On standing waves for nonlinear Schrödinger equations with potentials

静岡大学工学部 太田 雅人

Masahito OHTA (Shizuoka University)

Email: tsmoota@eng.shizuoka.ac.jp

This is a joint work with Reika Fukuizumi (Tohoku University). We consider the instability of standing wave solution $u_{\omega}(t,x) = e^{i\omega t}\phi_{\omega}(x)$ for the nonlinear Schrödinger equation with potential V(x):

$$iu_t = -\Delta u + V(x)u - |u|^{p-1}u, \qquad (t,x) \in \mathbb{R}^{1+n}.$$
 (1)

We always assume 1 if <math>n = 1, 2, and $1 if <math>n \ge 3$. Moreover, we suppose that $\omega \in \mathbb{R}$ and $\phi_{\omega}(x)$ is a ground state for

$$-\Delta \phi + \omega \phi + V(x)\phi - |\phi|^{p-1}\phi = 0, \quad x \in \mathbb{R}^n.$$
 (2)

In this note, under appropriate assumptions on V(x), we will show that if p > 1 + 4/n, the standing wave solution $e^{i\omega t}\phi_{\omega}(x)$ of (1) is unstable for sufficiently large $\omega > 0$. Before stating our result precisely, we recall some known results. First, we consider the case $V(x) \equiv 0$. For any $\omega > 0$, there exists a unique positive radial solution $\psi_{\omega}(x)$ of (2) with $V(x) \equiv 0$ in $H^1(\mathbb{R}^n)$, and the standing wave solution $e^{i\omega t}\psi_{\omega}(x)$ of (1) with $V(x) \equiv 0$ is stable for any $\omega > 0$ if p < 1 + 4/n, and unstable for any $\omega > 0$ if $p \geq 1 + 4/n$ (see, e.g., [1, 3, 6, 11, 12]). Meanwhile, when $-\Delta + V(x)$ has the first eigenvalue λ_1 , it is shown in [10, 4] using standard bifurcation theory that the standing wave solution $e^{i\omega t}\phi_{\omega}(x)$ of (1) is stable for $\omega > -\lambda_1$ sufficiently close to $-\lambda_1$, even if $p \geq 1 + 4/n$.

For potential V(x), we assume

(V1) $V(x) \in C^2(\mathbb{R}^n, \mathbb{R})$, and there exist $m \ge 0$ and C > 0 such that $0 \le V(x) \le C(1 + |x|^m)$ on \mathbb{R}^n , and

(V2)
$$|x \cdot \nabla V(x)| + |\sum_{j,k=1}^n x_j x_k \partial_j \partial_k V(x)| \le C(1 + V(x))$$
 on \mathbb{R}^n .

Example. (i) (Harmonic potentials) Let c_1, \dots, c_n be positive constants.

Then $V_1(x) = \sum_{j=1}^n c_j x_j^2$ satisfies (V1) and (V2).

- (ii) $V_2(x) = 1 + \sin x_1$ satisfies (V1), but does not satisfy (V2).
- (iii) For $c \ge 0$, $V_1(x) + cV_2(x)$ satisfies (V1) and (V2).
- (iv) (V1) and (V2) are satisfied if $V(x) \in C^2(\mathbb{R}^n, \mathbb{R})$ satisfies

$$V(x) \ge 0, \quad |\partial_x^{\alpha} V(x)| \le C_{\alpha} \langle x \rangle^{-|\alpha|} \quad (|\alpha| \le 2).$$

We use the following notation.

$$\begin{split} X &:= \{v \in H^1(\mathbb{R}^n) : V(x)|v(x)|^2 \in L^1(\mathbb{R}^n)\}, \\ E(v) &:= \frac{1}{2} \|\nabla v\|_2^2 + \frac{1}{2} \int_{\mathbb{R}^n} V(x)|v(x)|^2 dx - \frac{1}{p+1} \|v\|_{p+1}^{p+1}, \\ S_{\omega}(v) &:= E(v) + \frac{\omega}{2} \|v\|_2^2, \\ P(v) &:= \|\nabla v\|_2^2 - \frac{1}{2} \int_{\mathbb{R}^n} x \cdot \nabla V(x)|v(x)|^2 dx - \frac{n(p-1)}{2(p+1)} \|v\|_{p+1}^{p+1}, \\ I_{\omega}(v) &:= \|\nabla v\|_2^2 + \omega \|v\|_2^2 + \int_{\mathbb{R}^n} V(x)|v(x)|^2 dx - \|v\|_{p+1}^{p+1}. \end{split}$$

