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Construction and Ordering of Edge Elements for
Parallel Computation
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Abstract—The present paper proposes a new method for the
construction and ordering of edge elements for parallel computa-
tion. The use of virtual nodes generated in each volume element
is presented as a means of introducing parallel ordering theory de-
veloped in finite difference analyses to finite edge element analyses.
Eight-corner ordering and multi-color ordering are examined in
the context of 3-D eddy-current analysis. The proposed method
using 8-corner ordering can parallelize the ICCG solver in a finite
edge element analysis without decreasing the convergence rate. A
good balance between convergence and parallelism in the ICCG
solver is obtained in the case of multi-color ordering.

Index Terms—Edge element, parallelized ICCG method, par-
allel ordering, virtual node.

I. INTRODUCTION

USE OF parallel orderings such as dissection ordering is an
efficient way for parallelization of the ICCG method [1],

[2]. It is, however, well-known that these ordering strategies en-
tail a trade-off between parallelism and convergence. In order
to overcome the trade-off, several detailed investigations have
been performed in case of the finite difference method applied
to elliptic partial differential problems [1], [3], [4]. No report,
however, has been presented for finite element analyzes, in par-
ticular edge element analyses. The present paper investigates the
effects of ordering strategies including domain division on par-
allelized finite edge element analyses. Since edge elements have
complex data-dependency relationships to each other, the par-
allel ordering presented for the finite difference method cannot
be directly applied to edge element analyses. On the other hand,
edge elements are usually constructed in turn in each volume
element such as a hexahedron. The present paper proposes a
combination of the construction of edge elements and parallel
ordering using virtual nodes generated in each volume element.

II. PARALLEL PROCESSING OFICCG METHOD

The ICCG method is the most popular iterative solver for a
symmetric positive-definite linear system arising in a FE anal-
ysis. The ICCG method involves four main kernels: 1) forward
and backward substitutions, 2) inner products, 3) matrix–vector
products, and 4) vector updates. The latter three kernels can be
easily parallelized by dividing the vectors into several segments.
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Fig. 1. Graph representation of ordering.

On the other hand, it is difficult to perform forward and back-
ward substitutions in parallel.

The use of parallel ordering is one of the most effective
methods for the parallel processing of substitutions. Parallel
ordering, however, is well-known to entail a trade-off between
parallelism and convergence. S. Doi and A. Lichnewsky give a
good explanation of this trade-off in finite difference analyses
by means of “the graph representation of ordering” [3]. Fig. 1
shows examples of the graph representation of ordering (natural
ordering and red-black ordering). The directed graph represents
the order between adjacent nodes; that is, the data-dependency
relationship of the nodes. The node that is numbered before
both sides of adjacent nodes in one direction is called “the
incompatible node” (see Fig. 1). S. Doi and A. Lichnewsky
have shown that the more incompatible nodes an ordering has,
the lower the convergence rate is. Since natural ordering has no
incompatible nodes, its convergence rate is excellent. Red-black
ordering has many incompatible nodes, and its convergence
rate is low. On the other hand, the number of incompatible
nodes represents a potential parallelism. The incompatible node
having no incoming edge in the ordering graph is called “the
source node.” The source nodes are potential starting points of
the forward-backward substitution, and the number of source
nodes shows ordering parallelism. This is the explanation of
the trade-off between parallelism and convergence.

Two parallel ordering strategies are recommended from the
view point of the theory of graph representation [4]. The first
is 8-corner (4-corner in the 2-D case) ordering. This ordering
has no incompatible node and the same degree of convergence
rate as natural ordering. The number of processors is, how-
ever, limited. The second is multi-color ordering with more than
30 colors, though 2 or 4 colors are conventionally used [4]. This
ordering is called “large-numbered multi-color ordering.” Al-
though this ordering suffers from the trade-off of the conver-
gence rate, it attains a good balance between convergence and
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parallelism. Accordingly, this ordering is effective in cases in-
volving many processors (more than 8), in which 8-corner or-
dering is not applicable.

III. ORDERINGSTRATEGY OFEDGE ELEMENTS FORPARALLEL

PROCESSING

A. New Construction and Ordering of Edge Elements

The present paper investigates an application of the parallel
ordering theory developed for finite difference analyses, as men-
tioned above, to finite edge element analyses. Since edge ele-
ments have complex data-dependency relationships each other,
it is difficult to directly apply parallel ordering to edge elements.
We, here, propose a new construction and ordering procedure of
edge elements for parallel processing using virtual nodes gen-
erated in volume elements.

