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Abstract—The present paper proposes a new method for the

construction and ordering of edge elements for parallel computa- 15% 14% 5% 16® 15 % 16® o®
tion. The use of virtual nodes generated in each volume element o® 16 1® 1* ® 1 L0
is presented as a means of introducing parallel ordering theory de- CRNCIE S L® L e
veloped in finite difference analyses to finite edge element analyses. e o o o e o o o
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Eight-corner ordering and multi-color ordering are examined in
the context of 3-D eddy-current analysis. The proposed method %
using 8-corner ordering can parallelize the ICCG solver in a finite

edge element analysis without decreasing the convergence rate. A -——>

good balance between convergence and parallelism in the ICCG  x-incompatible node % y-incompatible node source node

solver is obtained in the case of multi-color ordering.

(a} Natural Ordering (b} Red-black Ordering

Index Terms—Edge element, parallelized ICCG method, par-
allel ordering, virtual node.

Fig. 1. Graph representation of ordering.
On the other hand, it is difficult to perform forward and back-
ward substitutions in parallel.
SE OF parallel orderings such as dissection ordering is anThe use of parallel ordering is one of the most effective
efficient way for parallelization of the ICCG method [1],methods for the parallel processing of substitutions. Parallel
[2]. Itis, however, well-known that these ordering strategies edrdering, however, is well-known to entail a trade-off between
tail a trade-off between parallelism and convergence. In ordgdrallelism and convergence. S. Doi and A. Lichnewsky give a
to overcome the trade-off, several detailed investigations haygod explanation of this trade-off in finite difference analyses
been performed in case of the finite difference method applie¢ means of “the graph representation of ordering” [3]. Fig. 1
to elliptic partial differential problems [1], [3], [4]. No report, shows examples of the graph representation of ordering (natural
however, has been presented for finite element analyzes, in pgttering and red-black ordering). The directed graph represents
ticular edge element analyses. The present paper investigatesfiberder between adjacent nodes; that is, the data-dependency
effects of ordering strategies including domain division on pafelationship of the nodes. The node that is numbered before
allelized finite edge element analyses. Since edge elements hewth sides of adjacent nodes in one direction is called “the
complex data-dependency relationships to each other, the pagompatible node” (see Fig. 1). S. Doi and A. Lichnewsky
allel ordering presented for the finite difference method cannigéve shown that the more incompatible nodes an ordering has,
be directly applied to edge element analyses. On the other haih@, lower the convergence rate is. Since natural ordering has no
edge elements are usually constructed in turn in each voluineompatible nodes, its convergence rate is excellent. Red-black
element such as a hexahedron. The present paper proposegiéring has many incompatible nodes, and its convergence
combination of the construction of edge elements and paraligte is low. On the other hand, the number of incompatible
ordering using virtual nodes generated in each volume elemeafddes represents a potential parallelism. The incompatible node
having no incoming edge in the ordering graph is called “the
II. PARALLEL PROCESSING OHCCG METHOD source node.” The source nodes are potential starting points of
the forward-backward substitution, and the number of source

The ICCG method is the most popular iterative solver for a . . - .
Pop nodes shows ordering parallelism. This is the explanation of

symmetric positive-definite linear system arising in a FE ana}(g—]e trade-off between parallelism and converaence
ysis. The ICCG method involves four main kernels: 1) forwar P . g '
Two parallel ordering strategies are recommended from the

and backward substitutions, 2) inner products, 3) matnx—vect\t/)gew point of the theory of graph representation [4]. The first

products, and 4) vector updates. The latter three kernels can g-corner (4-comer in the 2-D case) ordering. This ordering
easily parallelized by dividing the vectors into several segmenk . . . '
as no incompatible node and the same degree of convergence

rate as natural ordering. The number of processors is, how-
Manuscript received June 4, 2000. ever, limited. The second is multi-color ord(_arlng with more thap
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parallelism. Accordingly, this ordering is effective in cases ir Proc. 3: Proc. 4
volving many processors (more than 8), in which 8-corner @ clejeleleiefele e oo
. . . e|lo|ojojojo|o|e ac ¢ o8 0l0 s 0
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A. New Construction and Ordering of Edge Elements o virtual nodes gl Proc. 1 Proc. 2

The present paper investigates an application of the para o start point
ordering theory developed for finite difference analyses, as me
tioned above, to finite edge element analyses. Since edge
ments have complex data-dependency relationships each ot 2 y TR
itis difficult to directly apply parallel ordering to edge elements £ i

(a) Step 1 (b) Step 2

Proc.3 Proc.4 r-————"——-——====

We, here, propose a new construction and ordering procedur«@
edge elements for parallel processing using virtual nodes g ¢
erated in volume elements.
Edge elements are usually constructed in each volume € &
ment. In the proposed method, virtual nodes are, first, genera v
at the center of gravity in volume elements, and then, paral =1~ " Proc.2 LT s e s
ordering is applied to the virtual nodes. Edge elements are c(Froc.1 |
structed following the ordering of virtual nodes. The procedu interior elements
is summarized as follows:

Step 1) A virtual node is generated at the center of gravigjy. 2. Construction and ordering using 4-corner ordering.
in each volume element.

