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On standing waves for nonlinear Schrédinger equations
- with potentials
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This is a joint work with Reika Fukuizumi (Tohoku University). We consider the
instability of standing wave solution u, (¢, ) = e**@,(z) for the nonlinear Schrédinger

equation with potential V(z) :
iuy = —Au+ V(r)u — |uff'u, (t,z) e R™*™ (1)

We always assume 1 < p < ocoifn=1,2,and 1 <p < 1+4/(n—2) if n > 3. Moreover,

we suppose that w € R and ¢,,(z) is a ground state for
—Ap+wp+V(z)p— gl '¢=0, zeR" (2)

In this note, under appropriate assumptions on V' (z), we will show that if p > 144/ n,
the standing wave solution e“*¢,(z) of (1) is unstable for sufficiently large w > 0.
Before stating our result precisely, we recall some known results. First, we consider
the case V(z) = 0. For any w > 0, there exists a unique positive radial solution wwkx)
of (2) with V(z) = 0 in H'(R™), and the standing wave solution e**,(z) of (1) with
V(z) = 0 is stable for any w > 0 if p < 1+ 4/n, and unstable for any w > 0 if
p > 14 4/n (see, eg., [1, 3, 6, 11, 12]). Meanwhile, when —A + V(z) has the first
eigenvalue )y, it is shown in [10, 4] using standard bifurcation theory that the standing
wave solution e“*¢,(x) of (1) is stable for w > —X; sufficiently close to —A;, even if
p>1+4/n.

For potential V(z), we assume
(V1) V(z) € C*(R*,R), and there exist m > 0 and C > 0 such that

0 < V() < C(1+|=|™) on R", and |

(V2) |- VV@)|+ | zj28;8V(2)| < C(1 + V(2)) on R™.

Jk=1
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Example. (i) (Harmonic potentials) Let ¢, - , ¢, be positive constants.

Then Vi(z) = Zc,a: satisfies (V1) and (V2).

(i) Va(z) = 1 + sinz; satisfies (V1), but does not satisfy (V2).
(iii) For ¢ >0, Vi(z) + cVi(z) satisfies (V1) and (V2).
(iv) (V1) and (V2) are satisfied if V(z) € C?(R™, R) satisfies

V() 20, [02V(z)| < Cafz)™® (la] <2).
We use the following notation.

X :={v e H'(R") : V(z)|v(z)]* € L'(R™)},
B = 5IVoll + 3 [ Veh@)re - 1o

lvlipia,

Su(v) := E(v) + & IIUIIz,

PO = Vel =5 [ = VV@hi@)Pds - 2 iz,

L) = Vol +wlvll + [ Vi) Pz - ol
We note that |
P = 88ty L(®) = 95Su () e,
where v*(z) := A*2y(\z) for A > 0.

Assumption (A1). For any uy € X, there exist T = T(||luo|lx) > 0 and a unique
solution u(t) € C([0,T), X) of (1) such that %(0) = ug and

E(u(®)) = E(w), [lu@)l= lluwll3, te0,T).
In addition, if uy € X satisfies |z|uy € L2(R"), then we have
d 2
g llzu@)lz = 8P(u()), te[o,T).

For sufficient conditions on V/(z) that (A1) holds, see, e.g., Section 9.2 in [2]. We
remark that (A1) is satisfied for (111) in Example above, and for V(z) € C'(R", R) such
that

102V (2)] < Calz)™™ (la| < 1).
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Definition 1. We say that a standing wave solution e“*¢,(z) of (1) is stable if for

any € > 0 there exists § > 0 with the following property: if vy € X satisfies

inf [|lug — €“¢ulx <6,
then the solution u(t) of (1) with ©(0) = uy exists for all t > 0 and satisfies
sup inf [lu(t) — e“dullx <e.
Otherwise, e“@,,(z) is said to be unstable.
Definition 2. G, := the set of minimizers for
inf{S,(v) : ve X\ {0}, L,(v) =0}.
An element of G,, is called a ground state of (2).

Assumption (A2). There exists wp € (0,00) such that G, is not empty for any

w € (wp, 00).

