<table>
<thead>
<tr>
<th>Title</th>
<th>L^p estimates for some Schrodinger type operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sugano, Satoko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1201: 10-16</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/40944</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
L^p estimates for some Schrödinger type operators

学習院大・理 菅野聡子 (Satoko Sugano)

Abstract

We consider the Schrödinger operator $L = -\Delta + V$ with non-negative potentials V on \mathbb{R}^n, $n \geq 3$. We assume that the potential V belongs to the reverse Hölder class which includes non-negative polynomials. We show the L^p estimates for the operators V^kL^{-k} and $V^{k-1/2}\nabla L^{-k}$, where k is a positive integer.

1 Introduction

In this paper we consider the Schrödinger operator $L = -\Delta + V$ on \mathbb{R}^n, $V \geq 0$, $n \geq 3$. When V is a non-negative polynomial, Zhong ([Zh]) proved that the operators V^kL^{-k} and $V^{k-1/2}\nabla L^{-k}$, $k \in \mathbb{N}$, are bounded on L^p, $1 < p \leq \infty$. For the potential V which belongs to the reverse Hölder class, which includes non-negative polynomials, Shen ([Sh]) generalized Zhong’s results. Actually, he proved that the operators VL^{-1} and $V^{1/2}\nabla L^{-1}$ are bounded on $L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$.

For the operator L with potentials V which belong to the reverse Hölder class, Kurata and the author generalized Shen’s results as follows. In [KS1], we replace Δ by the second order uniformly elliptic operator $L_0 = -\sum_{i,j=1}^n(\partial/\partial x_i)(a_{ij}(x)(\partial/\partial x_j))$ and assume certain assumptions for a_{ij}. Then we showed that the operators $V(L_0 + V)^{-1}$ and $V^{1/2}\nabla(L_0 + V)^{-1}$ are bounded on weighted L^p space $(1 < p < \infty)$ and Morrey spaces. Moreover, in [Su], the author showed weighted L^p-L^q estimates of the operators $V^\alpha L^{-\beta}$ and $V^\alpha\nabla L^{-\beta}$ ($\alpha, \beta \in (0, 1]$) and their boundedness on Morrey spaces.

The purpose of this paper is to show the L^p boundedness of the operators V^kL^{-k} and $V^{k-1/2}\nabla L^{-k}$, $k \in \mathbb{N}$, where V belongs to the reverse Hölder class.

We shall repeat the definitions of the reverse Hölder class (e.g.[Sh]). Throughout this paper we denote by $B_r(x)$ the ball centered at x with radius r, and the letter C stands for a constant not necessarily the same at each occurrence.
Definition 1 (Reverse Hölder class) Let $V \geq 0$.

(1) For $1 < p < \infty$ we say $V \in (RH)_p$ if $V \in L^p_{\text{loc}}(\mathbb{R}^n)$ and there exists a constant C such that

$$
\left(\frac{1}{|B_r(x)|} \int_{B_r(x)} V(y)^p dy \right)^{1/p} \leq \frac{C}{|B_r(x)|} \int_{B_r(x)} V(y) dy
$$

holds for every $x \in \mathbb{R}^n$ and $0 < r < \infty$.

(2) We say $V \in (RH)_\infty$ if $V \in L^\infty_{\text{loc}}(\mathbb{R}^n)$ and there exists a constant C such that

$$
\|V\|_{L^{\infty}(B_r(x))} \leq \frac{C}{|B_r(x)|} \int_{B_r(x)} V(y) dy
$$

holds for every $x \in \mathbb{R}^n$ and $0 < r < \infty$.

Remark 1 If $P(x)$ is a polynomial and $\alpha > 0$, then $V(x) = |P(x)|^\alpha$ belongs to $(RH)_\infty$ ([Fe]). For $1 < p < \infty$, it is easy to see $(RH)_\infty \subset (RH)_p$.

In [Zh], Zhong proved the L^p estimates of the operators $V^k L^{-k}$ and $V^{k-1/2} \nabla L^{-k}$ with non-negative polynomials V by using the k times composition of the Hardy-Littlewood maximal operator M. In [KS1] we considered the uniformly elliptic operators L_0 and proved a pointwise bound $|Tf(x)| \leq CM(|f|)(x)$ where Mf is Hardy-Littlewood maximal function and T is either $V(L_0 + V)^{-1}$ or $V^{1/2} \nabla (L_0 + V)^{-1}$. Pointwise estimates are also used by Zhong in the polynomial case. Once we have these pointwise estimates the boundedness of these operators in any spaces on which the Hardy-Littlewood maximal operator is known to be bounded. Examples are weighted L^p space and Morrey spaces.

In this paper we establish pointwise estimates (see Lemma 3) which generalize Zhong’s estimates we mentioned above. By using them we show the L^p boundedness of these operators (see Theorem 1).

