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Uniqueness and Regularity of solutions
to the Navier-Stokes equations.
Hideo Kozono

Mathematical Institute, Tohoku University, JAPAN
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Introduction

The purpose of this article is to give a survey on the recent development of well-posedness
on the Navier-Stokes equations. We are mainly concerned with the results given by the
author. Consider the Navier-Stokes equations in R"(n > 2):

%‘A“”'vawo, zeRYte (0,T),
(N'S) divu=0 zeR4,te(0,T),
uli=0 = a,

where u = u(z,t) = (u!(z,t), --,u"(x,t)) and p = p(x,t) denote the unknown velocity
vector and the pressure of the fluid at the point (x,t) € R™ x (0,T), respectively, while
a = a(z) = (a'(z),---,a™(x)) is the given initial velocity vector field. For simplicity, we
assume that the external force has a scalar potential and is included into the pressure
gradient.

Let us first introduce some function spaces. We denote by C§%, the set of all C* vector
functions ¢ = (¢!, -+, ¢") with compact support in R", such that div ¢ = 0. L! is the
closure of C§%, with respect to the L™-norm ||-||,. (-, -) denotes the duality pairing between
L™ and L™, where 1/r 4+ 1/r' = 1. L' stands for the usual (vector-valued) L™-space over
R”, where 1 <7 < 0o. H{, denotes the closure of C§S, with respect to the norm

I8l = ll6ll2 + IV ll2,

where V¢ = (0¢'/8z;),i,j = 1,---,n. For an interval I in R! and a Banach space X,
LP(I; X) and C™(I; X) denote the usual Banach spaces of functions of LP? and C™-class
on I with values in X, respectively, where 1 <p< oo, m=0.1,---.

Our definition of a weak solution of (N-S) now reads

Definition 0.1 Let a € L2. A measurable function w on R™ x (0,T) is called a weak
solution of (N-S) on (0,T) if

(i) uw € L®(0,T;L2) N L%(0,T; H&’a);

58



(ii) For every ® € HY(0,T;Hj, N L") with ®(T) =0,
(0.1) /T{—(u, 3,®) + (Vu, V®) + (u - Vu, ®)}dt = (a, ®(0)).
0

Concerning existence of the weak solutions, we have Leray [13] and Hopf [7].
Theorem 0.2 (Leray-Hopf) For every a € L2, there exists at least one weak solution
u of (N-S) on (0,00) such that

t
0.2) a3 +2 / IVu(r)|2dr < a3, 0<t<oo,
0
and
lu(t) —all2 = 0 ast— +0.

We are interested in the following problems on well-posedness to (N-S);
Problems.

(I) Uniqueness and regularity of weak solutions

(II) Global existence of regular solutions for large data a

(III) Blow-up; dose there exist T < 00 such that

u(t) € C*(R™) for 0 <t < T, but u(T,) ¢ C*°(R") ?

1 Uniqueness and regularity

Let us introduce the class L#(0,T; L™) with the norm || - [[Ls(0,7;27)

The classical result on uniqueness and regularity of weak solutions in the class L*(0,T; L")
was given by Foias-Serrin-Masuda (3], [16], [17], [14]: §

Theorem 1.1 (Foias-Serrin-Masuda) Let a € L.
(i) Let u and v be two weak solutions of (N-S) on (0,T). Suppose that u satisfies

(1.1) we L350, T; L")  for2/s+n/r=1withn <r < oo.

Assume that v fulfills the energy inequality ( 0.2) for0 <t <T. Then we have u = v on
[0, 7). |
(ii) Eery weak solution u of (N-S) in the class (1.1) satisfies

ou gt tony

(1-2) o Bay - omy

€ C(R" x (0,T))

for all multi-indices a = (@1, ,ap) with o] =a1 + -+ +an < 2.
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Remark 1.2 (i) In Theorem 1.1 (i) , v need not belong to the class (1.1). On the other
hand, every weak solution u with (1.1) fulfills the energy identity

(1.3) lu(t)li3 + 2/0 IVu(r)li3dr = llall3, 0<t<T.

It seems to be an interesting question whether every weak solution satisfies the energy
inequality (0.2).

