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Generalized fractional integrals
KREEKRFE BEER PIH E— (Eiichi Nakai)

1. INTRODUCTION

The fractional integral I, (0 < a < n) is defined by
Iaf(m) = /]R f(y) dy.

n |z — ylr—e

It is known that I, is bounded from LP(R") to LI(R™) when p > 1 and
n/p — a =n/q > 0 as the Hardy-Littlewood-Sobolev theorem. The fractional
integral was studied by many authors (see, for example, Rubin [10] or Chap-
ter 5 in Stein [11]). The Hardy-Littlewood-Sobolev theorem is an important
result in the fractional integral theory and the potential theory. We introduce
generalized fractional integrals and extend the Hardy-Littlewood-Sobolev the-
orem to the Orlicz spaces. We show that, for example, a generalized fractional
integral is bounded from exp L? to exp LY.

Let B(a,r) be the ball {x € R" : |z — a| < r} with center a and of radius
r > 0, and By = B(O, 1) with center the origin and of radius 1. The modified
fractional integral I, (0 < o < n + 1) is defined by

Li@) = [ 10) (o - T2 4,

ylrme yfre
where xp, is the characteristic function of By. It is known that the modified
fractional integral I, is bounded from L?(R") to BMO(R™) when p > 1 and
n/p—a = 0, from LP(R") to Lipg(R™) whenp > 1and -1 < n/p—a = -4 < 0,
from BMO(R") to Lip,(R") when 0 < o < 1, and from Lip4(R") to Lip, (R")
when0<a+f8=7v<1.

We investigate the boundedness of generalized fractional integrals from the
Orlicz space L®(R") to BMOy4(R") and from BMO4(R") to BMO,(R"). If
#(r) = 1, then BMO4(R") = BMO(R™). If ¢(r) = r* (0 < @ < 1), then
BMO,(R") = Lip,(R"). We also investigate the boundedness of generalized
fractional integrals on the Morrey and Campanato spaces.
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2. NOTATIONS AND DEFINITIONS

For a function p : (0, +00) = (0, +00), let ,
p(lx yl) 4
x
We consider the following condltlons on p:

(2.1) | / : ﬂ(;ldt < +00,

: 0
(2.2) | ”Ei; < A for % < -73: <2,
(2.3) :n)_Ap() for s<r,

where A;, Ay > 0 are independent of 7,5 > 0. If p(r) =1% 0< a<mn,then I,
is the fractional integral or the Riesz potential denoted by .
We define the modified version of I, as follows:

I (@) = / ‘) (p(lw—yl) _P(|y|)(1—xBo(y))) W

|z -yl |yl
We consider the following conditions on p: (2.1), (2.2) and
(2.4) fg)l <Aals) ”,f+)1 for s<r,
(2.5) /r+oo %(Q dt < Agﬂ(:—),
(2.6) pﬁ:) p(s) < Aglr — |”(+)1 for ; <2<y,

where A}, A, A3 > 0 are independent of r,s > 0. If p(r)r® is increasing for
some o > 0 and p(r)/r? is decreasing for some 3 > 0, then p satisfies (2.2)
and (2.6). If p(r) =r*, 0 < @ <n+1, then I,=1I, IfI,f and I,f are well
defined, then I »f — I,f is a constant.

A function ® : [0, +00) — [0, +00] is called a Young function if ® is convex,
lim, 10 ®(r) = ®(0) = 0 and lim, 40 ®(r) = +00. Any Young function is

increasing. For a Young function @, the complementary function is defined by
&(r) = sup{rs — ®(s): s > 0}, r>0.

