Normal ultrafilters without the partition property

大阪府立大学総合科学部 加茂静夫(Shizuo Kamo)

1 Introduction

Let κ be a measurable cardinal and $\kappa \leq \lambda$. Concerning the partition property of a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$, Solovay (see Menas [6]) proved the existence of a normal ultrafilter without the partition property under the assumption of that the existence of a certain large cardinal greater than κ . After Solovay established this result, Kunen (see Kunen-Pelletier [3]) improved his results, and proved that the existence of a normal ultrafilter without the partition property implies the existence of a certain large cardinal above κ . On the other hand, Menas [6] proved that there exist $2^{2^{\lambda} < \kappa}$ normal ultrafilters with the partition property, if κ is $2^{\lambda} < \kappa$ supercompact. In the talk, we prove

Theorem 1 Suppose that U is a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ without the partition property. Define θ by

 $\mathrm{Ult}_U(\mathbf{V}) \models "\theta \text{ is the first Mahlo cardinal greater than } \lambda".$ Then, it holds that

 $\mathrm{Ult}_U(\mathbf{V}) \models "\kappa \text{ is } \gamma\text{-supercompact for all } \gamma < \theta ".$

As a corollary, we have the following which has been proved in [1].

Corollary 2 If κ is λ -supercompact, then there exists a normal ultarfilter on $\mathcal{P}_{\kappa}\lambda$ with the partition property.

2 Notations and definitions

We use standard $\mathcal{P}_{\kappa}\lambda$ -combinatorial terminologies (e.g., see [2]). Throughout this paper, κ denotes a regular uncountable cardinal. Let A be a set such

that $\kappa \subset A$. $\mathcal{P}_{\kappa}A$ denotes the set $\{x \subset A \mid |x| < \kappa\}$.

Let $Y \subset \mathcal{P}_{\kappa}A$. $[Y]^2$ denotes the set $\{(x,y) \in Y \times Y \mid x \subset y \text{ and } x \neq y\}$. For any function $f: [Y]^2 \to 2$, a subset H of Y is said to be homogeneous for f, if $|f''[H]^2| = 1$.

For each $x \in \mathcal{P}_{\kappa}A$, \widehat{x} denotes the set $\{y \in \mathcal{P}_{\kappa}A \mid x \subset y \text{ and } x \neq y\}$.

Let U be a κ -complete ultrafilter on $\mathcal{P}_{\kappa}A$. The ultrapower of the universe V modular U is denoted by $\mathrm{Ult}_U(V)$. We say that U is fine, if $\widehat{x} \in u$ for all $x \in \mathcal{P}_{\kappa}A$. A fine ultrafilter U is said to be normal, if it is closed under the diagonal intersection. U has the partition property, if for any $X \in U$ and any $f: [X]^2 \to 2$, there exists $Y \in U$ such that $Y \subset X$ and Y is homogeneous for f.

3 Preparations for a proof of Theorem 1

In this section, we prove a lemma which will be used to prove the theorem. Define $X_0 \subset \mathcal{P}_{\kappa}\lambda$ by:

 $x \in X_0$ if and only if $x \in \mathcal{P}_{\kappa}\lambda$ and the following (1) and (2) hold.

- (1) $x \cap \kappa$ is a Mahlo cardinal.
- (2) ξ is inaccessible iff $\operatorname{ot}(x \cap \xi)$ is inaccessible, for all $\xi \in x \cup \{\lambda\}$. Since $\langle \operatorname{ot}(x \cap \xi) \mid x \in \mathcal{P}_{\kappa} \lambda \rangle$ represents ξ in $\operatorname{Ult}_{U}(\mathbf{V})$ for every $\xi \leq \lambda$, $X_{0} \in U$ for every normal ultrafilter U on $\mathcal{P}_{\kappa} \lambda$. Now we can prove the lemma.