We note that

$$P(v) = \partial_{\lambda} S_{\omega}(v^{\lambda})|_{\lambda=1}, \quad I_{\omega}(v) = \partial_{\lambda} S_{\omega}(\lambda v)|_{\lambda=1},$$

where $v^{\lambda}(x) := \lambda^{n/2} v(\lambda x)$ for $\lambda > 0$.

Assumption (A1). For any $u_0 \in X$, there exist $T = T(||u_0||_X) > 0$ and a unique solution $u(t) \in C([0,T),X)$ of (1) such that $u(0) = u_0$ and

$$E(u(t)) = E(u_0), \quad ||u(t)||_2^2 = ||u_0||_2^2, \quad t \in [0, T).$$

In addition, if $u_0 \in X$ satisfies $|x|u_0 \in L^2(\mathbb{R}^n)$, then we have

$$\frac{d^2}{dt^2}||xu(t)||_2^2 = 8P(u(t)), \quad t \in [0,T).$$

For sufficient conditions on V(x) that (A1) holds, see, e.g., Section 9.2 in [2]. We remark that (A1) is satisfied for (iii) in Example above, and for $V(x) \in C^1(\mathbb{R}^n, \mathbb{R})$ such that

$$|\partial_x^{\alpha} V(x)| \le C_{\alpha} \langle x \rangle^{-|\alpha|} \quad (|\alpha| \le 1).$$

Definition 1. We say that a standing wave solution $e^{i\omega t}\phi_{\omega}(x)$ of (1) is stable if for any $\varepsilon > 0$ there exists $\delta > 0$ with the following property: if $u_0 \in X$ satisfies

$$\inf_{\theta \in \mathbb{R}} \|u_0 - e^{i\theta} \phi_\omega\|_X < \delta,$$

then the solution u(t) of (1) with $u(0) = u_0$ exists for all $t \ge 0$ and satisfies

$$\sup_{t>0}\inf_{\theta\in\mathbb{R}}\|u(t)-e^{i\theta}\phi_{\omega}\|_{X}<\varepsilon.$$

Otherwise, $e^{i\omega t}\phi_{\omega}(x)$ is said to be unstable.

Definition 2. $\mathcal{G}_{\omega} := \text{the set of minimizers for}$

$$\inf\{S_{\omega}(v):\ v\in X\setminus\{0\},\ I_{\omega}(v)=0\}.$$

An element of \mathcal{G}_{ω} is called a ground state of (2).

Assumption (A2). There exists $\omega_0 \in (0, \infty)$ such that \mathcal{G}_{ω} is not empty for any $\omega \in (\omega_0, \infty)$.

If $V(x) \in C(\mathbb{R}^n, \mathbb{R})$ satisfies $\lim_{|x| \to \infty} V(x) = +\infty$, by the compactness of the embedding $X \subset L^q(\mathbb{R}^n)$ with $2 \le q < 2n/(n-2)$, it is easy to see that (A2) is satisfied. However, for bounded V(x), we may need some additional assumptions related to the concentration compactness principle (see [7, 8]).

Theorem 1. Assume (A1), (A2), (V1) and (V2). Let p > 1 + 4/n and $\phi_{\omega}(x) \in \mathcal{G}_{\omega}$. Then there exists $\omega_* \in (\omega_0, \infty)$ such that the standing wave solution $e^{i\omega t}\phi_{\omega}(x)$ of (1) is unstable for any $\omega \in (\omega_*, \infty)$.

By the general theory in [6], under an assumption on the spectrum of a linearized operator, the standing wave solution $e^{i\omega_1 t}\phi_{\omega_1}(x)$ of (1) is stable (resp. unstable) if the function $\|\phi_{\omega}\|_2^2$ is strictly increasing (resp. decreasing) at $\omega = \omega_1$. In case of $V(x) \equiv 0$, by the scaling $\psi_{\omega}(x) = \omega^{1/(p-1)}\psi_1(\sqrt{\omega}x)$, it is easy to check the monotonicity of $\|\psi_{\omega}\|_2^2$. However, it seems difficult to check this property for general V(x). So, for the proof of Theorem 1, we use the following sufficient condition for the instability, which is a modification of Theorem 3 in [9] (see also [4, 5, 11]).