For example, if ®(r) = r?/p, 1 < p < oo, then &(r)=r"/p,1/p+1/p =1.
If ®(r) =r, then ®(r) = 0(0 < r < 1), = 4o0(r > 1).
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For a Young function ®, let

L*(R") = {f € L (R") : /Rn ®(¢|f(z)]) dz < +o0 for some € > O} ,

I£lle =inf{A > o:/ncp (VE\—””)') dz < 1},

L . (R") = {f € L (R") : sg)(I)(r) m(r,ef) < +oo for some € > 0} :

Il weak = inf {/\ > 0:sup®(r) m (7‘, i) < 1} ,
’ r>0 A
where m(r, f) = |{z € R" : |f(z)| > r}|.
Then
L*[R") C Lﬁeak(R") and || flle,weak < || flla-
If a Young function ® satisfies
(2.7) 0<®(r) <400 for 0<r < 400,

then @ is continuous and bijective from [0, +00) to itself. The inverse function
®~! is also increasing and continuous.
A function @ is said to satisfy the V,-condition, denoted ® € V,, if
1
®(r) < ﬂd)(kr), r >0,

for some k£ > 1.
Let M f(z) be the maximal function, i.e.

1
M (@) = sup 2 /B 1F@)ldy,

where the supremum is taken over all balls B containing .
We assume that @ satisfies (2.7). Then M is bounded from L®(R") to
Lgeak(Rn) and |

(28) . ”Mf”<1>,weak < CO”f”‘I’
If ® € V,, then M is bounded on L®(R") and
(2.9) 1M flle < Collflle-

For functions 6, : (0,+00) = (0,400), we denote 8(r) ~ k(r) if there
exists a constant C > 0 such that

C7'9(r) < k(r) < CO(r) for r>0.



A function 8 : (0,+o00) — (0,+00) is said to be almost increasing (almost
decreasing) if there exists a constant C > 0 such that

6(r) < Ch(s) (6(r) > CO(s)) for r<s.

A function 6 : (0, +o00) — (0,400) is said to satisfy the doubling condition
if there exists a constant C > 0 such that
) o for L<T<2
6(s)

For 1 < p < 0o and a function ¢ : (0,+00) — (0, +00), let

1 (1 p
s = s o (g [P as)
Lpol®) = {f € Lpo®") £l < +o0}.

We assume that ¢ satisfies the doubling condition and that ¢(r)r™? is almost
increasing. If ¢(r) = r®~™/P (0 < X < n), then L, 4(R™) = LP*(R") which is
the classical Morrey space. If A = 0, then LPA(R™) = LP(R"). If A = n, then
LPA(R™) = L®(R").

For 1 < p < co and a function ¢ : (O +00) = (0, +00), let

1 (1 e
Wlews =, 30, gt (1 [ )= b )
P,¢(Rn) - {f € Lloc( ) ”f“ﬁ,”p < +OO} |

where B=|—B-|/fa:da:.
B

We assume that ¢ satisfies the doubling condition and that ¢(r)r™? is almost
increasing. If ¢(r) = r@~™M/? (0 < XA < n+1), then £p¢(R") = LP*(R") which
is the classical Companato space.

If ¢ is almost increasing, then £,,(R") = L4 ¢(R") for all p > 1. Let
BMO4(R") = £14(R?). If ¢ = 1, then BMO4(R") = BMO(R"). If ¢(r) = r°,
0 < a < 1, then it is known that BMO4(R™) = Lip, (R"). ‘

The letter C shall always denote a constant, not necessarily the same one.

Ccl< =<

N
»

3. MAIN RESULTS

Our main results are as follows:
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Theorem 3.1. Let p satisfy (2.1)~(2.3). Let & and ¥ be Young functions with
(2.7). Assume that there ezist constants A, A', A" > 0 such that, for all 7 > 0,

+oo - P (t) n—1 '
N Q(AHM%MMQ*WWWJt dt < 4.

(32) /0 ' p—(;—)-dt 31 (rln) < A" (,.ln) ,

where ® is the complementary function with respect to ®. Then, for any Co >
0, there erists a constant C, > 0 such that, for f € L*(R"),

69 (i) =* (i)

Therefore I, is bounded from L®(R") to LY. (R™). Moreover, if ® € Vs, then
I, is bounded from L®*(R") to L¥(R™).