Lemma 3 Let U be a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ and $\kappa \leq \gamma \leq \lambda$. Suppose that

$$\forall X \in U \ \exists (x,y) \in [X]^2 \ (x \cap \gamma = y \cap \gamma).$$

Let σ be the least ordinal $\delta \leq \lambda$ which satisfies

$$\forall X \in U \ \exists (x,y) \in [X]^2 \ (x \cap \gamma = y \cap \gamma \ and \ x \cap \delta \neq y \cap \delta).$$

Then, σ is a Mahlo cardinal.

Proof For each $\xi \in [\gamma, \sigma)$, take a $Y_{\xi} \in U$ such that

$$\forall (x,y) \in [Y_{\xi}]^2$$
 (if $x \cap \gamma = y \cap \gamma$ then $x \cap \xi = y \cap \xi$).

Set $X_1 = X_0 \cap \triangle_{\gamma \leq \xi < \sigma} Y_{\xi}$. Note that, for any $(x, y) \in [X_1]^2$, if $x \cap \gamma = y \cap \gamma$

and $x \cap \sigma \neq y \cap \sigma$ then $y \cap \sigma$ is an end extension of $x \cap \sigma$.

We first show that σ is a strong limit cardinal. To get a contradiction, assume that there is a $\delta < \sigma$ such that $\sigma \leq 2^{\delta}$. Put

$$Y_0 = \{ x \in X_1 \mid \delta \in x \text{ and } \operatorname{ot}(x \cap \sigma) \leq 2^{\operatorname{ot}(x \cap \delta)} \}.$$

Since $\sigma \leq 2^{\delta}$ also holds in $\mathrm{Ult}_U(\mathbf{V})$ and $\langle \operatorname{ot}(x \cap \delta) \mid x \in \mathcal{P}_{\kappa} \lambda \rangle$ represents δ , we have that $Y_0 \in U$. For each $\alpha < \kappa$, take an injection $f_{\alpha} : 2^{\alpha} + 1 \to \mathcal{P}(\alpha)$. For each $x \in Y_0$, let $\pi_x : \operatorname{ot}(x \cap \delta) \to x \cap \delta$ be the order isomorphism, and put $a_x = \pi''_x f_{\operatorname{ot}(x \cap \delta)}(\operatorname{ot}(x \cap \sigma))$. Since $a_x \subset x \cap \delta$ for all $x \in Y_0$, there is an $A \subset \delta$ such that

$$Y_1 = \{ x \in Y_0 \mid a_x = A \cap x \} \in U.$$

Take a pair $(x,y) \in [Y_1]^2$ such that $x \cap \gamma = y \cap \gamma$ and $x \cap \sigma \neq y \cap \sigma$. Since $\delta \in x \subset y$, it holds that $x \cap \delta = y \cap \delta$. By this, we have $\pi_x = \pi_y$ and $a_x = A \cap x \cap \delta = A \cap y \cap \delta = a_y$. So, $\operatorname{ot}(x \cap \sigma) = \operatorname{ot}(y \cap \sigma)$. This contradicts that $y \cap \sigma$ is an end extension of $x \cap \sigma$.

Next, we show that σ is a regular cardinal. To get a contradiction, assume that $\delta = \operatorname{cof}(\sigma) < \sigma$. Take a normal cofinal function $f : \delta \to \sigma$. Put

 $Y_2=\{\,x\in X_1\mid \delta\in x \text{ and } x\text{ is } f,\, f^{-1}\text{-closed and } f''x\cap\delta\text{ is cofinal in }x\cap\sigma\,\}.$

It is easy to check that $Y_2 \in U$. So, there is a pair $(x,y) \in [Y_2]^2$ such that $x \cap \gamma = y \cap \gamma$ and $x \cap \sigma \neq y \cap \sigma$. Since $\delta \in x$ and $x \in X_1$, it holds that $x \cap \delta = y \cap \delta$. So, we have that $\sup(x \cap \sigma) = \sup f''x \cap \delta = \sup f''y \cap \delta = \sup(y \cap \sigma)$. This contradicts that $y \cap \sigma$ is an end extension of $x \cap \sigma$.

