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NONREFLECTING STATIONARY SETS IN P.A
SAHARON SHELAH AND MASAHIRO SHIOYA

ABSTRACT. A nonreflecting stationary subset of P,k Tis constructed
e.g. when  is the successor of a regular uncountable cardinal.

1. INTRODUCTION

Let k > w be a regular cardinal. The reflection principle for sta-
tionary subsets of P\, where A > « is a cardinal, was introduced and
shown consistent relative to a supercompact cardinal in case K = w,
by Foreman, Magidor and Shelah [3]. The corresponding principle for
k > w, was refuted in ZFC by Feng and Magidor [1] when & is a succes-
sor cardinal, and in general by Foreman and Magidor [2]. Specifically,
“combinatorialization” of the latter argument (see Section 4 below)
yields '

Theorem 1. P )\ has a nonreflecting stationary subset when kK > w;
and A > ot

What about P,x*? In this note, we give a parallel result for k = v+
with v > w regular. More generally, we show

Theorem 2. Assume cf [\]* = A\, w < v < & is regular and cf [y]<* <
k for all v < k. Then P\ has a nonreflecting stationary subset.

2. PRELIMINARIES

Our terminology generally follows Kanamori [5] with the following
exceptions. For the rest of this paper, x denotes a regular cardinal
> wiy, A a cardinal > K, p a cardinal from A — x and v a regular
cardinal from k — w;. We let [A\J* = {z C X : |z] = p}, cf[A]* the
minimal size of its unbounded subsets and S¥ = {y < & : cfy = v}.
Also lim A denotes the set of limit points of a set A of ordinals, and for
a map f defined on a subset of A<, cl sz the closure of z € P.A under
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fand C(f) the set {z € PeA: 2Nk € kAclyz = z}. The reflection
principle we consider states that for all A > k and S C P\ stationary
there is k£ C A € [A]" such that SNP,A is stationary. A stationary set
witnessing its failure is called nonreflecting. More generally, S C P\ is
called p-nonreflecting if S NP, A is nonstationary for all u C A € [A]~.
A p*-complete filter on [A]* extending {{r € A\J*: a2 €z} :a < A} is
called fine. The specific example relevant to us was introduced in [7]:

Lemma 1. The sets {U, ., 4i : {Ai : i <w} C [\ AVn < w(r({(4; :
1 < n)) C Ap)}, where 7 : ([A|*)<¥ — [A]#, generate a fine filter on
AJX.

We need an analogue of Ulam’s result (see [4] or [6] for a proof):

Lemma 2. Let F be a fine filter on [A]*. Then A many mutually dis-
Joint F-positive sets exist.

3. MAIN THEOREM
In this section we prove Theorem 2 in an even more general form:

Theorem 3. Let w < v < k < pu < ) be as in Section 2. Assume
{Uaca Eo : a € [A]<*} is unbounded in [A]* for some {E, : a < A} C
[A* and {z € Peps : {c¢ : € € 2} is unbounded in [2]<} has a stationary
subset T of size p for some {c¢ : € < p} C [u]<*. Then P.) has a p-
nonreflecting stationary subset.

Proof. Define e : A x u — X so that e“{a} x u = E,. Let F be the filter
on [A]* as in Lemma 1. Fix a mutually disjoint {X, : z € T} C F* by
Lemma 2. We show that S ={r € C(e):zNp e TATb € [z]<¥(z C
cle(bU p) € Xzn,)} is as desired.

To show S stationary, fix f : A<¥ — P,.)\. Consider the following
game Gy, for z € T: I and II take in turn u C A, € [A]* and a
triple of b, € [A]<¥, a bijection m, : g — cl(b, U p) and z,, € C(f)
respectively so that A, C cl (b, U ) C Ay, b C z, C cle(b, U ),
Tn“(Tn N ) = T, and (b; : i < w) and (z; : i < w) are increasing. II
wins iff z, N p =z forall n <w. We first claim TND Cc {z e T: 1I
has a winning strategy in Gy} for some club D C P, p.

Suppose to the contrary T' = {z € T : II has no winning strategy
in Gy} is stationary. For z € T", we have a winning strategy o, for
Iin Gy,, since the game is closed for II and hence determined. By
induction on n < w, build (by, T, z%) for z € T" as follows: First take
bn1 C by € (A< with {J,cqv 0. ({(bs, 71, 2F) 11 < 1)) C clo(baUp) €
C(f). Next take a bijection m, : 4 — cl (b, U ). For z € T, take
bn C 27 € C(f) N Prcle(by U p) with 7, “(zZ N p) = 2%, and if possible,
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zZNp =z Nowset b=J, ., bn € [A]<¥ and A = cl (bU u) € [A]*.
Take b C £ € C(f) N PcA with m,“(z N ) = z Ncle(bp, U p) for all
n<wand z=zNp€T'. Then zZ = zNcl(b, Up) for all n < w,
since xNcl (b, U ) is the unique set satisfying all the requirements for
zZ including the extra one. Thus II wins the game G, with the moves
((bp, T, x%) : n < w), yet I plays according to the winning strategy o,.
Contradiction.