Remark 3.1. From (2.2) it follows that
(3.4) o(r) < C f ﬂ(tfldt.
0

If p(r)/r¢ is almost increasing for some ¢ > 0 and p(t)/t" is almost decreas-
ing, then p satisfies (2.1)-(2.3) and [J(p(t)/t)dt ~ p(r). Let, for example,
p(r) = r%(log(1/r))# for small r. If @ = 0 and B8 > 1, then [ (p(t)/t) dt ~
(log(1/r))™#+1. If @ > 0 and —o0 < B < +o0, then [ (p(t)/t)dt ~ p(r).

Remark 3.2. In the case ®(r) = r, (3.1) is equivalent to

o) ALy (ple)/s) ds
tﬂ - n

r

, 0<r<it.

This inequality follows from (2.3) and (3.4).

The following corollary is stated without the complementary function.

Corollary 3.2. Let p satisfy (2.1)—(2.3). Let ® and ¥ be Young functions

with (2.7). Assume that
[ (2
0 t re
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is almost decreasing and that there ezist constants A, A' > 0 such that, for all
r>0,

(3.5) /joo @@‘1 (tin) dt < A/()r ”—(ttl dt &1 (rin) ,
(3.6) /0 f’—iﬂ dt ! (rln) <A ¥! (rln) :

Then (3.3) holds. Therefore I, is bounded from L*(R™) to Ly .. (R™). More-

weak

over, if ® € Vs, then I, is bounded from L®(R") to LY (R"™).

Remark 3.3. If r¢p(r)®~1(1/r") is almost decreasing for some € > 0, then

[ e (Z) <o o (=)

This inequality and (3.4) yield (3.5).
Remark 3.4. We cannot replace (3.2) or (3.6) by

p(r) @71 (%ﬁ) <AV! (—1;) forallr >0

r

(see Section 5 in [6]).

O’Neil [7] showed the boundedness for convolution operators on the Orlicz
spaces. Cianchi [1] gave a necessary and sufficient condition on ® and ¥ so
that the fractional integral I, is bounded from L® to LY.

Theorem 3.3. Let p satisfy (2.1), (2.2), (2.4) and (2.6). Let ® be Young
function with (2.7), ¢ satisfy the doubling condition and be almost increasing.
Assume that there exist constants A, A’, A” > 0 such that, for all T > 0,

o0 [73(5 f(;(p(s)/s);ps(g—l(1/rn)t"+1) s A,
(3.8) /0 ' @ dt ! (rln) < A"¢(r),

where ® is the complementary function with respect to ®. Then fp is bounded
from L®(R") to BMO4(R™).

Theorem 3.4. Let p satisfy (2.1), (2.2), (2.4) and (2.6). Let ¢ and ¢ satisfy

the doubling condition, and ¢(r)r™ and ¥ (r)r™ be almost increasing. Assume
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that there exist constants A, A' > 0 such that, for all r > 0,

(3.9) / (t)¢(t) dt < A /O p(tt) at 20

(3.10) /0 o0) g, é(r) < A'y(r).

Then 1, is bounded from Ly 4(R™) to L1,4(R™).
If ® € V, and &71(1/r") = ¢(r), then we can show

Lyear(R™) C LY(R™) and || (I < ClIfllo mea-

Then we have the following.

Corollary 3.5. Let p satisfy (2.1), (2.2), (2.4) and (2.6). Let ® be Young
function with (2.7), ® € V,, ¢ satisfy the doubling condition and be almost
increasing. Assume that there exist constants A, A' > 0 such that, for allt > 0,

T p(t)@1(1/t7) "pt) @71/
(3.11) /r -p—t—dtgA/o ”t dt — =1,
" p(t) 1 '

Then I, is bounded from L2, ,(R") to BMO4(R™).