Proposition 2. Assume (A1), (A2), (V1) and (V2), and let $\phi_{\omega}(x) \in \mathcal{G}_{\omega}$. If $\partial_{\lambda}^{2} E(\phi_{\omega}^{\lambda})|_{\lambda=1} < 0$, then the standing wave solution $e^{i\omega t}\phi_{\omega}(x)$ of (1) is unstable. Here, $v^{\lambda}(x) := \lambda^{n/2} v(\lambda x)$ for $\lambda > 0$.

We note that $||v^{\lambda}||_{2}^{2} = ||v||_{2}^{2}$ and

$$\begin{split} E(v^{\lambda}) &= \frac{\lambda^{2}}{2} \|\nabla v\|_{2}^{2} + \frac{1}{2} \int_{\mathbb{R}^{n}} V\left(\frac{x}{\lambda}\right) |v(x)|^{2} dx - \frac{\lambda^{n(p-1)/2}}{p+1} \|v\|_{p+1}^{p+1}, \\ \partial_{\lambda}^{2} E(v^{\lambda})|_{\lambda=1} &= \|\nabla v\|_{2}^{2} + \frac{1}{2} \int_{\mathbb{R}^{n}} \left\{ 2x \cdot \nabla V(x) + \sum_{j,k=1}^{n} x_{j} x_{k} \partial_{j} \partial_{k} V(x) \right\} |v(x)|^{2} dx \\ &- \frac{n(p-1)}{2(p+1)} \left\{ \frac{n(p-1)}{2} - 1 \right\} \|v\|_{p+1}^{p+1}. \end{split}$$

Since $P(\phi_{\omega}) = \partial_{\lambda} S_{\omega}(\phi_{\omega}^{\lambda})|_{\lambda=1} = 0$, if we put

$$V^*(x) = 3x \cdot \nabla V(x) + \sum_{j,k=1}^n x_j x_k \partial_j \partial_k V(x),$$

then we have

$$\partial_{\lambda}^{2} E(\phi_{\omega}^{\lambda})|_{\lambda=1} = \frac{1}{2} \int_{\mathbb{R}^{n}} V^{*}(x) |\phi_{\omega}(x)|^{2} dx - \frac{n(p-1)}{2(p+1)} \left\{ \frac{n(p-1)}{2} - 2 \right\} \|\phi_{\omega}\|_{p+1}^{p+1}.$$

Thus, we see that the condition $\partial_{\lambda}^{2} E(\phi_{\omega}^{\lambda})|_{\lambda=1} < 0$ is equivalent to

$$\frac{\int_{\mathbb{R}^n} V^*(x) |\phi_{\omega}(x)|^2 dx}{\|\phi_{\omega}\|_{p+1}^{p+1}} < \frac{n(p-1)\{n(p-1)-4\}}{2(p+1)}.$$
 (3)

We remark that the right hand side of (3) is a positive constant by the assumption p > 1 + 4/n in Theorem 1. By using the variational characterization of the ground state $\phi_{\omega}(x)$ of (2) and the rescaling (4) below, we will show that the left hand side of (3) converges to 0 as $\omega \to \infty$. For $\phi_{\omega}(x) \in \mathcal{G}_{\omega}$, we define $\tilde{\phi_{\omega}}(x)$ by

$$\phi_{\omega}(x) = \omega^{1/(p-1)} \tilde{\phi_{\omega}}(\sqrt{\omega}x), \quad \omega \in (\omega_0, \infty).$$
(4)

Then, $\tilde{\phi_{\omega}}(x)$ satisfies

$$-\Delta \phi + \phi + \omega^{-1}V\left(\frac{x}{\sqrt{\omega}}\right)\phi - |\phi|^{p-1}\phi = 0, \quad x \in \mathbb{R}^n.$$

