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1. Motivation

Let & be a Siegel eigen cusp form of degree two of weight k with respect
to Sp, (Z) and let

®(2) = a(T,®)exp [2rV/~1tr (TZ))]
T>0 :
t ty/2

t2/2 t3
t1,t2,t3 € Z and T is positive definite. For such T; and T, let

Ty~ Ty €5 3y €SL,(2) st. Ty = 'Tin.

be its Fourier expansion. Here T runs over T = such that

Let E be an imaginary quadratic field and let Dg be its discriminant.
Then we define
@Y Yy o
(T\det T=—Dg/a}/~ © (T)

where €(T) = # {y € SLy(Z) | 4Ty =T}. We recall that, by Gauss,
there exists a bijection between the set {7 |detT = —Dg/4}/ ~ and
the ideal class group of E.

Bocherer has proclaimed the following conjecture in 1986 (Preprint
Math. Gottingensis Heft 68).
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Bocherer’s Conjecture . There erists a constant cg that depends only
on D such that

1
L(5:80xz) =co D&l 1Be (@) )

forany E. Here L (s,® ® xg) denotes the spinor (degree four) L-function
of @ twisted by the quadratic character xg corresponding to the quadratic
extension E/Q, normalized so that its functional equation is with respect
tos—1-—s.

Remarks

1. The center s = 1/2 is the only critical point in the sense of Deligne.
2. Bocherer, and, later he and Schulze-Pillot (Math. Z. 209 (1992))
verified the assertion for Eisenstein series, Saito-Kurokawa lifting and
Yoshida lifting.
3. Kohnen and Kuss have made some numerical experiment on an eigen-
form of weight 20, which does not belong to the Saito-Kurokawa
lifting. ' ‘

4. We may normalize @ so that a(T,$) € Q, hence Bg(®) € Q.
Thus we may regard |Bg (®)|? as the algebraic part of the spe-
cial value. It is natural for us to fantasize about the generalized
Birch&Swinnerton-Dyer conjecture, p-adic interpolation, etc.

5. Bocherer did not make any speculation about the constant cs. It is
important to identify cy from the viewpoint of Deligne’s conjecture
(Proc. Sympos. Pure Math. 33, 1979) since it is related to-the
period part of the special value. '

Bocherer’s conjecture reminds us of:

Waldspurger’s Theorem . (Compositio Math. 54 (1985)) Let F be a
number field. Let m be an irreducible cuspidal representation of GLs (Af).
For Q, a Hecke character of A} where E is a quadratic extension of F,
let ™ () denote the theta series representation of GLy (Ap). Assume that
Q| A% Wr = 1 where w, denotes the central character of m. Then we have

L(%,W@W(Q)) 40
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if and only if there exists a quaternion algebra D over F containing E
and an automorphic form ¢P in the space of ¥ where 70 denotes the
Jacquet-Langlands correspondent of © of D* (Afr) such that

/ oP (£) Q. (t) &t # 0. @)
AREX\A%

Remarks

1. Let BCF () denote the base change lifting of 7 to GL; (Ag). Then
we have

L(s,7r®7(Q)) = L(s,BCF (7) ® Q)
and in particular, when § is trivial,
L(s,BCF(n)) = L(s,7)-L(s,m ® X&)

where xg denotes the quadratic character corresponding to E/F.

2. When (Q is trivial, there exists the following metaplectic version of
the theorem which might be more familiar (Kohnen-Zagier, Invent.
math. 64 (1981)): Let f be a normalized eigenform of weight 2k with
respect to SLy (Z) and let g be its Shimura correspondent, i.e.

g(z) = E b(n) exp (2rv/—1nz) € S, 1 4).

n>1

Then for the fundamental discriminant D of E = Q (\/5) such that
(-1)* D > 0, we have -

(DD _ (k= DUDF2L (k, f ® X&) 3)
(9,9) 7™ (f, f) '

(Here we use the classical normalization for the L-function so that
the functional equation is with respect to s — 2k — s.) We remark
that (3) implies the non-negativity of the central value L (k, f ® xk)
which is consistent with the generalized Riemann hypothesis (cf.
Guo, Duke Math. J. 83 (1996)).