(ii) If u is merely in the Leray-Hopf class, then there exists s, 7o with 2/sg+n/rg = n /2
such that u € L*(0,T; L™). For example, we may take so = 2 and ry = 2n/(n—2). In
particular, by Therem 1.1 with the aid of interpolation inequality

llull 1o r2y < C||u||;°2/(;Q)||vu||;;(’,;4;{ 2 <19 <oo forallue H'(R?),

we see that every weak solution of (N-S) in the 2-dimensional case is unique and regular,
so Problems (I), (II) and (III) are completely solved in R2. Notice that if u is regular,
then s and r can be taken arbitrarily large, which makes the quantity 2/s + n/r smaller.

(iii) The class (1.1) is important from viewpoint of the scaling invariance. It can be
easily seen that if {u,p} is a pair of the solution to (N-S) on R" x (0, 00), then so is the
family {ux,px}r>0, where

ur(z,t) = Mu(Az, A%t), pa(z,t) = A2p(Az, A2¢).

Scaling invariance means that there holds

(241
leall s (0,00:L7) (= MG+ La(o,oo;m)) = ||lullLs(0,00;.r) for all A >0
if and only if
2/s+n/r=1.

- The solution {u, p} with the property that ux(z,t) = u(z, t), pa(z,t) = p(a,t) for all
A > 0 is called a self-similar solution. For (N-8), the self-similar solution has the form
such as
z

1 1_ =z

Vit

where U = (Ul(y),---,U™(y)), P = P(y) is the functions for ¥y =(y1,**,yn) € R®. More
presisely, the above solution is called a forward self-similar solution.

We shall next deal with the critical case with s = oo and r = n in (1.1).

Theorem 1.3 (Masuda [14], Kozono-Sohr [11], [12]) Let a € L2.
(i) (uniqueness) Let u and v be weak solutions of (N-S). Suppose that v € L*(0,T; L")
and that v satisfies the energy inequality (0.2) for 0 < t < T. Then we have u = v on

In m™
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(ii) (regularity) There ezists a positive constant o such that if u is a weak solution of
(N-S) in L*(0,T; L") with the property :

(1.4) limsup [[u(t)[lr < llu(t)ly +€o0 for t. € (0,T),
t—t.—0

then u satisfies

au Bal+"'+anu X
1.5 = e C(R" X (ts — p,t > 0,
(15 G gemrgae € O X (L= pitetp) Jorsome
where a = (aq,---,ay) is an arbitrary multi-indez with la| = o1+ +an £ 2. In

particular, if u has the property (1.4) for every ts € (0, T), then u is regular on R" x (0,T)
as in (1.2). ‘ '

Remark 1.4 (i) Masuda [14] proved that if u € L*(0,T’; L") is continuous from the right
on [0,T) in the norm of L", then there holds u = v on [0,T). Later on, Kozono-Sohr [11]
showed that every weak solution u in L*(0,T; L") of (N-S) on (0, T') becomes necessarily
continuous from the right in the norm of L".

(ii) By the above theorem, every weak solution in C([0,T); L™) is unique and regular.
This was proved by Giga [5] and von Wahl [20]. In Section 2, we shall give another proof
by a different method.

(iii) Recently, Hishida-Izumida [8] improved the condition (1.4). They proved regular-
ity of u under the weaker assumption that :

liminf [u(t) ] < [u(t ) + <o
It seems to be an interesting question whether or not every weak solution « € L>(0,T;L")
is regular.

Finally in this section, we investigate the size of singular sets of weak solutions in the
3-dimensional case. For a weak solution « in R® x (0,T) we denote by S(u) the singular
set defined by - :

S(u) = {(z,t) € R? x (0,T);u ¢ L®(Bp(x,t)) for Vp> 0},

where B,(z,t) = {(y,s) € R3 x (0,7);|ly — x| < p,|s —t| < p}. For each t € (0,T) we set
Sy(u) = {z € R% (z,t) € S(u)}.