If V(z) € C(R*,R) satisfies limz|_,cc V(x) = +00, by the compactness of the em-
bedding X C L(R™) with 2 < q < 2n/(n — 2), it is easy to see that (A2) is satisfied.
However, for bounded V (z), we may need some additional assumptions related to the

concentration compactness principle (see [7, 8]).

Theorem 1. Assume (A1), (A2), (V1) and (V2). Let p > 1+ 4/n and ¢u(z) € Go.
Then there exists w, € (wp, 00) such that the standing wave solution e**@,(z) of (1)

is unstable for any w € (w., 00).

By the general theory in [6], under an assumption on the spectrum of a linearized
operator, the standing wave solution e**¢,, (z) of (1) is stable (resp. unstable) if the
function ||@,||? is strictly increasing (resp. decreasing) at w = w;. In case of V(z) = O,
by the scaling 1, (z) = w¥/ @D, (,/wz), it is easy to check the monotonicity of |4, ||3.
However, it seems difficult to check this property for general V(z). So, for the proof
of Theorem 1, we use the following sufficient condition for the instability, which is a

modification of Theorem 3 in [9] (see also [4, 5, 11]).

Proposition 2. Assume (A1), (A2), (V1) and (V2), and let ¢(z) € Go,. If
RBE($))|x=1 < 0, then the standing wave solution e“*¢,(x) of (1) is unstable. Here,
¥ (z) := A2v(\z) for A > 0.
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We note that ||Jv*[|2 = ||v||? and

}‘n(p-l)/2

P 48

p+1?

2
BN = FIvl+ 3 [ v (3) bieras -

REW)|a=1 = || Vo) + %/l;n {23: -VV(z) + E x,-:ckajakV(x)} [v(z)|*dz

Jk=1

n(p—1) n(p — 1) 1
e -1} ol

Since P(¢.) = rS.(42)|r=1 = 0, if we put

V*(z) =3z-VV(z) + Z z;z10;0,V (),

Jik=1

then we have

BB = 5 /R V@)lu(a) e - gg; ;)) {n(p{ D 2} oz

Thus, we see that the condition 82E(¢})|x=1 < 0 is equivalent to

L: V* (@) du(2) Pl _ o= Dinlp—1) 4 "
o 2p+1)

We remark that the right hand side of (3) is a positive constant by the assumption
P > 1+ 4/n in Theorem 1. By using the variational characterization of the ground
state ¢,,(z) of (2) and the rescaling (4) below, we will show that the left hand side of
(3) converges to 0 as w — co. For @, (z) € G.,, we define du(z) by

¢ (z) = WP VG, (Voz), w e (wp,o0). (4)
Then, ¢, (z) satisfies

x

_ -1 _ -1, n
A+ o+ w V(\/E)¢ |pP"p=0, ze€R
Recall that 1;(z) is the unique positive radial solution of (2) with V(z) =0andw =1
in H'(R™), and we put
7 — 2 2 -1 T 27 . 1p+1
L) =19l + 1ol +o7 [ v (22 b - i
Bw) = [|Voll§ + llvli3 — l0li23]

p+1°
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Lemma 3. Assume (A2) and (V1). Then, we have
() Jim GlEE = lallsd, ) Jim (&) =0, (i) lim (gl = sl
Proof. First of all, we note that qSL_(a:) is a minimizer of
inf{|lvlizs : ve X\ {0}, L(v) <0},
and 1; () is a minimizer of
inf{lv{Z: v e H'®)\ {0}, 2w) <0},

First, we show (i). Since I,(¢,) = 0, we have I%(¢,) < O: Thus we have ||y|[B}] <

”¢WH;JH for any w € (wp, 00). Moreover, for any p > 1, it follows from I9(¢;) = 0 that

W) = = = Dl 4o [ V() i@

Here, from the assumption (V1), we have

v (%) meres|

Since ¢ () has exponéntial decay at infinity, we have (1 + [’x[m)‘lwlv(:c)|2 € L'(R"™) and

lim o™ / v (\/i_) v1 () [2dz = 0.