3. Similarly, in general, further analysis yields an identity that expresses
the central critical value

L(1/2,7)L(1/2,7 ® xg) (resp. L (1/2, BCE (1) ® ))
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as the square norm of one of these period integrals in (2) multiplied
by a constant C, (resp. Crpg) which depends only on 7 (resp. =
and E), not on E (resp. Q) (Chen and Jacquet, Bull Soc. Math.
France, to appear).

4. The choice of the quaternion algebra which gives the non-zero period
integral (2) is unique and is determined at each place by the local -
factor of the L-function (see H. Saito, Compositio Math. 85 (1993)).
This is a special case of the Gross-Prasad conjecture (Canad. J.
Math. 44 (1992) and ibid 46 (1994)).

The original proof by Waldspurger was based on the Weil representation,
i.e. theta correspondence. Later Jacquet has given another proof using
the relative trace formula. Actually he proved two relative trace formulas,
one corresponding to the case when € is trivial (Ann. scient. Ec. Norm.
Sup. 19 (1986)) and the other corresponding to the case when  is
arbitrary (Compositio Math. 63 (1987)).

2. Our Project
The ultimate goal of our project is to prove Bocherer’s conjecture and
its generalization by extending both of Jacquet’s relative trace formulas
to GSp (4) = {g € GL4 | tgJg = AJ, A € GL,}, where J = (_}, ¢)-
Since our conjectural relative trace formulas themselves are too tech-

nical to state here, we refer to the two announcements (C.R. Acad. Sci.
Paris 328 (1999), 105-110 and ibid 331 (2000), 593-598) for the details.

Instead let us explain the expected consequences of the trace formulas.
First we need to introduce some notation. Let F' be a number field and
E be a quadratic extension of F and let X (E : F) denote the set of
isomorphism classes of the central quaternion algebras over F' containing

E. Fore e F*, let
D€={<; Zﬁ) |a,b€E}

where o denotes the unique non-trivial element in the Galois group of E
over F. Then € — D, induces a bijection between F*/Ng,r (E*) and
X (E : F). Let z — Z denote the involution of D.. Let

Ge= {g € GL, (D) | ¢ (‘1) (1)) 9=2(9) (‘1’ (1)) A(g) € GLy (F)}
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for g = @ ’g . Here we note that when € = 1,
Y

we have D) ~ M, (F) and G; ~ GSp (4, F). Let us define the Bessel
subgroup R, of G, by

aa" 1 X X —
we{(07) () reemmn—o).

Let 1 be a non-trivial character of Ar/F and let  be a character of
Ag/E*. Then by abuse of notation we denote by Q a character of R, (Ar)
defined by

o[( ) o )] -ms[ (5 )]

where 7 € E such that E = F (n) and 7 € F.

where ¢g* =

N
= QA
S 2

~ =

Conjecture (Furusawa&Shalika) . Let © be an irreducible cuspidal
automorphic representation of GSp, (Ar). Assume that the central char-
acter of m is equal to the inverse of | AX-

Then we have

L(%,ﬂ'@'fr(ﬂ)) #0

if and only if there ezists a triple (e, 7, p.), where ¢ € FX, 7. an ir-
reducible cuspidal representation of G (Ar), corresponding to m in the
functorial sense, i.e. having the same L-function, and . a cusp form in
the space of w. such that

/ 0 (r)Q(r)dr £0. @)
AZRe(F)\R:(AF)

