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§1. INTRODUCTION

This paper is concerned with the minimal regularity properties required on the
initial data to guarantee the local well posedness of the IVP for some nonlinear
evolution evolution equations. Most of the results mentioned here are joint work
with Carlos E. Kenig and Luis Vega.

We should refer to Prof. H. Takaoka paper for a very exciting set of results
concerning the global well posedness of some of the problems considered here.

We are mainly concerned with the following nonlinear dispersive equations on

the real line,

cubic NLS i0yu + 0%u + |uf’u = 0,
mKdV Oy + 8ﬂ3cu + u?0,u = 0,
KdV dyu + agu + udzu = 0.

The regularity of the data wue will be measured in classical Sobolev spaces
H?3(R), s € R, where
H*(R) = {up € S'(R) : (1+[€%)*a0(€) € L?}.
The IVP is locally well posed (LWP) in H*(R) if there exist T' = T'(||uo||gs) > 0

and a unique solution u(t) of the corresponding IVP such that

(i) weC(-T,T]: H*) NYy = Xr,
(ii) The map data-solution, uy — u(t), from H?® into Xt is uniformly continuous,

i.e.
Ye>0 366>0 : ||u(1)—u,3||Hs <d = Ilul—u2||X7.<6,

6 =0(e, M), llugllme, lludllms < M.
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For the equations considered above the best known LWP results are :

(1.1) the IVP for the cubic NLS is LWP in H*(R) with s >0, [Ts],

(1.2) the IVP for the mKdV is LWP in H®(R) with s > 1/4, [KePoVe2],
and
(1.3) the IVP for the KdV is LWP in H*(R) with s > —3/4, [KePoVe3|.

It is interesting to observe that the proofs of these three results are quite different.

Let us recall the main ideas in these proofs.

In the case of the cubic NLS the proof in [Ts] is based on the Strichartz esti-
mates [St], (see also [GV]). In the case of the 1-D linear Schrédinger equation these

estimates can be written as

52 X 1/a
A0 1%l = ([ I uolgd) < clualie,

—o0

for 2/¢g = 1/2 - 1/p with 2 < p < c0. (1.4) can be seen as an estimate for the
Fourier transform of a measure on R? supported in the parabola 7 = £2 with density
tio (§)-

In the case of the mKdV the proof in [KePoVe2| follows by combining the fol-

lowing linear estimates

e oo 3 1/4
(1.5) lle taxuoﬂLiLfo = (/ sup Iewwuo(:n)l“dz) < c||D1/4u0||Lz,
J--00 teR
and
3 x© 3 1/2
(1.6) ||8xe_taru0||L;oLg = sup (/ |8m'e‘taru0(:c)|2dt) < clluol| 2.
xR \J -0

The inequality (1.5), an estimate for the maximal function associated to the
group {e7*% : ¢t € R}, was established in [KeRu| as part of the study of the
pointwise behavior of e=t%2yug as t — 0. It was also proven in [KeRu| that (1.5) is
sharp in the sense that it fails, even locally in time, for p # 4 on the left hand side
or with D*, s < 1/4 on the right hand and any p on the left side.

The identity (1.6) was proven in [KePoVel] and is a sharp version of the smooth-
ing effect first deduced in [K] in solutions of the KAV equation.

Finally, the proof for the KdV in [KePoVe3] is based on the use of the space X 5.

These spaces which heavily reflect the geometry of the symbol of the associated



linear operator were first introduced in this context in [B1]. X, denotes the

completion of the Schwartz space S(R?) with respect to the norm

1/2

1, ={ [ [ a+ir - enIpe n P

-0 —O00

One of the key estimates in [KePoVe3] affirms that if s € (—3/4,0] there exists
b e (1/2,1) such that

(1‘7) ”0x(uv)uxs b—1 — c”u”Xs b ”U”Xs b*

It was also proved in [KePoVe3] that (1.7) fails for s < —3/4 and any b € R. In
[NaTaTs] this negative result was extended to the limiting case s = —3/4.

In [Bo2] it was established that the map data — solution is not analytic at 0, if
(1.1)-(1.3) do not hold. In fact, it was shown that it is not C? for the cubic NLS,
mKdV, and not C3 for the KAV (in [Tz] the argument was extended to C?). The
idea is to compute the coefficients of the Taylor expansion at 0, which turn out to
be the second and third Picard iteration in respectively.

In [KePoVe5] we showed the LWP results in (1.1)-(1.3) are sharp in a stronger
sense than the one described above. More precisely, it was established that the IVP
for the cubic NLS, mKdV and KdV are ill posed in H*(R) for any index s smaller
than 0, 1/4 and —3/4, respectively. |

Here we will recall some of the main ideas in [KePoVe5]. A different with the
LWP results previously described one has that the proofs of the ill posedness for
these equations are quite related.