Theorem 3.6. Let p satisfy (2.1), (2.2), (2.5) and (2.6). Let ¢ and ¢ satisfy
the doubling condition, and ¢(r)r™ and ¥(r)r™ are almost increasing. Assume
that there erist constants A, A’ > 0 such that, for allr > 0,

(3.13) /+w@;;(t—)dtsf1/0r@dt @,

(3.14) | /0 r Bii) dt ¢(r) < A'Y(r).

Then I, is bounded from L; 4(R™) to £, ,(R™).
Remark 3.5. From Lemma 4.3 it follows that I,1 is a constant. Hence I, is
well defined as an operator from £; 4(R") to £;4(R").

The boundedness of the fractional integral I, on the Campanato space is
known (Peetre [8]).

Corollary 3.7. Let p satisfy (2.1), (2.2), (2.5) and (2.6). Let ¢ and v sat-
isfy the doubling condition and be almost increasing. Assume that there erist
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constants A, A' > 0 such that, for all T > 0, :
+00 t ’ T )
(3.15) / A0 4 A/ o) 20,
r 0

(3.16) | /: E-(ti)- dt ¢(r) < A'Y(r).

Then I, is bounded from BMO4(R™) to BMOy(R™).
This Corollary is a generalization of the well-known result that I, is bounded
from BMO(R™) to Lip, (R™) when 0 < o < 1; and from Lipg(R") to Lip,44(R")

when >0,3>0and 0<a+p8<1.
The results in Figure 1 are known. Our results contain these. Moreover, we

have the results in Figure 2.

(1<p<gq<o0) 0<B<y<l)
rr L*  BMO  Lip,  Lip,

I, I,
—n/p+a=-n/q a=p

Io
-n/p+a=0 - B+a=

é\n

2y

I,
-n/p+a=p4

FIGURE 1. Boundedness of fractional integrals

We can also state our results on spaces of homogeneous type with appropri-

ate conditions.
4. PROOFS
Let ® be a Young function. By the convexity and ®(0) = 0, we have
(4.1) d(r) < 2@(3) forr <s.
Let ® be the complementary function with respect to ®. Then

(4.2) o (3@) <®(r), r>0.

T
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p(r) = (log(1/r))~@*D for small r > 0 (o > 0)
0<p<g< o) (0<fB<vy<o0)
exp LP exp L? BMO  BMO14g(1/r))-8 BMOgog(1/

I, I,
-1/p+a=-1/q a=

1,
-1/p+a=0 B+a=r

-~

1
-l/p+a=p

nN'

FIGURE 2. Boundedness of generalized fractional integrals

Actually,
&)-s —®(s) <P(r) fors<r
and
-(I@s-—é(s) <0 fors>r.
We note that

(43) | 1@ ds < 20 flollsl

(see for example [9]).

Proof of Theorem 3.1. Let

_ p(lz —yl)
h= /Iz—ul<rf(y) |z -yl . and

_ p(lz — yl)
J2 - L—y])r f(y) |$ yln y
Let

h(r)=inf{%:s§r}, r>0.

Then A is nonincreasing. It follows that

L. 1r6mte s < s [ nie - sy

|lz—y|<r



(see Stein[12, p.57]). Since h(r) ~ p(r)/r",
(4.4) || < CMf(z) Pz =9l b < o a:)/ ) 4y

|z—yl<r I:L‘ - i
Next we estimate J,. By (4.3) we have

(45) <2 [PE= Do) e

3
where xp(s,)c is the characteristic function of the complement of B(z,r). Let

" p(s) a1
) Firn)=| —=ds® " {—).
(4.6) r) /0 ) s (rn
We show
x —
(47) P02 =D, e )| < CF ().
|z — | 3

From (2.2) and the increasingness of ® it follows that

(4.8) /lm _yer(i) (H) dy < C, / % (%(ii_)) P

where C, is independent of A > 0, 7 > 0 and z € R®. We may assume that
C,A' > 1. By (4.1) and (3.1) we have