Recall that $\psi_1(x)$ is the unique positive radial solution of (2) with $V(x) \equiv 0$ and $\omega = 1$ in $H^1(\mathbb{R}^n)$, and we put

$$ilde{I_{\omega}}(v) := \|
abla v \|_2^2 + \| v \|_2^2 + \omega^{-1} \int_{\mathbb{R}^n} V\left(rac{x}{\sqrt{\omega}}
ight) |v(x)|^2 dx - \| v \|_{p+1}^{p+1}, \ I_1^0(v) := \|
abla v \|_2^2 + \| v \|_2^2 - \| v \|_{p+1}^{p+1}.$$

Lemma 3. Assume (A2) and (V1). Then, we have

(i)
$$\lim_{\omega \to \infty} \|\tilde{\phi_{\omega}}\|_{p+1}^{p+1} = \|\psi_1\|_{p+1}^{p+1}$$
, (ii) $\lim_{\omega \to \infty} I_1^0(\tilde{\phi_{\omega}}) = 0$, (iii) $\lim_{\omega \to \infty} \|\tilde{\phi_{\omega}}\|_{H^1}^2 = \|\psi_1\|_{H^1}^2$.

Proof. First of all, we note that $\tilde{\phi}_{\omega}(x)$ is a minimizer of

$$\inf\{\|v\|_{p+1}^{p+1}:\ v\in X\setminus\{0\},\ \tilde{I}_{\omega}(v)\leq 0\},\$$

and $\psi_1(x)$ is a minimizer of

$$\inf\{\|v\|_{p+1}^{p+1}:\ v\in H^1(\mathbb{R}^n)\setminus\{0\},\ I_1^0(v)\leq 0\}.$$

First, we show (i). Since $\tilde{I}_{\omega}(\tilde{\phi}_{\omega}) = 0$, we have $I_1^0(\tilde{\phi}_{\omega}) \leq 0$. Thus, we have $\|\psi_1\|_{p+1}^{p+1} \leq \|\tilde{\phi}_{\omega}\|_{p+1}^{p+1}$ for any $\omega \in (\omega_0, \infty)$. Moreover, for any $\mu > 1$, it follows from $I_1^0(\psi_1) = 0$ that

$$\mu^{-2}\tilde{I}_{\omega}(\mu\psi_1) = -(\mu^{p-1}-1)\|\psi_1\|_{p+1}^{p+1} + \omega^{-1}\int_{\mathbb{R}^n}V\left(\frac{x}{\sqrt{\omega}}\right)|\psi_1(x)|^2dx.$$

Here, from the assumption (V1), we have

$$\left| \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\psi_1(x)|^2 dx \right| \le C \int_{\mathbb{R}^n} (1 + \omega^{-m/2} |x|^m) |\psi_1(x)|^2 dx.$$

Since $\psi_1(x)$ has exponential decay at infinity, we have $(1+|x|^m)|\psi_1(x)|^2\in L^1(\mathbb{R}^n)$ and

$$\lim_{\omega o \infty} \omega^{-1} \int_{\mathbb{R}^n} V\left(rac{x}{\sqrt{\omega}}
ight) |\psi_1(x)|^2 dx = 0.$$

Thus, there exists $\omega(\mu) \in (\omega_0, \infty)$ such that $\tilde{I}_{\omega}(\mu\psi_1) < 0$ for any $\omega \in (\omega(\mu), \infty)$, so we have

$$(\|\psi_1\|_{n+1}^{p+1} \leq) \|\tilde{\phi_\omega}\|_{n+1}^{p+1} \leq \|\mu\psi_1\|_{n+1}^{p+1} = \mu^{p+1} \|\psi_1\|_{n+1}^{p+1}$$

for any $\omega \in (\omega(\mu), \infty)$. Since $\mu > 1$ is arbitrary, we conclude (i).