Step 2) The virtual nodes are ordered corresponding tosach as those shared by more than three subdomains, are treated
parallel ordering strategy. sequentially by all processors.

Step 3) Edge elements are constructed in each volume ele-
ment following the ordering of the virtual nodes. C. Construction of Edge Elements With Multi-Color Ordering

Eight-corner ordering and large-numbered multi-color |n this subsection, we discuss the case of multi-calgrgr-
ordering are used in the present analyses. The details of #@ing wheren denotes the number of colors. In Step 2), the
construction procedure using these orderings are describediifual nodes are ordered first using natural ordering or diag-
the following subsections. onal ordering. The present analysis adopts diagonal ordering.

. ) . Second, several colors are assigned to the virtual nodes, where
B. Construction of Edge Elements Using 8-Corner Ordering e virtual nodes with the same color must be independent. This

For the sake of simplicity, we illustrate the procedure in thmeans that edge elements generated in the volume elements of
2-D case while the present analysis is 3-D. Fig. 2(a) shows #re same color must not share data-dependency each other. In
example of the analytical models. We here use the 4-corrigtep 3), edge elements are constructed in volume elements fol-
(8-corner in 3-D) ordering in Step 2) mentioned above. The vilewing the diagonal ordering of virtual nodes. When the edge el-
tual nodes are divided into four subdomains each of which iementis newly constructed, the same color as the virtual node of
cludes a corner node as is shown in Fig. 2(b). A subdomaintise volume element is assigned to the edge element. Next, edge
assigned to each processor. In each subdomain, the nodes arelements are reordered following the order of color froifi)
dered using natural ordering where the corner node is selected’(m) , whereC(i), (¢ =1, 2, ..., m) represents the set of
as the starting point. Since the ordering graph of the virtuatige elements sharing the same céldihe edge elements con-
nodes has no incompatible nodes, the convergence rate issricted in different volume elements of the same color can be
pected to be excellent. After the construction of edge elemetrsated in parallel. Consequently, the degree of the parallelism
in Step 3), we find the interface elements that belong to seveimkqual to the number of virtual nodes assigned in one color.
different subdomains. The interface elements are excluded frontig. 3 illustrates the procedure using multi-color(3) ordering
the subdomains and are renumbered next to the remainingfor-a 2-D rectangular mesh as in Fig. 2(a). Fig. 3(a) shows the
terior elements of the subdomains. Since this procedure leatitual nodes using diagonal ordering. Fig. 3(b) depicts the color
to a global matrix similar to a dissection ordering case, the the virtual node. Fig. 3(c) and (d) show the color and the
forward-backward substitution can be performed in parallel. fihal order of edge elements constructed in volume elements,
required, the interface elements are also subdivided into seveesipectively. Fig. 4 depicts the global matrix based on the final
groups. ordering of edge elements.

In the present 3-D analysis, most of the interface elementsin the case of multi-color ordering, the number of colors has
belonging to two subdomains are divided into differers lower boundary in order to attain the independence of virtual
groups sharing no data-dependency with each other. Tiedes with the same color. The lower limit value depends on
forward—backward substitution concerned with these elemettig virtual node ordering and the type of the volume element.
is carried out in parallel. The remaining interface element8pout 30 colors are sufficient for hexahedron and tetrahedron
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number of edge elements

(c) Steps 3
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—sl—l sl el ANALYSIS CONDITIONS AND DISCRETIZATION DATA
(c) Color of edge elements (d} Final order of edge elements number Of VOlume elements 10600
Fig. 3. Construction and ordering using multi-color(3) ordering. number of nodes 12100
number of unknowns 34650
p— -
- — time step 1 msec
L] -
(] T. 1%
& ¢ i- Color 1 TABLE I
‘ ! . COMPUTATION RESULTS
(] : "r L
| .' e (a) Proposed method using n-corner ordering
. ‘“. " | 3 Color 2 N, | Computation time (sec) | Iteration
Te o b T Y 1 13.46 72
= -——.' 2 2 6.979 72
o e 4 3.411 71
. i1~ B :
- m Color 3 8 2.085 73
! 1 ! : ..
— - p— (b) Natural ordering without virtual nodes
Np | Computation time (sec) | Iteration
Fig. 4. Global matrix with multi-color(3) ordering. 1 15.89 85

elements while from 30 to 50 colors are usually used in the .

large-numbered multi-color ordering. The use of too mag ctor of the ICCG method is chosen t(.) be 1.03. The paral'lel
colors is, however, ineffective because multi-caloy(ordering erfo_rmance of the proposed method is evaluated in the first
requires2(m — 1)-times communications in one set of forward®"® time step.