(4.9) /+°° __ o) t" 1 dt
CQAA'F(T)t"
1 oo ~ p(t) 1 1
< — n- < —_,
= C2A'/, ® (AF(r)t") Tt s &

Let A = CoAA'F(r). Then, by (4.8) and (4.9) we have

|lz—y|>r )\l.’E - yln
and so (4.7). By (4.4), (4.5) and (4.7) we have

410 ILi@1=14+ 5l <0 (i@ +ifle () [P a

Choose 7 > 0 so that
(1 Mf(z)
4.11 ot (—)
(4.11) ) = Collflla’

Then

-1 Mf(2)
(4.12) / P 4 < A” (=) _ A,, o (Col|flla>)
. J, &S (E n :

) M
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By (4.10), (4.11) and (4.12) we have

IL(@)] < Cillf e ¥~ 0 ® (M /() ) |

Collflle

Therefore we have (3.3).
Let Cy be as in (2.8). Then

s 20)m (r ) =swerm (e (217)))

Mf(x)))_ ( Mf(m))
<smpr (0 (Giiy)) 200 () <

i.e.
o fllwweak < Cillflle-

Let Cp be as in (2.9). Then

[+ (B0) s [ o(202) a,

i.e.

Ipfllw < Cillflle. O

Proof of Corollary 3.2. Let F(r) be as (4.6). By the almost decreasingness
of F(r) we have

F(t)<CF(r) for0<r<t<+oo.

By (3.4) we have

1 p(t) _
"= C [y (p(s)/s) ds tn




From (4.1) and (4.2) it follows that
z(_pt) \_ F@®) z(_»®
® (CC’F(r)t") S TON (C”F(t)t")

__FO) 5 p(t) )
CF(r) \cC fot(p(s)/s) ds ®-1(1/tn) tr

p(t)
F(t) ~ C' [4(p(s)/s) ds tr
= ore” Y —
C' [y(p(s)/s)ds tr
F(t) p(t) __ L At (i)
= CE() C [y(p(s)/s)dst» ~ CC'F(r) t» = \t")"

By (3.5) we have (3.1). Therefore this corollary follows from Theorem 3.1. O
Lemma 4.1. Let ® be a Young function with (2.7) and & be the complemen-

tary function with respect to ®. Then there exists a constant C > 0 such that,
for all a € R™ and r > 0,

_ 1
Ixatanlls < o () o™

Proof. Let A = ®~1(1/|B(a,r)|)|B(a,r)|- Then we have by (4.2)

= { XB(a,r)(x) . ~ 1
/"CI)( A )dx_L(a,r)@(A) d

1
=|B(a,r)|® (Li’—) <1. O
-1 I
® (|B(a,r)|)

Proof of Theorem 3.3. First we note that there exists a constant C > 0
such that, for all a € R® and r > 0,

<ol [M e (1),
3 TJo T rr

We have this inequality (4.13) by (3.7) in a way similar to the proof of (4.7),

(4.13) “ "%(lﬁ.;lnil)lXB(a,r)C(')
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For any ball B = B(a,r), let B = B(a,2r) and

_ p(la—yDA - x5()
EB(x) f(y) ( yln |a —_ yln ) dy7
—x5() _ p(yD( = x5,(y))
( — PR ) w.
Ep(z) = / f(:u)p( yl,,') v,
2y _ pllz—yl)  p(la—yl)
B (a:)—/écf(y)( (2=t _plla=1D) ,,
Then
I,f(z) - Cs = Ep(z) = Eg'(z) + Eg*(z) for z € B.
By (2.6) we have
plla =y = x5() oy = x5,(¥)) lyl < 2lal,
—— e s {cn 2 > 2

From (4.3) and (4.13) it follows that Cp is well defined. By (4.3), Lemma 4.1
and (3.8) we have

[(roghe) o fum ([, ) s
< [1s@iar [P s < ltalixsls [ 2D a
< Cllfls@™! (l) o / 29 4 < Cotry i
From Fubini’s theorem it follows that Eg! is well defined and that
(4.14) [ 1Bs' @)l dz < 0oy .

