L^p estimates for some Schrödinger type operators

学習院大・理 菅野聡子 (Satoko Sugano)

Abstract

We consider the Schrödinger operator $L = -\Delta + V$ with non-negative potentials Von \mathbb{R}^n , $n \geq 3$. We assume that the potential V belongs to the reverse Hölder class which includes non-negative polynomials. We show the L^p estimates for the operators $V^k L^{-k}$ and $V^{k-1/2} \nabla L^{-k}$, where k is a positive integer.

1 Introduction

In this paper we consider the Schrödinger operator $L = -\Delta + V$ on \mathbb{R}^n , $V \ge 0$, $n \ge 3$. When V is a non-negative polynomial, Zhong ([Zh]) proved that the operators $V^k L^{-k}$ and $V^{k-1/2}\nabla L^{-k}$, $k \in \mathbb{N}$, are bounded on L^p , 1 . For the potential V whichbelongs to the reverse Hölder class, which includes non-negative polynomials, Shen $([Sh]) generalized Zhong's results. Actually, he proved that the operators <math>VL^{-1}$ and $V^{1/2}\nabla L^{-1}$ are bounded on $L^p(\mathbb{R}^n)$, $1 \le p \le \infty$.

For the operator L with potentials V which belong to the reverse Hölder class, Kurata and the author generalized Shen's results as follows. In [KS1], we replace Δ by the second order uniformly elliptic operator $L_0 = -\sum_{i,j=1}^n (\partial/\partial x_i) \{a_{ij}(x)(\partial/\partial x_j)\}$ and assume certain assumptions for a_{ij} . Then we showed that the operators $V(L_0 + V)^{-1}$ and $V^{1/2}\nabla(L_0 + V)^{-1}$ are bounded on weighted L^p space (1 and Morrey $spaces. Moreover, in [Su], the auther showed weighted <math>L^p$ - L^q estimates of the operators $V^{\alpha}L^{-\beta}$ and $V^{\alpha}\nabla L^{-\beta}$ $(\alpha, \beta \in (0, 1])$ and their boundedness on Morrey spaces.

The purpose of this paper is to show the L^p boundedness of the operators $V^k L^{-k}$ and $V^{k-1/2} \nabla L^{-k}$, $k \in \mathbb{N}$, where V belongs to the reverse Hölder class.

We shall repeat the definitions of the reverse Hölder class (e.g.[Sh]). Throughout this paper we denote by $B_r(x)$ the ball centered at x with radius r, and the letter C stands for a constant not necessarily the same at each occurrence. Definition 1 (Reverse Hölder class) Let $V \ge 0$.

(1) For $1 we say <math>V \in (RH)_p$, if $V \in L^p_{loc}(\mathbb{R}^n)$ and there exists a constant C such that

$$\left(\frac{1}{|B_r(x)|}\int_{B_r(x)}V(y)^pdy\right)^{1/p} \le \frac{C}{|B_r(x)|}\int_{B_r(x)}V(y)dy \tag{1}$$

holds for every $x \in \mathbf{R}^n$ and $0 < r < \infty$.

(2) We say $V \in (RH)_{\infty}$, if $V \in L^{\infty}_{loc}(\mathbf{R}^n)$ and there exists a constant C such that

$$\|V\|_{L^{\infty}(B_{r}(x))} \leq \frac{C}{|B_{r}(x)|} \int_{B_{r}(x)} V(y) dy$$
 (2)

holds for every $x \in \mathbf{R}^n$ and $0 < r < \infty$.

Remark 1 If P(x) is a polynomial and $\alpha > 0$, then $V(x) = |P(x)|^{\alpha}$ belongs to $(RH)_{\infty}$ ([Fe]). For $1 , it is easy to see <math>(RH)_{\infty} \subset (RH)_p$.

In [Zh], Zhong proved the L^p estimates of the operators $V^k L^{-k}$ and $V^{k-1/2} \nabla L^{-k}$ with non-negative polynomials V by using the k times composition of the Hardy-Littlewood maximal operator M. In [KS1] we considered the uniformly elliptic operators L_0 and proved a pointwise bound $|Tf(x)| \leq CM(|f|)(x)$ where Mf is Hardy-Littlewood maximal function and T is either $V(L_0+V)^{-1}$ or $V^{1/2}\nabla(L_0+V)^{-1}$. Pointwise estimates are also used by Zhong in the polynomial case. Once we have these pointwise estimates the boundedness of these operators in any spaces on which the Hardy-Littlewood maximal operator is known to be bounded. Examples are weighted L^p space and Morrey spaces.

In this paper we establish pointwise estimates (see Lemma 3) which generalize Zhong's estimates we mentioned above. By using them we show the L^p boundedness of these operators (see Theorem 1).