Finally we show that σ is a Mahlo cardinal. Note that $\operatorname{ot}(x \cap \sigma)$ is inaccessible for all $x \in X_1$, since $X_0 \subset X_1$ and σ is inaccessible. Put $S = \{ \alpha < \sigma \mid \alpha \text{ is inaccessible} \}$. To get a contradiction, assume that S is non-stationary. Take a closed unbounded subset C of σ such that $\min C > \gamma$ and $S \cap C = \phi$. For each $x \in \mathcal{P}_{\kappa}\lambda$, let $\rho_x : \operatorname{ot}(x \cap \sigma) \to x \cap \sigma$ be an order isomorphism and put $C_x = \rho^{-1}(x \cap C)$. Since $\langle C_x \mid x \in \mathcal{P}_{\kappa}\lambda \rangle$ represents C in $\operatorname{Ult}_U(V)$, it holds that

 $Y_3 = \{ x \in X_1 \mid C_x \text{ is club in ot}(x \cap \sigma) \} \in U.$ Take a pair $(x, y) \in [Y_3]^2$ such that $x \cap \gamma = y \cap \gamma$ and $x \cap \sigma \neq y \cap \sigma$. Let η be the least element of $y \cap \sigma \setminus x \cap \sigma$ and $\overline{\eta} = \rho^{-1}(\eta)$. Since $\operatorname{ot}(x \cap \sigma) = \operatorname{ot}(y \cap \eta)$, we have that $\rho_x = \rho_y \upharpoonright \overline{\eta}$ and $\operatorname{ot}(y \cap \eta)$ is inaccessible. So, $\overline{\eta} \in C_y$ and η is inaccessible. Hence $\eta \in C \cap S$. This is a contradiction.

4 Proofs of Theorem 1 and Corollary 2

In order to prove the theorem, we need the notion of ω -Jonsson functions and some known results. Let S be an infinite set. We denote by ${}^{\omega}S$ the set of functions from ω to S. A function F from ${}^{\omega}S$ to S is called an ω -Jonsson function for S if $F^{\omega}T = S$ for any $T \subset S$ with |T| = |S|. Concerning ω -Jonsson functions, Erdös-Hajnal (e.g., see [2, Theorem 23.13]) proved:

Lemma 4 (Erdös-Hajnal) For any infinite set S, there exists an ω -Jonsson function for S.

Solovay proved:

Lemma 5 (Solovay [5]) Let U be a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ and $F: {}^{\omega}\lambda \to \lambda$ an ω -Jonsson function. Then

 $\{x \in \mathcal{P}_{\kappa}\lambda \mid F \upharpoonright^{\omega} x \text{ is an } \omega\text{-Jonsson function for } x\} \in U.$

The next lemma is due to Magidor.

Lemma 6 (Magidor [4]) If κ is $<\lambda$ -supercompact and λ is θ -supercompact, then κ is θ -supercompact.

The next lemma is due to Menas.

Lemma 7 (Menas [6]) Let U be a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$. Then, the following (a) and (b) are equivalent.

- (a) U has the partition property.
- (b) There exists an $X \in U$ such that $\forall (x, y) \in [X]^2$ ($|x| < |y \cap \kappa|$).

Now we can prove the theorem.

Theorem 1 Suppose that U is a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ without the partition property. Define θ by

 $\mathrm{Ult}_U(\mathbf{V})\models "\theta \text{ is the first Mahlo cardinal greater than }\lambda".$

Then, it holds that

 $\mathrm{Ult}_U(\mathbf{V}) \models "\kappa \text{ is } \gamma\text{-supercompact for all } \gamma < \theta".$

Proof To get a contradiction, assume that

 $\mathrm{Ult}_U(\mathbf{V}) \models "\kappa \text{ is not } \gamma\text{-supercompact for some } \gamma < \theta".$

Define $f: \mathcal{P}_{\kappa}\lambda \to \kappa$ by

f(x) = the least Mahlo cardinal greater than ot(x).