Moreover, the detailed analysis should yield an identity that expresses
the central critical value of L (s, ® 7 (Q2)) as the square norm of one of
these period integrals (4) multiplied by a constant Cr g which depends
only on 7 and E, not on the character  of A%. Also when Q is trivial, the
central critical value of L (s,7) L (s, ® xg) should be the square norm
of the period integral (4) multiplied by a constant C, which depends only
on 7w and not on the quadratic extension E.
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In particular when 7 is the cuspidal representation of GSp, (Ag) cor-
responding to a holomorphic Siegel eigen cusp form ¢ = Py, by looking
at the Fourier expansion of @y, it should follow as a corollary of the
conjecture that there exists an imaginary quadratic field E and a finite
order Hecke character of A%, such that

1
L (5,7r®7r(9)) # 0.
We also speculate that the constant C, mentioned above is given, in this

case, essentially as a ratio of Petersson norms

(dsgen ’ ¢gen )
(¢h017 ¢hol)

where @,., denotes a generic cusp form, i.e. having a non-zero Whit-
taker Fourier coeflicient, corresponding to the same L-function as @Py.
It indicates that it is important to study the whole L-packet (i.e. all
the automorphic representations giving the same L-function) in order to
understand the nature of the special values of the L-function. We remark
that the constant C; here is essentially equal to c¢p - L (1/2,7) where cg
denotes the constant in Bocherer’s original conjecture (1).

The first but crucial step to establish a trace formula is to prove the
fundamental lemma, an equality between two local orbital integrals for
the elements in the Hecke algebra. We have proved the fundamental
lemma for the identity element in the Hecke algebra for both of the trace
formulas. We have also proved the Plancherel formula for the Bessel
model which reduces the fundamental lemma for the general element in
the Hecke algebra to an equality between two finite sums of certain local
orbital integrals for the identity element.

The proof of the fundamental lemma for the identity element essentially
amounts to computing some matrix argument character sums, which we
are going to discuss.

3. Matrix Argument Kloosterman Sums _

From now on we denote by F a non-archimedean local field whose
residual characteristic is not equal to two. Let 1 be a character of F whose
conductor is O, the ring of integers of F' and let @ be a prime element
of F. We denote by ¢ the cardinality of the residue field O /wOF. Let
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E be the unique unramified quadratic extension of F' and Opg be its ring
of integers.
First we recall the classical Kloosterman sum defined by

Ke(r,s) = / ¥ (re+se7) de
OX

for r,s € F*. Sometimes we call it the GL, Kloosterman sum since it
is related to the Fourier coefficients of the Poincaré series for GL,. For
a € O, let

Hn(a) = /z ¥ [treyr (€)] d€

where Z, = {{ € OF | Ng/r(§) =a (mod w")}. Here we recall the
Davenport-Hasse relation:

Ho(a) =(-1)"¢" KL (2w ™", 2w "a) .

Now let us consider the following matrix argument Kloosterman sums.
For A € GL, (F), S,T € Sym" (F) and € € OF, let

K (A,S,T,e) = / P [tr (XS +eTAIX 1A )] dX  (5)
Xa

where Xy = {X € Sym" (F) | XA € GL,, (Of)}. Here we remark that
we may write the right hand side of (5) as

Y ¢ tr(YA'S+e- A7WVT)] (6)

where V runs over the set of representatives modulo A - Sym" (Of) of
V € M, (OF) such that

AV,Y € M, (Or) with (X g) € Spy, (OF) .

As Kitaoka has shown, the Kloosterman sum (6) appears in the Fourier
coefficients of the Poincaré series for the Siegel modular group (Nagoya
Math. J. 93 (1984)).
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Now we restrict ourselves to the case when n = 2. Let us define the split
Kloosterman sum by

Kep1 (4,6) = K (4, 51, S1,€) = / ¥ [tr (S1 (X +eA7I X1 EATY)] dX

Xa
01
where S; = (1 0).

Theorem 1. Suppose that

A= (‘7' ?) € w- M, (OF) NGL, (F).