Next, we show (ii). Since $I_1^0(\tilde{\phi}_{\omega}) \leq 0$, for any $\omega \in (\omega_0, \infty)$ there exists $\mu(\omega) \in (0,1]$ such that $I_1^0(\mu(\omega)\tilde{\phi}_{\omega}) = 0$. Thus, we have

$$\|\psi_1\|_{p+1}^{p+1} \le \|\mu(\omega)\tilde{\phi_\omega}\|_{p+1}^{p+1} = \mu(\omega)^{p+1}\|\tilde{\phi_\omega}\|_{p+1}^{p+1},$$

which implies $\|\psi_1\|_{p+1}/\|\tilde{\phi}_{\omega}\|_{p+1} \leq \mu(\omega) \leq 1$, and from (i) we have $\lim_{\omega \to \infty} \mu(\omega) = 1$. Moreover, from $I_1^0(\mu(\omega)\tilde{\phi}_{\omega}) = 0$, we have

$$I_1^0(\tilde{\phi_\omega}) = (\mu(\omega)^{p-1} - 1) \|\tilde{\phi_\omega}\|_{p+1}^{p+1}.$$

Hence, again from (i), we conclude (ii).

Since
$$I_1^0(\psi_1) = 0$$
, (iii) follows from (i) and (ii) immediately.

Proof of Theorem 1. As stated above, we have only to show that the left hand side of (3) converges to 0 as $\omega \to \infty$. Since we have

$$\frac{\int_{\mathbb{R}^n} V^*(x) |\phi_{\omega}(x)|^2 dx}{\|\phi_{\omega}\|_{p+1}^{p+1}} = \frac{\omega^{-1} \int_{\mathbb{R}^n} V^*(x/\sqrt{\omega}) |\tilde{\phi_{\omega}}(x)|^2 dx}{\|\tilde{\phi_{\omega}}\|_{p+1}^{p+1}},$$

by Lemma 3 (i), it suffices to prove

$$\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V^* \left(\frac{x}{\sqrt{\omega}} \right) |\tilde{\phi_{\omega}}(x)|^2 dx = 0.$$
 (5)

From $\tilde{I}_{\omega}(\tilde{\phi_{\omega}})=0$ and Lemma 3 (ii), we have

$$\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^n} V\left(\frac{x}{\sqrt{\omega}}\right) |\tilde{\phi_{\omega}}(x)|^2 dx = -\lim_{\omega \to \infty} I_1^0(\tilde{\phi_{\omega}}) = 0.$$

By the assumption (V2), we have $|V^*(x)| \leq C(1+V(x))$ on \mathbb{R}^n , and by Lemma 3 (iii) we obtain (5).

Remark. Let $\phi_{\omega}(x) \in \mathcal{G}_{\omega}$ and we assume (without loss of generality) that $\phi_{\omega}(x)$ is positive in \mathbb{R}^n . By Lemma 3 and the concentration compactness principle, we see that there exist a subsequence $\{\tilde{\phi}_{\omega_j}(x)\}$ of $\{\tilde{\phi}_{\omega}(x)\}$ and a sequence $\{y_j\} \subset \mathbb{R}^n$ such that

$$\lim_{j \to \infty} \|\tilde{\phi_{\omega_j}} - \psi_1(\cdot + y_j)\|_{H^1} = 0 \tag{6}$$

(see Theorem III.1 in [8]). Although (6) may give some information on the asymptotic behavior of $\phi_{\omega}(x) \in \mathcal{G}_{\omega}$ as $\omega \to \infty$, we did not use (6) in the proof of Theorem 1 directly. We also note that Lemma 3 holds for any p such that 1 if <math>n = 1, 2, and $1 if <math>n \ge 3$. Finally, we remark that, in the case p = 1 + 4/n, it follows from (6) that

$$\lim_{\omega \to \infty} \|\phi_{\omega}\|_2^2 = \|\psi_1\|_2^2.$$

REFERENCES

- H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris. 293 (1981) 489–492.
- T. Cazenave, "An introduction to nonlinear Schrödinger equations," Textos de Métods Matemáticos 26, IM-UFRJ, Rio de Janeiro 1993.
- T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982) 549-561.
- 4. R. Fukuizumi, Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Preprint.

- 5. J. M. Gonçalves Ribeiro, Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field, Ann. Inst. H. Poincaré. Phys. Théor. 54 (1991) 403–433.
- 6. M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197.
- 7. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part1, Ann. Inst. H. Poincaré, Anal. non linéaire 1 (1984) 109-145.
- 8. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré, Anal. non linéaire 1 (1984) 223-283.
- M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Ann. Inst. H. Poincaré, Phys. Théor. 62 (1995) 69-80.
- 10. H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D 30 (1988) 207-218.
- 11. J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985) 173–190.
- 12. M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567–576.