Since f represents θ in $Ult_U(\mathbf{V})$,

 $Y_0 = \{ x \in X_0 \mid x \cap \kappa \text{ is not } \xi\text{-supercompact for some } \xi < f(x) \} \} \in U.$

Let $\gamma = \sup\{\delta \leq \lambda \mid \delta \text{ is a Mahlo cardinal}\}$. Since γ satisfies the same statement in $\text{Ult}_U(\mathbf{V})$, it holds that

 $Y_0 = \{ \, x \in X_0 \mid \mathrm{ot}(x \cap \gamma) = \sup \{ \, \delta \leq \mathrm{ot}(x) \mid \delta \text{ is a Mahlo cardinal } \} \in U.$

Futhermore, since

Ult_U(**V**) \models " κ is ξ -supercompact for all $\xi < \gamma$ ", it holds that

 $Y_1 = \{ x \in Y_0 \mid x \cap \kappa \text{ is } \xi\text{-supercompact for all } \xi < \operatorname{ot}(x \cap \gamma) \} \in U.$ By the previous lemma, we can take a $Z \in U$ such that $x \cap \gamma \neq y \cap \gamma$, for all $(x, y) \in Z$. Take an ω -Jonsson function F for γ and put

 $Y_3 = \{ x \in Y_2 \cap Z \mid F \upharpoonright^{\omega}(x \cap \gamma) \text{ is } \omega\text{-Jonsson function for } x \cap \gamma \} \in U.$ Note that $|x \cap \gamma| < |y \cap \gamma| \text{ for all } (x,y) \in [Y_3]^2$. Since U does not have the partition property, there is a pair $(x,y) \in [Y_3]^2$ such that $y \cap \kappa \leq |x|$. Since $x \in Y_1$ and $y \cap \kappa$ is Mahlo, it holds that $y \cap \kappa \leq \operatorname{ot}(x \cap \gamma)$. So, $x \cap \kappa$ is ξ -supercompact for all $\xi < y \cap \kappa$. By this, since $y \in X_2$, it holds that

 $x \cap \kappa$ is ξ -supercompact for all $\xi < \operatorname{ot}(y \cap \gamma)$.

So, $f(x) \leq \operatorname{ot}(y \cap \gamma)$. Hence, it holds that

 $x \cap \kappa$ is not ξ -supercompact for some $\xi < \operatorname{ot}(y \cap \gamma)$.

This is a desired contradiction.

Corollary 2 directly follows from Theorem 1 and the following Menas's result.

Lemma 8 (Menas [5]) If κ is λ -supercompact, then there exists a normal ultrafilter U on $\mathcal{P}_{\kappa}\lambda$ such that

 $Ult_U(\mathbf{V}) \models \kappa \text{ is not } \lambda\text{-supercompact.}$

References

- [1] S. Kamo, Partition properties on $\mathcal{P}_{\kappa}\lambda$, J. Math. Soc. Japan, to appear.
- [2] A. Kanamori, The Higher Infinite, Springer-Verlag (1994).
- [3] ,K. Kunen and D. H. Pelletier, On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals, J. Symbolic Logic, 48 (1983) pp. 475-481.
- [4] M. Magidor, On the role of supercompact and extendible cardinals in logic, Israel J. of Math., 10 (1971) pp. 147-157.
- [5] T. K. Menas, On strong compactness and supercompactness, Annals of Math. Logic, 7 (1974) pp. 327-359.
- [6] T. K. Menas, A combinatorial property of $\mathcal{P}_{\kappa}\lambda$, J. Symbolic Logic, 42 (1976) pp. 225-234.