Then we have

Kopt (A, €) = ll_l {zce (%‘” 22—‘5) + K (%, 321)}

where A = det A.

Thus the two by two symmetric matrix argument split Kloosterman
sum reduces to a sum of two classical Kloosterman sums.

Let us define the anisotropic Kloosteman sum. For our convenience let
us employ another realization of M, (F'), namely,

Dl={(a b)1a,beE}.
b a°

Let us take n € OF such that E = F(n) and n*> = d € F. Then for
B € Dy and € € Op, we define the anisotropic Kloosterman sum by

Kan (B, €) =/szp{tr [(8 —077) (Y— deiBB—ly-lB) }dY

where Vg ={Y € D, | trY =0, YB € GL; (Og)}. We call it anisotropic

. . 0 . . .
since the matrix g corresponds to the anisotropic symmetric ma-
/)

1
trix ( 0 _0 d) in the ordinary M, (F) realization.
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Theorem 2. Suppose that n > 0 and u € O \ {0} such that uu® # 1.
1 u

We write u = w™e, where m = ord (u). Let A, = o 1

1. When m > n, we have
Kan (@" Ay, €) = " {(—1)" K¢ (2w‘", —2w""d€) +1+ q_l} .

2. When 0 < m < n, we have

(=1)" g* 20" 2w "de
n —_ - .
’Can(w Ams)_ |1_uu0| 1 — uuc’ 1—wuu°
LEDTTE (207 9o ondec,e
1 — uuo| 1-w’  T-ww )

We also have a generalization of the Davenport-Hasse relation in our
case. Let T' € My (E) such that *T° = T and det T # 0. Then for ¢ € O5,.

let
H(T,¢) =/ ¢{trE/1.% [e-tr (((1) (1)) Z)J}dZ
Zr

where Zr consists of Z € Sym? (E) such that
TZ € My (Og) and (T')° — 2°TZ € M, (OF).
Theorem 3. Let T € M, (Og) such that *T° = T and det T #0. Let us

write

T= (“ y) A =detT
¥y b
andy = w"’d(y)ey when y # 0. Let us define a non-negative integer m by
m = min {ord (a) ,ord (b)} .

1. Suppose that m < ord (y).
(a) When m = 0 and ord (A) = 0, we have H (T,e) =1.
(b) When m = 0 and 0 < ord (A) < ord (y), we have

H(T,e) = A (1+47Y).



(c) When m =0 and 0 < ord (y) < ord (A), we have
_ (—1)°d(av7) » (2w°rd(y) 2w Wee¢ £ ) .

H(Te) IA] A A

(d) When m > 0 and ord (A) < ord (y), we have

__1\ord(A) o -1
(-1) -IC€(2a 2esb)+1+q

HTe) = 5] N A

AT A
(e) When m > 0 and ord (y) < ord (A), we have
_ (—1)°m&) 2a 2e€%b
H(T,e) = A] Ke A
(—1)°44) . 2004 2 Weee €9
|A| A A '
2. Suppose that m > ord (y).

(a) When ord (y) = 0, we have H (T, ¢) = 1.
(b) When m > 2ord (y), we have

+

_ -1
H(T,e) = 19

4] A T A

(c) When ord (y) < m < 2ord (y), we have

(1,0 = B e, (2“ 2”)

(—1)°m®) K (2w°rd(y) 2w Weee, 7 ) |

A A’ A
__1yord(y) ord(y) 9 ord(y)eeaé. 4
GV gy (2 2@ v ).
1A] A A

Here for ¢ € OF, we have

1, if¢e(0p)’
-1, if¢ ¢ (0F)>

These explicit formulas for the matrix argument Kloosterman sums
might be of some independent interest. Also we mention that it is
likely that there exists a geometric interpretation of these formulas, when

the characteristic of F is positive, as in the case of Jacquet-Ye GL,-
Kloosterman sums proved by Ngo (Duke Math. J. 96, 1999).

sgn(C)={