Now fix z € T with a winning strategy o for II in Gy,. Define
7 : ([AJ*)<¢ = [M]¥ by 7(t) = cle(bU p), where o(t) = (b, 7, z). Since
X, € F*, we have {4; : i < w} C [A]* such that |J,., A € X, and
7((A4; : 1 < n)) C A, for all n < w. Set (bn, Tn,zn) = 0({A4; : i < n))
for n < w. Then z = J, ., 2n € SN C(f) as desired, since N p =
z€Tand z Ccl(bUp) =, cle(bn Up) = U, Ai € X, where
b= Un<w b" € ["E]<V'

To show S p-nonreflecting, suppose to the contrary S NP, A is sta-
tionary for some u C A € [A]J*. Then e“(A x p) C A, since C(e) NP A
is unbounded in P,A. We next give a € [A]<" with cl.(aU u) = A.

Fix a bijection m : 4 — A. Set B = 7'y € [u]*. Define h :
ux B = pu by w(h(&€,()) = e(n(§),n(¢)). Let S’ be the stationary
{znu:n“(znp)=2€ SNP,A} CT. For z € &, take §, € z with
z Cclp(cg, UB) by m“z € S. Take { < usothat S* ={z€ 5 : & =&}
is stationary. Then p = cl(ceUB), since z C cl(cUB) for all z € S*.
Hence A = cl . (7“ce U p), as desired.

Now we have the desired contradiction to the mutual disjointness of
{X,:2€T}: A€ X;n, forallz € SNP,A with a C z, since for some
be [z]< A=cle(aUp)=cle(bUpy) by a Ccl.(bU p). ]

4. REMARKS

Let us first deduce Theorem 2 from Theorem 3: Assume cf [y]<¥ < &
for all v < k. Then we have {¢; : { < k} C [k]< and f : K = &K
such that {c¢ : € < f(7)} is unbounded in [y]<¥. Then T = {y € S¥ :
f“y C v} is the desired stationary subset of {y < & : {¢e: & < v} is
unbounded in [y]<*}.

The rest of the section is devoted to the

Proof of Theorem 1. Fix a bijection 7, : K — 7 for v € k¥ — k and
a surjection g : A = "' k. Define h : [xt]? = P.kt by h(a,B) =
limng“ms~'(). Let D be the club {z € C(h) : Vy € z N (k* —
k)(m“(zNk) =zNy) AVE € z(z € C(g9(€)))}. We show that S =
{z € P :sup{sup(yNkt):zCye DAyNk=xNk} < k*}is as
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To show S stationary, suppose otherwise. By induction on n < w,
build f, : A<¥ — X closed under composition so that C(fo) C D — S
and for all m < w there is n < w such that f,(¢* (7)) = gy, () for all
t € A< and y < k* with f,(t * (7)) < k. Define f : A<¥ — P, X by
f(@) = {fa(t) : n <w}. Fixz € C(f). We claim that sup{sup(zN«k™) :
zCze€C(f)AzNk=zxzNK} =K.

Fixa<kt. Byr ¢ S,wehavez C y € D withyNk =z Nk and
a < v € yNk*. Then z = cl ;(zU{~v}) is as desired: To see zNk C YNk,
fix 3 € 2N k. Then B = fu(t * (7)) for some m < w and t € <.
Hence 8 = gj,(1)(7) € y for some n < w, since {fn(t),7} Cy € D.

For i < 2, build an increasing and continuous {z} : £ < w} C C(/)
so that 2} Nk = z)Nk € S¥*, sup(zgNkt) < sup(ziNk*) < sup(zg,,N
k%) and z? Nsup(zi Nk*) # 2 Nsup(zi N k™) as follows: First fix 20 €
C(f) with cf (zd N k) = w;. Take zJ C 29 € C(f) with 22Nk =2 Nk
so that sup(z? N x*) is the k-th element of {sup(z N k*) : 2] C 2 €
C(f)NzNnk=1z)Nk}. Take 3 C z} € C(f) withzl Nk =2 N K so
that sup(z) N k*) < sup(z} N k™) € sup(z? N k) — lim(z? N x+). The
rest of the construction is routine.

Now set z* = U,,, 2¢- Then 2° N k* # z' Nk, since z; N k™ is an
initial segment of z* N k*. Next to show z* N k* countably closed in
sup(z® N k*) = sup(z! N k*), fix a C £* N k" of order type w. We have
aC Ber Nkt bycf sup(z*Nkt) =w;, and @ € ' N B = m3“(z* N k)
with m5~'a C 757! (a) by z* Nk € S¥*. Then supa € h(e, 8) C z*, as
desired. Now we have the desired contradiction z*N«k* = |, 7y “(2z°N
k) = Uyec™ “(x) N &), where C C 2° N z! N &* is unbounded in
sup(z® N k*) = sup(z! N k).

To show S nonreflecting, suppose to the contrary S N P.A is sta-
tionary for some k C A € [A]*. Fix a bijection 7 : K & A. Then
S={y<k:mye SATyNKk =~} and {yNk* : 7%y Nk) C
y € DAynk € S'} are stationary in k and Pkt respectively. Hence
sup{sup(yNk*) : 7“(yNk) Cy € DAyNk € S’} = k*. Thus we have
v € S’ such that sup{sup(yN«*) : 7“(yNK) C y € DAyNk = v} = kt,
contradicting 7“y € S. O
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