and backward substitutions. B. 8-Corner Ordering

This subsection examines the parallel performance of the pro-
posed method when the virtual nodes are orderednvitbrner
ordering @ processors)y = 8, 4, 2, 1. One-corner ordering

We have implemented the proposed method for the IEEJ stéiere means natural ordering. Table Il lists the computation time
dard benchmark model of 3-D eddy current analyses [5]. Figahid CG iterations in the first time step, whéYg is the number
shows the analyzed model, which is discretized by first-ordef processors. For comparison, Table 1l(b) shows the computa-
brick-type edge elements in the present analysis. Table | lisisn results without virtual nodes on one processor where each
the discretization data. The electromagnetic field equations a@age element is ordered using natural ordering. Table Il shows
formulated withA-formulation, and are solved by the Galerkirthat the finite edge element analysis can be parallelized without
method and the backward time difference method. decreasing the convergence rate. Table Il also implies that the

Parallelized eddy current analyses were carried out on thge of virtual nodes is effective even in the one processor case,
distributed memory parallel computer Fujitsu VPP-800 at tHecause more CG iterations are required in the case of no vir-
Data Processing Center, Kyoto University. The program cotleal node. Fig. 6 depicts the convergence behavior showing that
is written in the FORTRAN language with the MPI library.then-corner ordering preserves a good convergence rate. Fig. 7
The convergence criterion of the ICCG method is given Ishows the speed-up ratio compared with the case of no virtual
lr|l2/Ilk|l2 < 10~7, whereb andr are the right-hand side node. The proposed method achieves high parallel performance
vector and the residual vector, respectively. The acceleratioecause of no decline of the convergence rate. The saturation

IV. PARALLEL PERFORMANCE
A. Test Model and Computation Environment
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Fig. 6. Convergence behavior withcorner ordering. Fig. 8. Convergence behavior with multi-color ordering.
9 T T T T T T T T TABLE IV
ol Proposed method ~o— | COMPUTATION RESULTS FORL ARGE-SCALE PROBLEM
Without virtual nodes  + . . .
7| 1 (a) Proposed method using multi-color(33) ordering
ol Np | Computation time (sec) | Iteration
- 1 3340 563
z 5r ] 4 857 563
Q
g a4t - 8 436 562
sl | 16 227 562
24 161 563
2r 7 32 130 563
1k . . . .
(b) Natural ordering without virtual nodes
th ; : : . . : - . Np | Computation time (sec) | Iteration
Number of processors 1 2072 366
Fig. 7. Speed-up of proposed method usingorner ordering. (c) Proposed method using n-corner ordering
Np | Computation time (sec) | Iteration
TABLE Il 1 1875 327
DISCRETIZATION DATA OF LARGE-SCALE PROBLEM 4 512 349
8 257 337
number of volume elements 327680
number of nodes 342225
number of unknowns 1011920 27 to 50, we obtained the highest convergence rate and parallel

performance when 33 colors were used. Table 1V lists the com-

] ] _ putation time and CG iterations in the first time step. Table IV
of the speed-up on 8 processors is caused by an increase infifates that the proposed method using multi-color(33)

ratio of communication cost to computation cost. Higher pagygering suffers from about a 50% increase of CG iterations
allel performance is expected for a larger-scale problem.  ¢ymnared with the natural ordering case on one processor. On
] ) the other hand, in the case of 33 colors, about 9900 virtual
C. Multi-Color Ordering nodes are assigned to one color; that is, the ordering attains
Since large-numbered multi-color ordering is effective for about 9900 degrees of parallelism. Large-numbered multi-color
large-scale problem, the analyzed model discretized by a fioelering can achieve high parallelism with a small decrease of
mesh is presented for a large-scale model in this subsection. Thavergence rate.
discretization data are listed in Table Ill. The acceleration factorWe have also examined the applicationme€orner ordering
of the ICCG method is set at 1.07. for this large-scale problem. Fig. 9 plots the speed-up ratio of the
When the virtual node is ordered with multi-color orderingproposed method compared with the case of no virtual nodes.
the convergence of the ICCG solver depends not on the numbtigés shown thatn-corner ordering achieves an ideal speed-up
of processors but on the number of colors. Fig. 8 shows tf@ the large-scale problem. Multi-color ordering is effective on
convergence behavior of the proposed method using severare than 8 processors, and obtains a 16.0-fold speed-up by
numbers of colors. In testing various numbers of colors froB2 processors.
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2 : : : : ' ' ' eddy current analyses, demonstrating that the useful properties

18 | Multi-color(33) ordering -— 4 Which parallel ordering techniques exhibit in finite difference
n-corner ordermg -t . . ..

16 L Without virtual nodes = | analyzes can be effectively introduced to finite edge element

analyzes. Using 8-corner ordering, an edge element analysis
is parallelized with no decline of the convergence rate of the
1 ICCG solver. When the multi-color ordering is applied to

Qo
3
3 4 the virtual nodes, a good balance between convergence and
& 4 parallelism is attained in the solver.
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