By (2.6) we have

la — z|p(la — y])
Ia - y|n+1

p(lz—yl)  p(la—1yl)
lz—yl*  Ja—yl"

From (4.3), (4.13) and (3.8) it follows that Eg? is well defined and

(4.15) ' |Es*(z)| < Co(r)If e

, z€Bandye B°.




By (4.14) and (4.14) we have

1 [ - |
i /B \,f () = Cpldz < C(r)||fls,
and

I fllemo, < ClIflle- O

Lemma 4.2. Under the assumption in Theorem 3.4, there exists a constant
C > 0 such that, for alla € R™ and r > 0,

[ e wlay < B sl

(a,r)C |a‘

Proof. By (3.9) and (3.10), we have

/B p(la' yl) |f( ld — Z/ p(la’ yl) If(y)l Y

(a,r)C I(l - y|n+1 “lr<ja—y|<2r Ia’ - ln+1
+00
p(27 r) p(271)p(27r
<S5 [, 0l < e A
=1

~ [0 wnw<0/pmﬁ 20 41,

<o®y,,. o

Proof of Theorem 3.4. For any ball B = B(a,r), let B = B(a,2r) and
T — a— 1—vsa
Ep(z) = /R ) (p(l yl) _ ple —yl)( xB(y))> dy,

lz -yl la -yl
plla—yD)(A - x5)  pUy)(A = x5, (¥))
CB“/'””( =" g )
p(lx yl)
/ iy ) yl” v
9\ _ pllz —yl) _ plla —yl)
Ee'le) = /BC i) ( lz -yl la —y|™ ) 4.

I,f(z) — Cp = Ep(z) = Eg'(z) + Eg*(z) forz € B.
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By (2.6) we have

lp(la —y(A —x5®) _ plyD(A — XBo(y))l

la -yl lyl
C, |la — y| < max(2|al, 2r)
p(la —yl)
C|a|m, la — y| > max(2|a, 2r).

From Lemma 4.2 it follows that Cp is well defined. By (3.10) we have

[ ([voe=e)

5 p(t) n " p(t)
< [wla [ Tdt <Olfllrmetr) [ X at

< Ol fllzy 67"%(r).-

From Fubini’s theorem it follows that Eg! is well defined and that
(4.16) [ 1Bs @) dz < Cor Il
From (2.6) and Lemma 4.2 it follows that Ep? is well defined and

(4.17) |E5*(2)| < CY(r)|If|z, ,-
By (4.16) and (4.17) we have

157 /. [11(@) - Ca| do < Co ISl
and
15fllcis < Clifllz,,- O
Lemma 4.3. If p satisfies (2.1), (2.2), (2.5) and (2.6), then

(4.18) pllz —yl).  p(lz2 —yl)
|z, — y[ |zg — y[™

is integrable on R" as a function of y and the value is equal to 0 for every

choice of , and z,.
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Proof. Let r = |z; — z2|. For large R > 0, let
Iy — To —

I = / p(lz1 yf!) dy — / plz2 y,,l.) dy,
B(z1,R) |z, — B(z3,R) |22 — ¥l

J, = / plz: — ynl) / plz2 — ynl) dy,
Blz1, R+ \B@,R) 181 = Y] B(ay,R+r)\B,R) |52 — Y

_ p(lz1 —yl) _ p(lz2 —yl)

Js = n n y

B(z1,R+1)C |£1?1 - yl |x2 - y'

Then
hr e [ (At dlmoib)

|z1 — y|” lza —y|
p(lzi — yl)
I i yl

From (2.1) it follows that
By (2.6) we have

(i = 1,2) are in L{,.(R") and that J; = 0.