Edge elements are usually constructed in each volume ele-
ment. In the proposed method, virtual nodes are, first, generated
at the center of gravity in volume elements, and then, parallel
ordering is applied to the virtual nodes. Edge elements are con-
structed following the ordering of virtual nodes. The procedure
is summarized as follows:

Step 1) A virtual node is generated at the center of gravity
in each volume element.

Step 2) The virtual nodes are ordered corresponding to a
parallel ordering strategy.

Step 3) Edge elements are constructed in each volume ele-
ment following the ordering of the virtual nodes.

Eight-corner ordering and large-numbered multi-color
ordering are used in the present analyses. The details of the
construction procedure using these orderings are described in
the following subsections.

B. Construction of Edge Elements Using 8-Corner Ordering

For the sake of simplicity, we illustrate the procedure in the
2-D case while the present analysis is 3-D. Fig. 2(a) shows an
example of the analytical models. We here use the 4-corner
(8-corner in 3-D) ordering in Step 2) mentioned above. The vir-
tual nodes are divided into four subdomains each of which in-
cludes a corner node as is shown in Fig. 2(b). A subdomain is
assigned to each processor. In each subdomain, the nodes are or-
dered using natural ordering where the corner node is selected
as the starting point. Since the ordering graph of the virtual
nodes has no incompatible nodes, the convergence rate is ex-
pected to be excellent. After the construction of edge elements
in Step 3), we find the interface elements that belong to several
different subdomains. The interface elements are excluded from
the subdomains and are renumbered next to the remaining in-
terior elements of the subdomains. Since this procedure leads
to a global matrix similar to a dissection ordering case, the
forward-backward substitution can be performed in parallel. If
required, the interface elements are also subdivided into several
groups.

In the present 3-D analysis, most of the interface elements
belonging to two subdomains are divided into different
groups sharing no data-dependency with each other. The
forward–backward substitution concerned with these elements
is carried out in parallel. The remaining interface elements,

Fig. 2. Construction and ordering using 4-corner ordering.

such as those shared by more than three subdomains, are treated
sequentially by all processors.

C. Construction of Edge Elements With Multi-Color Ordering

In this subsection, we discuss the case of multi-color() or-
dering where denotes the number of colors. In Step 2), the
virtual nodes are ordered first using natural ordering or diag-
onal ordering. The present analysis adopts diagonal ordering.
Second, several colors are assigned to the virtual nodes, where
the virtual nodes with the same color must be independent. This
means that edge elements generated in the volume elements of
the same color must not share data-dependency each other. In
Step 3), edge elements are constructed in volume elements fol-
lowing the diagonal ordering of virtual nodes. When the edge el-
ement is newly constructed, the same color as the virtual node of
the volume element is assigned to the edge element. Next, edge
elements are reordered following the order of color from
to , where represents the set of
edge elements sharing the same color. The edge elements con-
structed in different volume elements of the same color can be
treated in parallel. Consequently, the degree of the parallelism
is equal to the number of virtual nodes assigned in one color.

Fig. 3 illustrates the procedure using multi-color(3) ordering
for a 2-D rectangular mesh as in Fig. 2(a). Fig. 3(a) shows the
virtual nodes using diagonal ordering. Fig. 3(b) depicts the color
of the virtual node. Fig. 3(c) and (d) show the color and the
final order of edge elements constructed in volume elements,
respectively. Fig. 4 depicts the global matrix based on the final
ordering of edge elements.

In the case of multi-color ordering, the number of colors has
a lower boundary in order to attain the independence of virtual
nodes with the same color. The lower limit value depends on
the virtual node ordering and the type of the volume element.
About 30 colors are sufficient for hexahedron and tetrahedron
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Fig. 3. Construction and ordering using multi-color(3) ordering.

Fig. 4. Global matrix with multi-color(3) ordering.

elements while from 30 to 50 colors are usually used in the
large-numbered multi-color ordering. The use of too many
colors is, however, ineffective because multi-color() ordering
requires -times communications in one set of forward
and backward substitutions.

IV. PARALLEL PERFORMANCE

A. Test Model and Computation Environment

We have implemented the proposed method for the IEEJ stan-
dard benchmark model of 3-D eddy current analyses [5]. Fig. 5
shows the analyzed model, which is discretized by first-order
brick-type edge elements in the present analysis. Table I lists
the discretization data. The electromagnetic field equations are
formulated with -formulation, and are solved by the Galerkin
method and the backward time difference method.