We denote by $\Gamma(x, y)$ the fundamental solution for L. The operator L^{-1} is the integral operator with $\Gamma(x, y)$ as its kernel. Let $f \in C_0^{\infty}(\mathbf{R}^n)$. Then we have $L^{-1}f \in L^p(\mathbf{R}^n)$ for $1 \leq p \leq \infty$. For any integer $k \geq 2$, we define L^{-k} as follows.

$$L^{-k}f(x) = \int_{\mathbf{R}^n} \Gamma(x, y) L^{-(k-1)}f(y) dy.$$

Now we state our theorem.

Theorem 1 Suppose $V \in (RH)_{\infty}$. Then there exist constants C, C' such that

$$\|V^{k}L^{-k}f\|_{L^{p}(\mathbf{R}^{n})} \leq C\|f\|_{L^{p}(\mathbf{R}^{n})} \quad for \quad f \in C_{0}^{\infty}(\mathbf{R}^{n}),$$
(3)

$$\|V^{k-1/2}\nabla L^{-k}f\|_{L^{p}(\mathbf{R}^{n})} \leq C'\|f\|_{L^{p}(\mathbf{R}^{n})} \quad for \quad f \in C_{0}^{\infty}(\mathbf{R}^{n}),$$
(4)

where $1 and <math>k \in \mathbb{N}$.

Remark 2 In Theorem 1 the case k = 1 was shown in [Sh, Remark 2.9, Theorem 4.13].

The plan of this paper is as follows. In section 2, we recall Shen's lemmas which we use to prove Theorem 1. In section 3, we prove Theorem 1.

I would like to express my gratitude to Professor Kazuhiro Kurata for his suggestions. I also would like to express my gratitude to Professor S. T. Kuroda for his helpful advices.

2 Preliminaries

In [Sh], Shen defined the auxiliary function m(x, V) and established the estimates of the fundamental solution of L (see Lemma 1). By using the estimates he proved L^p boundedness of the operators VL^{-1} and $V^{1/2}\nabla L^{-1}$. We also need them to prove our theorem.

We recall the definition of the function m(x, V).

Definition 2 ([Sh, Definition 1.3]) Let $V \in (RH)_{n/2}$ and $V \not\equiv 0$. Then it is well-known that there exists $\epsilon > 0$ such that $V \in (RH)_{n/2+\epsilon}$ ([Ge]). Then the function m(x, V) is well-defined by

$$\frac{1}{m(x,V)} = \sup\left\{r > 0: \frac{r^2}{|B_r(x)|} \int_{B_r(x)} V(y) dy \le 1\right\}$$

and satisfies $0 < m(x, V) < \infty$ for every $x \in \mathbb{R}^n$.

Remark 3 If $V \in (RH)_{\infty}$ then there exists a constant C such that $V(x) \leq Cm(x, V)^2$ ([Sh, Remark 2.9]).

We recall the estimates of the fundamental solution for L.

Lemma 1 ([Sh])

(1) Suppose $V \in (RH)_{n/2}$. Then for any positive integer N there exists a constant C_N such that

$$(0 \leq)\Gamma(x,y) \leq \frac{C_N}{\{1+m(x,V)|x-y|\}^N} \cdot \frac{1}{|x-y|^{n-2}}.$$

(2) Suppose $V \in (RH)_n$. Then for any positive integer N there exists a constant C_N such that

$$|\nabla_x \Gamma(x,y)| \le \frac{C_N}{\{1+m(x,V)|x-y|\}^N} \cdot \frac{1}{|x-y|^{n-1}}.$$

The following Lemma is also needed to prove our theorem.

Lemma 2 ([Sh, Lemma 1.4(c)]) Suppose $V \in (RH)_{n/2}$. Then there exist positive constants C, k_0 such that

$$m(y,V) \geq \frac{Cm(x,V)}{\{1+m(x,V)|x-y|\}^{k_0/(k_0+1)}}.$$

3 Proof

Theorem 1 is easily proved by the following pointwise estimates. These estimates generalize the results in [Zh, Lemma 3.2] to the Schrödinger operators with reverse Hölder class potentials.

Lemma 3 Let k be a positeve integer. The opeator M^k stands for the k times composition of the Hardy-Littlewood maximal operator M.

(1) Suppose $V \in (RH)_{n/2}$. Then there exist a constant C such that

$$|m(x,V)^{2k}L^{-k}f(x)| \le CM^{k}(|f|)(x) \quad for \quad f \in C_{0}^{\infty}(\mathbf{R}^{n}).$$
(5)

(2) Suppose $V \in (RH)_n$. Then there exist a constant C such that

$$|m(x,V)^{2k-1}\nabla L^{-k}f(x)| \le CM^{k}(|f|)(x) \quad for \quad f \in C_{0}^{\infty}(\mathbf{R}^{n}).$$
(6)

Remark 4 In Lemma 3 the case k = 1 was shown in [KS, Theorem 1.3].

