variations of the magnetic flux density.

TABLE II
COMPUTATION TIME

TABLE III
AVERAGE NUMBER OF CG ITERATION IN ONE TIME STEP

Fig. 7 shows the time-dependent variation of the z-component
of the magnetic flux density at mm. The eddy
current induced by the movement of the conductor gradually
weakens the magnetic flux density.

Tables II and III list the total computation time and the
average number of CG iterations in one time step, respectively.
For comparison, the Diagonal Preconditioned CG method (DP)

Fig. 8. Speed-up.

is also examined. Fig. 8 depicts the speed-up ratio of the paral-
lelized solvers compared with the ICCG method implemented
on one processor. Fig. 8 shows that the PICCG-RP can attain
a better parallel efficiency than the other two solvers. This is
due to the better convergence rate of the PICCG-RP. While
the DP achieves an ideal linear speed-up, its preconditioning
effect is smaller than the IC preconditioning. The present
analysis shows that the kernels of the CG method (for example,
forward–backward substitutions, matrix-vector products, etc.)
are ideally parallelized in both the BICCG and the PICCG-RP.
This result implies that the costs for the renumbering process
and the communication are negligible in the PICCG-RP. Table
III, however, shows that the BICCG and the PICCG-RP suffer
from a trade-off between parallelism and the convergence rate.
In the BICCG, this effect is due to the global matrix entries
being ignored in the Block IC factorization. In the PICCG-RP,
the trade-off is caused by the renumbering process. In general,
the numbering strategy affects the IC preconditioning, and the
natural ordering is one of the best ordering strategies [8]. In the
present analysis, the renumbering process in the PICCG-RP
destroys the data dependency relationship of the coefficients
in a global matrix with natural ordering, which results in
a trade-off. But, the trade-off is smaller in the PICCG-RP
than in the BICCG, since no matrix entry is neglected in
the PICCG-RP. In particular, as the number of processors
increases, the advantages of PICCG-RP over BICCG becomes
more significant.

V. CONCLUSION

A new parallel-processing technique of the ICCG solver, the
Parallelized ICCG Method with Renumbering Process, was pro-
posed in the present paper. A parallelized eddy current anal-
ysis with a moving conductor was performed by utilizing paral-
lelized ICCG solvers. The following is a summary of the results.

• Introducing a parallelized linear solver without
pre-processing is an effective and easy way of par-
allel processing in FE analyzes.

• A 12-fold speed-up is achieved by 22 processors working
on a problem with approximately 220 000 degrees of
freedom.
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• The method proposed here, the PICCG-RP, attains a better
parallel efficiency than the BICCG because of the higher
preconditioning effect.
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