Parallelized eddy current analyses were carried out on the
distributed memory parallel computer Fujitsu VPP-800 at the
Data Processing Center, Kyoto University. The program code
is written in the FORTRAN language with the MPI library.
The convergence criterion of the ICCG method is given by

, where and are the right-hand side
vector and the residual vector, respectively. The acceleration

Fig. 5. IEEJ standard benchmark model (unit: [mm]).

TABLE I
ANALYSIS CONDITIONS AND DISCRETIZATION DATA

TABLE II
COMPUTATION RESULTS

factor of the ICCG method is chosen to be 1.03. The parallel
performance of the proposed method is evaluated in the first
one time step.

B. 8-Corner Ordering

This subsection examines the parallel performance of the pro-
posed method when the virtual nodes are ordered with-corner
ordering ( processors), . One-corner ordering
here means natural ordering. Table II lists the computation time
and CG iterations in the first time step, where is the number
of processors. For comparison, Table II(b) shows the computa-
tion results without virtual nodes on one processor where each
edge element is ordered using natural ordering. Table II shows
that the finite edge element analysis can be parallelized without
decreasing the convergence rate. Table II also implies that the
use of virtual nodes is effective even in the one processor case,
because more CG iterations are required in the case of no vir-
tual node. Fig. 6 depicts the convergence behavior showing that
the -corner ordering preserves a good convergence rate. Fig. 7
shows the speed-up ratio compared with the case of no virtual
node. The proposed method achieves high parallel performance
because of no decline of the convergence rate. The saturation



IWASHITA AND SHIMASAKI: CONSTRUCTION AND ORDERING OF EDGE ELEMENTS FOR PARALLEL COMPUTATION 3501

Fig. 6. Convergence behavior withn-corner ordering.

Fig. 7. Speed-up of proposed method usingn-corner ordering.

TABLE III
DISCRETIZATION DATA OF LARGE-SCALE PROBLEM

of the speed-up on 8 processors is caused by an increase in the
ratio of communication cost to computation cost. Higher par-
allel performance is expected for a larger-scale problem.

C. Multi-Color Ordering

Since large-numbered multi-color ordering is effective for a
large-scale problem, the analyzed model discretized by a fine
mesh is presented for a large-scale model in this subsection. The
discretization data are listed in Table III. The acceleration factor
of the ICCG method is set at 1.07.

When the virtual node is ordered with multi-color ordering,
the convergence of the ICCG solver depends not on the number
of processors but on the number of colors. Fig. 8 shows the
convergence behavior of the proposed method using several
numbers of colors. In testing various numbers of colors from

Fig. 8. Convergence behavior with multi-color ordering.

TABLE IV
COMPUTATION RESULTS FORLARGE-SCALE PROBLEM

27 to 50, we obtained the highest convergence rate and parallel
performance when 33 colors were used. Table IV lists the com-
putation time and CG iterations in the first time step. Table IV
indicates that the proposed method using multi-color(33)
ordering suffers from about a 50% increase of CG iterations
compared with the natural ordering case on one processor. On
the other hand, in the case of 33 colors, about 9900 virtual
nodes are assigned to one color; that is, the ordering attains
about 9900 degrees of parallelism. Large-numbered multi-color
ordering can achieve high parallelism with a small decrease of
convergence rate.

We have also examined the application of-corner ordering
for this large-scale problem. Fig. 9 plots the speed-up ratio of the
proposed method compared with the case of no virtual nodes.
It is shown that -corner ordering achieves an ideal speed-up
for the large-scale problem. Multi-color ordering is effective on
more than 8 processors, and obtains a 16.0-fold speed-up by
32 processors.
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Fig. 9. Comparison of speed-up in large-scale problem.

V. CONCLUSION

The present paper proposes the use of virtual nodes in the
application of parallel ordering techniques to edge element
analyses. The proposed method is evaluated in terms of 3-D

eddy current analyses, demonstrating that the useful properties
which parallel ordering techniques exhibit in finite difference
analyzes can be effectively introduced to finite edge element
analyzes. Using 8-corner ordering, an edge element analysis
is parallelized with no decline of the convergence rate of the
ICCG solver. When the multi-color ordering is applied to
the virtual nodes, a good balance between convergence and
parallelism is attained in the solver.
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