Proof of Theorem 1. Since $V(x) \leq Cm(x,V)^2$, estimate (3) immediately follows from (5) and the fact that the Hardy-Littlewood maximal operator is bounded on $L^p(\mathbf{R}^n)$, $1 . The proof of (4) can be done in the same way as above by using (6). <math>\Box$

Proof of Lemma 3. Let $f \in C_0^{\infty}(\mathbb{R}^n)$. We prove estimate (5) by induction on k. For the proof of the case k = 1, see [KS1, Theorem 1.3]. We assume it is true for k = l, that is, there exists a constant C such that

$$|m(x,V)^{2l}L^{-l}f(x)| \le CM^{l}(|f|)(x)$$
(7)

and show the case k = l + 1. It follows from Lemma 1 (1) and Lemma 2 that

$$|m(x,V)^{2(l+1)}L^{-(l+1)}f(x)| \le |Cm(x,V)^2 \int_{\mathbf{R}^n} \Gamma(x,y)m(x,V)^{2l}L^{-l}f(y)dy| \le CC_N m(x,V)^2 \int_{\mathbf{R}^n} \frac{\{1+m(x,V)|x-y|\}^{2lk_0/(k_0+1)}|m(y,V)^{2l}L^{-l}f(y)|}{\{1+m(x,V)|x-y|\}^N|x-y|^{n-2}}dy.$$

Therefore we obtain the desired estimate in the same way as the case k = 1.

The proof of (6) can be done in the same way as the proof of (5) by using Lemma 1 (2). \Box

Remark 5 Let $s \in (0, \infty)$. We can obtain the estimate for the operator $V^s L^{-s}$ as follows. Suppose $V \in (RH)_{n/2}$ and $\alpha \in (0, 1]$. Then there exists a constant C such that

$$|m(x,V)^{2\alpha}L^{-\alpha}f(x)| \le CM(|f|)(x) \quad \text{for} \quad f \in C_0^{\infty}(\mathbf{R}^n)$$
(8)

(see [Su Theorem 1]). Combining (8) and the argument in the proof of Lemma 3, we arrive at the following pointwise estimate:

$$|m(x,V)^{2s}L^{-s}f(x)| \le CM^{s^*}(|f|)(x) \text{ for } f \in C_0^{\infty}(\mathbf{R}^n),$$
 (9)

where $s \in (0, \infty)$ and

$$s^* = \begin{cases} s, & \text{if } s \text{ is an integer,} \\ [s]+1, & \text{otherwise,} \end{cases}$$

where [s] is the largest integer smaller than or equal to s. We should remark that, for the case V is a non-negative polynomial, Zhong proved the L^p boundedness (only for $1) of the operator <math>V^s L^{-s}$, $s \in (0, \infty)$ ([Zh, Corollary 1.5]).

Remark 6 Zhong also showed that the L^p estimate of the operator $V^{k-q/2}\Delta^{q/2}L^{-k}$ with non-negative polynomials V, where q and k are positive integers and $2 \leq q \leq 2k$ ([Zh, Theorem 1.3]). He proved this results by using the fact that the functions

 $m(x,V)^{2k}L^{-k}f(x)$ and $m(x,V)^{2k-1}\nabla L^{-k}f(x)$ are bounded by the k times composition of the Hardy-Littlewood maximal function and there exists a constant C such that

$$|\Delta^{q/2}V(x)| \le Cm(x,V)^{q+2} \tag{10}$$

which holds for non-negative polynomials V. Hence if we assume the inequality (10), we can obtain the L^p estimate of the operator $V^{k-q/2}\Delta^{q/2}L^{-k}$ with potentials V which belong to the reverse Hölder class in the same way as for polynomial potentials by using Lemma 3 and the assumption (10).

Remark 7 Shen proved that the operator $\nabla^2 L^{-1}$ is bounded on L^p , $1 ([Sh]). In [KS1] Kurata and the author extended this result to the uniformly elliptic operators. They also showed that the estimate for the kernel of the operator <math>\nabla^2 L^{-1}$ ([KS2]). However, it is not known that whether the operator $V^{k-1}\nabla^2 L^{-k}$, $k \geq 2$ is bounded on L^p or not.

References

- [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129–206.
- [Ge] F. Gehring, The L^p-integrability of the partial derivatives of a quasi-conformal mapping, Acta Math. 130 (1973), 265-277.
- [KS1] K. Kurata and S. Sugano, A remark on estimates for uniformly elliptic operators on weighted L^p spaces and Morrey spaces, Math. Nachr. 209 (2000), 137–150.
- [KS2] K. Kurata and S. Sugano, Estimates of the fundamental solution for magnetic Schrödinger operators and their applications, to appear in Tohoku Math. J.
- [Sh] Z. Shen, L^p estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546.
- [Su] S. Sugano, Estimates for the operators $V^{\alpha}(-\Delta+V)^{-\beta}$ and $V^{\alpha}\nabla(-\Delta+V)^{-\beta}$ with certain non-negative potentials V, Tokyo J. Math. 21 (1998), 441–452.
- [Zh] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph. D. Thesis, Princeton Univ., 1993.

Address: Department of Mathematics Gakushuin University 1-5-1 Mejiro, Toshima-ku Tokyo, 171-8588 JAPAN E-mail: satoko.sugano@gakushuin.ac.jp