We denote by $\Gamma(x,y)$ the fundamental solution for L. The operator L^{-1} is the integral operator with $\Gamma(x,y)$ as its kernel. Let $f \in C_0^\infty(\mathbb{R}^n)$. Then we have $L^{-1}f \in L^p(\mathbb{R}^n)$ for $1 \leq p \leq \infty$. For any integer $k \geq 2$, we define L^{-k} as follows.

$$
L^{-k}f(x) = \int_{\mathbb{R}^n} \Gamma(x,y)L^{-(k-1)}f(y)dy.
$$

Now we state our theorem.

Theorem 1 Suppose $V \in (RH)_\infty$. Then there exist constants C, C' such that

$$
\|V^k L^{-k} f\|_{L^p(\mathbb{R}^n)} \leq C \|f\|_{L^p(\mathbb{R}^n)} \quad \text{for} \quad f \in C_0^\infty(\mathbb{R}^n),
$$

(3)
\[\|V^{k-1/2} \nabla L^{-k} f\|_{L^p(\mathbb{R}^n)} \leq C\|f\|_{L^p(\mathbb{R}^n)} \quad \text{for} \quad f \in C^\infty_0(\mathbb{R}^n), \] (4)

where $1 < p \leq \infty$ and $k \in \mathbb{N}$.

Remark 2 In Theorem 1 the case $k = 1$ was shown in [Sh, Remark 2.9, Theorem 4.13].

The plan of this paper is as follows. In section 2, we recall Shen's lemmas which we use to prove Theorem 1. In section 3, we prove Theorem 1.

I would like to express my gratitude to Professor Kazuhiro Kurata for his suggestions. I also would like to express my gratitude to Professor S. T. Kuroda for his helpful advices.

2 Preliminaries

In [Sh], Shen defined the auxiliary function $m(x, V)$ and established the estimates of the fundamental solution of L (see Lemma 1). By using the estimates he proved L_p boundedness of the operators VL^{-1} and $V^{1/2} \nabla L^{-1}$. We also need them to prove our theorem.

We recall the definition of the function $m(x, V)$.

Definition 2 ([Sh, Definition 1.3]) Let $V \in (RH)_{n/2}$ and $V \neq 0$. Then it is well-known that there exists $\epsilon > 0$ such that $V \in (RH)_{n/2+\epsilon}$ ([Ge]). Then the function $m(x, V)$ is well-defined by

\[
\frac{1}{m(x,V)} = \sup \left\{ r > 0 : \frac{r^2}{|B_r(x)|} \int_{B_r(x)} V(y)dy \leq 1 \right\}
\]

and satisfies $0 < m(x,V) < \infty$ for every $x \in \mathbb{R}^n$.

Remark 3 If $V \in (RH)_\infty$ then there exists a constant C such that $V(x) \leq Cm(x,V)^2$ ([Sh, Remark 2.9]).

We recall the estimates of the fundamental solution for L.

Lemma 1 ([Sh])

(1) Suppose $V \in (RH)_{n/2}$. Then for any positive integer N there exists a constant C_N such that

\[
(0 \leq) \Gamma(x,y) \leq \frac{C_N}{(1 + m(x,V)|x-y|)^N} \cdot \frac{1}{|x-y|^{n-2}}.
\]
(2) Suppose $V \in (RH)_n$. Then for any positive integer N there exists a constant C_N such that

$$|\nabla_x \Gamma(x, y)| \leq \frac{C_N}{(1 + m(x, V)|x - y|)^N} \cdot \frac{1}{|x - y|^{n-1}}.$$

The following Lemma is also needed to prove our theorem.

Lemma 2 ([Sh, Lemma 1.4(c)]) Suppose $V \in (RH)_{n/2}$. Then there exist positive constants C, k_0 such that

$$m(y, V) \geq \frac{C m(x, V)}{(1 + m(x, V)|x - y|)^{k_0/(k_0+1)}}.$$

3 Proof

Theorem 1 is easily proved by the following pointwise estimates. These estimates generalize the results in [Zh, Lemma 3.2] to the Schrödinger operators with reverse Hölder class potentials.

Lemma 3 Let k be a positive integer. The operator M^k stands for the k times composition of the Hardy-Littlewood maximal operator M.

1. Suppose $V \in (RH)_{n/2}$. Then there exist a constant C such that

$$|m(x, V)^{2k}L^{-k}f(x)| \leq CM^k(|f|)(x) \quad \text{for} \quad f \in C_0^\infty(\mathbb{R}^n). \quad (5)$$

2. Suppose $V \in (RH)_n$. Then there exist a constant C such that

$$|m(x, V)^{2k-1}\nabla L^{-k}f(x)| \leq CM^k(|f|)(x) \quad \text{for} \quad f \in C_0^\infty(\mathbb{R}^n). \quad (6)$$

Remark 4 In Lemma 3 the case $k = 1$ was shown in [KS, Theorem 1.3].