Also it should be mentioned that the sharp index 0, 1/4 and —3/4 are larger
than those suggested by the scaling argument described below, i.e. —1/2, —1/2
and —3/2 for the cubic NLS, mKdV and KdV respectively.

In the same vain one has that for the generalized KdV
Ou+ Bu+uko,u=0, keZ,

the scaling argument suggests as a “critical” value sx = (k —4)/2k. For the powers
k > 4 LWP was established in H*(R) with s > s; in [KePoVe2], and ill posedness
in H%(R), with s < s in [BiKePoSvVe].

The first example of ill posedness above the Sobolev index suggested by the
scaling was obtained in [Li] for a quadratic nonlinear perturbation of the classical

wave equation in 3 space dimensions.
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We shall start with the cubic NLS. The main idea is to use the Galilean invari-
ance, i.e. if u(z,t) is the solution to cubic NLS with initial data wug(z), then

un(z,t) = e_“NQeiqu(x — 2tN,t)
is also a solution of the cubic NLS with initial data
un(z,0) = eNouy(z).

Thus, taking up € H*(R) and assuming that the time of existence T = T'(||uo|| ;7+)
one has that the time of existence for u is also T', although if s < 0, ||un (z,0)||g- |
0 as N T oo. So we can say that H® = L? is “critical” for the cubic NLS.

For the focusing case, i.e. taking the + sign in the cubic NLS, a more rigorous
analysis can be obtained using the “ground state” solutions, i.e. solutions of the
form

u(z,t) = e f(x).
Let f = v/2 sech(z) which satisfies the equation

-f+f"+ =0

Using the scaling argument, i.e. if u(z,t) is a solution of the cubic NLS then
for any w € R, uy(r,t) = wu(wz,w?t) is also a solution of the cubic NLS, and the
notation

fu(z) = wf(wr),

one gets the family of solutions of the cubic (focusing) NLS
Uy (z,t) = e““’sz(a:).

Now using the Galilean invariance we obtain the two parameter family of solu-
tions to the cubic (focusing) NLS

uNw(z,t) = e_“(Nz""z)eiN”fw(x — 2tN).
with initial data
uNw(7;0) = VT £, (2).
This will allow us to prove our first result concerning the IVP for the 1-D (fo-

cusing) cubic Schrodinger equation

(1.8) { 10 + O2u + |u|?u = 0, t,z € R,

u(z,0) = ug(z).
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Theorem 1 [KePoVe5].
If s € (—1/2,0), then the mapping data-solution, ug — u(t) where u(t) solves
the IVP associated to the 1-D (focusing) cubic Schridinger (1.8) is not uniformly

continuous.

Remark: In [To] it was shown that the IVP (1.8) with nonlinearity uau by uau
(same homogeneity, but not Galilean invariant) is LWP in H®, s > —1/3. Thus,
the nonlinearity utiu is worse behaved from this point of view.

Remark: Consider the IVP

i0u + O2u + |ulu = 0, t,r € R,
{ u(z,0) = uo(x).
The results in [CW], [GV], [Ts] showed local well posedness in H*(R), s > 0, and
the argument in the proof of Theorem 1 shows that this is the best possible result.
This is in contrast with the results in [KePoVed|, where for the nonlinearities 44, uu
local well posedness was shown in H*(R), s > —3/4, and for the nonlinearity uu
in H*(R), s > —1/4. _

Remark: The result in Theorem 1 can be extended to higher dimensions, for
details see [KePoVeb].

Next we shall extend the result in Theorem 1 to the mKdV and KdV equations.
However, these equations are not Galilean invariant in the sense described above.

In this regard it is convenient to consider first the “complex mKdV?”, i.e.
Ou+ Ou + Iulzaxur =0.
It is easy to see that if f, is defined as above, i.e. f,(z)= V2w sech(w x), then
v (z,t) = V3 fo(x — tw?)

is a solution of both complex mKdV and mKdV (a traveling wave solution). More-
over, we have the following remarkable fact concerning the IVP for the complex

modified KdV

(1.9) { Oyu + Ogu + |ul?Opu = 0, t,z € R,
u(.’L‘, 0) = U()(:L').

Lemma [KePoVe5].

Let f,, be defined as above. Then

unw(z,t) = V3 e_“’(gN“’g"Na)e”wa (z — tw? + 3tN2)
solves the IVP (1.9) with initial data
U‘N.,W(x’()) = \/§ eifow(m)'

Combining the two parameter family of solutions of (1.9) described above and

the argument in the proof of Theorem 1 one obtains the following result.



Theorem 2 [KePoVe5].
If s < 1/4, then the mapping data-solution, ug — u(t) where u(t) solves the

IVP for the focusing complex mKdV (1.9) is not uniformly continuous.