/ p(jz1 — yl) _ p(lz2 — y) d
n n Y-
B(z1,R+7)C lz1 -yl |22 — ¥
+00
t
< / agrPUE =) g ¢y LOWN
B(z1,R41)°€ |1 — ¥l Rer U

From (2.5) it follows that (4.18) is integrable and that |J3| — 0 as R — +oo.
By (2.2) and (2.5) we have

BARS / (P(lml — yn|) + p(lz2 — ZIJ)) dy
B(z1,R+r)\B(z1,R-T) le - yl |$2 - yl

N((R+r)"-(R—r)")%]3—)§CrB%Q—>O as R — +oo. U

Lemma 4.4. Under the assumption in Theorem 3.6, there ezists a constant
C > 0 such that, for alla € R® and 7 > 0,

/B = |ﬂ)1 |fW) = faan]| dy < C%L)“f“‘w'

(a,r)€ I(IL

Proof. By the doubling condition of ¢ we have

1
— < — d
IfB(a,2’°r) fB(a,2’°+1r)l = IB((l, 2k,,.)| B(a,2*r) lf(y) fB(a,Z"“T)I Y

1
< -
B IB((I, 2kT)| B(a,2k+1r)

2k+1p
<o, <0 [ 2D dslflens

If(y) - fB(a,2’°+1r)| dy
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fork=0,1,---,5—1, and so

1
Bla, 27| (e |f(y) = fB(ar)| dy

1
P e — — inl|d o) — .
S 1B(@20)] Jnazsn FW) ~ Fo2n] 4y + |faan = foaon)

2r ¢(8)
<c [ *Dasysis,,

Hence, using (2.5) and (3.15), we have

, /l; o(la — yl) If(y) — fB(a,r)l dy

(a,r)C Ia' - y|n+l

= Z/ e ylﬂz If(y) - fB(a,r)I dy

j=1 ~1r<la—y|<2r Ia -

CZ (2-77‘)""'1 / If(y) fB(a,r)I dy

7\+oo i 2y +00 2t
<o e " u e ol ~ / 22 ([ 2as) awie,
=1 '

P B

=/+°° (/:’ A dt) LOFNTI gc/ A8 g e,
< C/ p(t) 4, 8(r) ¢(T) Iflle,, < @Ilfllcm' -

Proof of Theorem 3.6. For any ball B = B(a,r), let B = B(a,2r) and
(Iz—9yD) _ ple -y - x5()
Est@) = [ (- 7g) (5 2)) o,

|z -yl la —y|
_ oy (2la= D= x5() ()1 = x5,3))
ot = [ ) - g (A=l X)) g,
2 _ (Plz—yD)  ply))A — x5, ()
o= [ 5 (G )
Bs'e) = [ ) - 1) H Mg,

|z — y[» la —y[

2o = [, G- gp) (22t ele=sd)
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I,f(z) - (Cg" + Cg®) = Ep(z) = Ep'(z) + Eg®(z) forz € B.
By (2.6) we have
pla —y)(1 —x5®) _ p(ly)( — x5 (¥)) ‘

ja =yl lyl”
C, la — y| < max(2|al, 2r)
Cla || = 131)1 la — y| > max(2|al, 2r).

From Lemma 4.4 it follows that Cg' is well defined. By Lemma 4.3 and (2.1)

we have

/ (,,qx —y) (g - m(y))) dy

|z —y| |y

_ pllz —yl) _ ey p(lyl)
- [ (G- ) e+ [ PR dn=C
By (3.16) we have

[ ([ - s fE=as) ay
< fjywr-sm([,,, = o)
< [ o) - sstay [ 2D e < Ol rotr) [ A at

< Clflley, 7 (r).
From Fubini’s theorem it follows that Eg' is well defined and that

(4.19) [ 185 @)l dz < o™ ey,
From (2.6), Lemma 4.4 and (3.16) it follows that Ep” is well defined and
(4.20) |Eg*(z)| < CP(r)||fllc,,q-

By (4.19) and (4.20) we have

1 ~ .
[ ar(@) - @'+ Culldo < OO Sl
and

”jpfllﬁhp - C“f”fqd, O
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