Proof of Theorem 1. Since $V(x) \leq Cm(x, V)^2$, estimate (3) immediately follows from (5) and the fact that the Hardy-Littlewood maximal operator is bounded on $L^p(\mathbb{R}^n)$, $1 < p \leq \infty$. The proof of (4) can be done in the same way as above by using (6). \square
Proof of Lemma 3. Let \(f \in C^\infty_0(\mathbb{R}^n) \). We prove estimate (5) by induction on \(k \). For the proof of the case \(k = 1 \), see [KS1, Theorem 1.3]. We assume it is true for \(k = l \), that is, there exists a constant \(C \) such that

\[
|m(x, V)^{2l} L^{-l} f(x)| \leq CM^l(|f|)(x)
\]

and show the case \(k = l + 1 \). It follows from Lemma 1(1) and Lemma 2 that

\[
\begin{aligned}
|m(x, V)^{2(l+1)} L^{-(l+1)} f(x)| &\leq CM(x, V)^{2} m(x, V)^{2l} L^{-l} f(y) dy \\
&\leq CC_N m(x, V)^2 \int_{\mathbb{R}^n} \frac{(1 + m(x, V)|x-y|)^{2k_0/(k_0+1)} m(y, V)^{2l} L^{-l} f(y) dy}{(1 + m(x, V)|x-y|)^N |x-y|^{n-2}}.
\end{aligned}
\]

Therefore we obtain the desired estimate in the same way as the case \(k = 1 \).

The proof of (6) can be done in the same way as the proof of (5) by using Lemma 1(2). \(\square \)

Remark 5 Let \(s \in (0, \infty) \). We can obtain the estimate for the operator \(V^s L^{-s} \) as follows. Suppose \(V \in (RH)_{n/2} \) and \(\alpha \in (0,1] \). Then there exists a constant \(C \) such that

\[
|m(x, V)^{2\alpha} L^{-\alpha} f(x)| \leq CM(|f|)(x) \quad \text{for} \quad f \in C^\infty_0(\mathbb{R}^n)
\]

(see [Su, Theorem 1]). Combining (8) and the argument in the proof of Lemma 3, we arrive at the following pointwise estimate:

\[
|m(x, V)^{2s} L^{-s} f(x)| \leq CM^s(|f|)(x) \quad \text{for} \quad f \in C^\infty_0(\mathbb{R}^n),
\]

where \(s \in (0, \infty) \) and

\[
s^* = \begin{cases}
 s, & \text{if } s \text{ is an integer,} \\
 [s] + 1, & \text{otherwise,}
\end{cases}
\]

where \([s]\) is the largest integer smaller than or equal to \(s \). We should remark that, for the case \(V \) is a non-negative polynomial, Zhong proved the \(L^p \) boundedness (only for \(1 < p < \infty \)) of the operator \(V^s L^{-s} \), \(s \in (0, \infty) \) ([Zh, Corollary 1.5]).

Remark 6 Zhong also showed that the \(L^p \) estimate of the operator \(V^{k-q/2} \Delta q/2 L^{-k} \) with non-negative polynomials \(V \), where \(q \) and \(k \) are positive integers and \(2 \leq q \leq 2k \) ([Zh, Theorem 1.3]). He proved this results by using the fact that the functions
$m(x, V)^{2k}L^{-k}f(x)$ and $m(x, V)^{2k-1}\nabla L^{-k}f(x)$ are bounded by the k times composition of the Hardy-Littlewood maximal function and there exists a constant C such that

$$|\Delta^{q/2}V(x)| \leq Cm(x, V)^{q+2}$$

which holds for non-negative polynomials V. Hence if we assume the inequality (10), we can obtain the L^p estimate of the operator $V^{k-q/2}\Delta^{q/2}L^{-k}$ with potentials V which belong to the reverse Hölder class in the same way as for polynomial potentials by using Lemma 3 and the assumption (10).

Remark 7 Shen proved that the operator ∇^2L^{-1} is bounded on L^p, $1 < p < \infty$ ([Sh]). In [KS1] Kurata and the author extended this result to the uniformly elliptic operators. They also showed that the estimate for the kernel of the operator ∇^2L^{-1} ([KS2]). However, it is not known that whether the operator $V^{k-1}\nabla^2L^{-k}$, $k \geq 2$ is bounded on L^p or not.

References

Address:
Department of Mathematics
Gakushuin University
1-5-1 Mejiro, Toshima-ku
Tokyo, 171-8588
JAPAN
E-mail: satoko.sugano@gakushuin.ac.jp