Thus, there exists w(p) € (wo, 00) such that I, (/u,bl) < 0 for any w € (w(),00), so we

<C /R 1+ gy (o) .

have 7
(lalipa <) Idullbiy < Nenlleil = w2 lnllBd
for any w € (w(p), 00). Since p > 1 is arbitrary, we conclude (i).

Next, we show (ii). Since I?(d,) < 0, for any w € (wp, 00) there exists p(w) € (0,1]
such that I?(u(w)d.) = 0. Thus, we have

1 1 C e+l
l1lipiy < lu)dullpia = p@ lidullbia,

which implies ||[t1]lps1/]|fwllps+1 < p(w) < 1, and from (i) we have hmw_,oop(w) = 1.

Moreover, from I?(u(w)d,,) = 0, we have

R(4o) = ()™ = DIl

Hence, again from (i), we conclude (ii).

Since I?(11) = 0, (iii) follows from (i) and (ii) immediately. : a
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Proof of Theorem 1. As stated above, we have only to show that the left hand

side of (3) converges to 0 as w — co. Since we have

/ V' (@)|du(@)fdr W / V* (/@) 6 (@) Pdo
R”» _ R» :

lullpts 111233 ’
by Lemma 3 (i), it suffices to prove
lim w‘I/ % (_a:_) bu(z)|?dz = 0. (5
Jm o™ [ v () 1dula)ds )

From I:.,(cﬁ:,) = 0 and Lemma 3 (ii), we have

lim o™ /R v (%) |bo(2)|Pdz = — lim L(é.) =0.

wW—00

By the assumption (V2), we have |[V*(z)| < C(1+ V(z)) on R*, and by Lemma 3 (iii)
we obtain (5). O

Remark. Let ¢,(z) € G, and we assume (without loss of generality) that ¢, (z) is
positive in R". By Lemma 3 and the concentration compactness principle, we see that

there exist a subsequence {¢:,j (z)} of {f.(x)} and a sequence {y;} C R" such that
Jlim llgo; = 1(- + g3l = 0 (6)

(see Theorem III.1 in (8]). Although (6) may give some information on the asymptotic
behavior of @,(z) € G, as w — oo, we did not use (6) in the proof of Theorem 1
directly. We also note that Lemma 3 holds for any psuchthat 1 <p<ooifn=1, 2,
and 1 <p<1+4/(n—2)ifn > 3. Finally, we remark that, in the case p=1+4/n,
it follows from (6) that

Jim 4,3 = 92

REFERENCES

1. H. Berestycki and T. Cézenave, Instabilité des états stationnaires dans les équations de Schrodinger
et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris. 293 (1981) 489-492.

2. T. Cazenave, “An introduction to nonlinear Schrédinger equations,” Textos de Métods
Matemaéticos 26, IM-UFR.J, Rio de Janeiro 1993.

3. T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrodinger
equations, Comm. Math. Phys. 85 (1982) 549-561.

4. R. Fukuizumi, Stability and instability of standing waves for the nonlinear Schrédinger equation
with harmonic potential, Preprint.



10.

11.

12.

J. M. Gongalves Ribeiro, Instability of symmetric stationary states for some nonlinear Schrédinger
equations with an external magnetic field, Ann. Inst. H. Poincaré. Phys. Théor. 54 (1991) 403—433.

. M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of

symmetry 1, J. Funct. Anal. 74 (1987) 160-197.

P. L. Lions, The concentration-compactness principlé in the calculus of variations. The locally
compact case, partl, Ann. Inst. H. Poincaré, Anal. non linéaire 1 (1984) 109-145.

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally
compact case, part 2, Ann. Inst. H. Poincaré, Anal. non linéaire 1 (1984) 223-283.

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Ann Inst.
H. Poincaré, Phys. Théor. 62 (1995) 69-80.

H. A. Rose and M. 1. Weinstein, On the bound states of the nonlinear Schrédinger equation with
a linear potential, Phyica D 30 (1988) 207-218.

J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985)
173-190.

M. I. Weinstein, Nonlinear Schrédinger equations and sharp interpolation estimates, Comm. Math.
Phys. 87 (1983) 567-576.

i