Remark: The local well posedness result in [KePoVe2] for the mKdV, s > 1/4,
remains true, with identical proof, for the IVP (1.9) for the complex mKdV.

Next, we shall extend the result in Theorem 2 to the IVP associated to the
modified KdV equation
(1.10) { Ou + O3u + u?0,u = 0, t,z € R,

u(x,0) = ug(z).

First we observe that the mKdV has “breather” solutions, i.e. solutions that are
periodic in the time variable and has exponential decay in the space variable. Up to

translations the “breather” solutions are ([W], see also [L] and references therein)

UNw(Z,t) = 2V6 wsech(wz + ~yt) x

cos(Nz + 6t) — (w/N)sin(Nzx + 6t)tanh(wz + 7t)
1 + (w/N)2sin?(Nz + bt)sech(wzx + t) ’
with
§=N(N?-3w?), v=w(BN2-uw?).
Hence, if w/N <« 1, then
UNw (T, t) ~ 2V6 cos(Nx + N(N? — 3w?)t) w sech(wz + w(3N? — w?)t),

which is basically a multiple of the real part of the function in the statement of the
Proposition above. Therefore, using the argument in the proof of Theorem 2 we
obtain the following result.

Theorem 3 [KePoVe5].

If s < 1/4, then the mapping data-solution, ug — u(t) where u(t) solves the
IVP for the (real) modified mKdV (1.10) is not uniformly continuous.

Now we turn our attention to the IVP for the KdV equation
Ou + O3u + ud,u = 0, t,r € R,
{ u(z,0) = up(z).
We shall use Miura’s transformation [M], which relates solutions of mKdV with

(1.11)

solutions of KdV. Assume that v solves the mKdV equation, then
u(z,t) = —(v? + i0,v)(x, t)

is a solution of the KdV equation.
A combination of Miura’s transformation and Theorem 3 yields the following
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Theorem 4 [KePoVe5].
If s < —3/4, then the mapping data-solution, ug — u(t) where u(t) solves the
IVP for the (complex) KdV (1.10) is not uniformly continuous.

Remark: The local well posedness result in [KePoVe2] for the KdV for H* with
s > —3/4, remains true with identical proof for complex valued solutions.
To complete the exposition we will sketch the proof of Theorem 1

§2. PROOF OF THEOREM 1

Using the ground state solution and the Galilean invariant property as described
above it follows that the IVP for the 1-D (focusing) Schrodinger equation

{ iatu+6£u+ |ul?u = 0, -tz eR,
u(z,0) = u, n(z,0) = N2 £, (),

has two parameter family of solutions of the form
uNw(x,t) = e~ HN?~w?) giNx fu(x — 2tN),

where f,(z) = wf(wz), with fi(z) = f(x) = V2 sech(z).
Now fixing s such that
s €(-1/2,0),

and taking
w:N——ZSa NlaNZZNa

we shall calculate
w1 (0) = wn, w (0) 1 s -
We observe that
fu(€) = f(¢/w)

so that £,(-) concentrates in B,(0) = {¢£ € R : || < w}. From to our choices
above if £ € B,(£N), then || ~ N. These observations combined with some
computations show (for details see [KePoVe5]) that

ey 0 (0) = ung w O = (1 + €172 (fu (€ = N1) = fu (€ — N2))IIEe

1
< cN*(N, — N2)2u7 w = c¢(N?*(N; = N,))?,

and that
lun, wO)||fs 2 cN*¥w=¢c, j=1,2.
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Now we need to performe a similar computation for the corresponding solutions

UN, (t), un,w(t) at time t = T, i.e. we need to estimate
lun, w(T) = un, w(T)| 1o
Note first that
lun, w(@Es = llun, O} 2, §=1,2.

Also we observe that the frequencies of both un; o(T), j = 1,2, are localized
around || ~ N, hence

lens o (T) = wny (T 2 N2 |lup, w(T) = ung o (T)l|72-

Since
'U'N,»,w(l',T) = e_i(TNJ?_ij_TW2)wf(w(:I: _ ZTNJ')), j=12,

the support of un; ., (T) is concentrated in B,,-1(2T'N;), j = 1,2. Therefore, if for
T fixed, N;, N3 are chosen such that

T(Ny — No)>»w™! = N2,
there is not interaction and
lun,w(T) = unsw(TFe = luny w32 + llun, w(T)7: ~ w.
Hence, we have that
lun, w(T) = uN, w(T) ||} = cN?**w = c.

Finally, taking

)
N1 =N and N2=N_']'VTs’
it follows that
C(st(Nl — N2))2 = 052,
and
T N N — 6 N23 : r N48
(M - 2)_Tﬁ>> , le. T> 5

Since s < 0, given §, T > 0, we can choose N so large that the last inequalities
hold, which violates the uniform continuity and completes the proof of Theorem 1.
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