Theorem 1.5 (Neustupa [15]) Let n = 3. There is an absolute constant o > 0 such
that every weak solution u in L>(0,T; L) fulfills

] 1 3
5,(u) < (—' sup nu(r)ua) |
€0 T

0<r<

for allt € (0,T). Here §S denotes the number of elements of the set S.
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Remark 1.6 (i) Caffarelli-Kohn-Nirenberg [2] showed if the weak solution u satisfies the
generalized energy inequality

(1.6) 2 / / |Vu|?pdzdt < / / [[ul*(Oed + A¢) + ([u|? + 2p)u - V|dzdt
R3x(0,T) R3x(0,T)

for all ¢ € C§°(R3 x (0,T)) with ¢ > 0, then H'(S) = 0, where H(S) denotes the
one-dimensional Hausdorff measure of the set S in the space-time R3 x (0, 00).

(ii) Taniuchi [19] found a class of weak solutions satisfying (1.6). His class is larger
than that of Serrin’s (1.1).

Finally in this section, we investigate local properties of weak solutions in R3. Let u
be a weak solution of (N-S) on (0, T"). We call (o, to) € R3 x (0, T') a regular point if there
are 0 > 0 and p > 0 such that

au aal+"'+an.:u
37 aar . aan € C(Bs(wo) x (to — p.to + p))
at 3231 s a.l‘n

for all multi-indices o = (ay, - - ©,op) with o] = oy + -+ + @, < 2. Here Bs(xo) = {y €
R3; |y—2o| < 8}. The point (zo, to) is called singular unless it is regular. w is called regular
on a space-time Q = D x (a, b) if every point of Q is a regular one.

Theorem 1.7 (Kozono [10]) Let n = 3. There is an absolute constant g0 > 0 with
the following property. If u is a weak solution of (N-S) on (0,T') and if u satisfies at
(zo,t0) € R3 x (0,T)

1.7 su a(D. <
a0 to—p<tI<)to+p I ( )”L%V(B&('To)) =<0

for some 6 > 0 and p > 0, then (zo,to) is a reqular point. Here | - ”L%V(Bé(zo)) denotes the

weak L3-norm HuIIL%V(BJ(IO)) = 15;;}3 Ryu{z € Bs(xo); |u(z)| > R}% (11; Lebesgue measure).

Corollary 1.8 (Removable Singularities) Let n = 3. There is an absolute constant
€o with the following property. Suppose that u is a weak solution of (N-S) on (0,T). If
(0, t0) is an isolated singular point of u satisfying

(1.8) limsup |z — zol|lu(z,t)| < eo,

x—xo,t—to

then (zo,t0) is a regular point.
In particular, if u behaves at (zo, to) like

(1.9) u(z,t) = o(|z — xo|™!) asz — z

uniformly with respect to t in some neighbourhood of to, then (xo,t0) is a regular point.
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Remark 1.9 (i) Serrin [16] and Takahashi [18] showed that every weak solution u of
(N-S) satisfying

b
/ ( / lu(z, £)[ dz)Edt < 00 on a cylinder D x (a,b) C Q x (0,T),
a D

for 2/s +3/r < 1 with r > 3 is of class C* in the space variables. Our theorem deals
with the marginal case when s = oo and r = 3. Furthermore, our weak space L3,(D) is
larger than the usual L3(D). Under the condition (1.7), we obtain interior regularity of u
not only in the space but also in the space-time variables, while Serrin [16] imposed the
additional assumption that

du € L%(a,b; L2(D)) for some s > 1.

(ii) Caffarelli-Kohn-Nirenberg [2] gave an absolute constant ¢; with the following prop-
erty. Let u be a weak solution of (N-S) on (0,7") with the generalized energy inequality
(1.6). Suppose that u and its the associated pressure p satisfy

5/4
to
2 / / (luf® + Jullp|)dzdt + R7%/4 / / lpldz | dt
Qr(zo,to) to—R? \J|z—z0|<R

(1.10) < €1,

where Qg(zo,t0) = {(z,t); |z — 20| < R,to — R2 < t < tp} denotes the parabolic cylinder.
Then w is regular in Qg/o(o,t0). In Theorem 1.7, we do not need any energy inequality
and show that the condition on the pressure p is redundant. Moreover, the advantage of
our theorem enables us to handle the singularity (zo,to) of u such as

u(z,t) = o(|x — xo|™?) asz— 1z

uniformly with respect to t in some neighbourhood of ¢y, the case of which is excluded in
their paper because for such (zo,tp) we have in (1.10)

// [u(z, t)|>dzdt = oo
Qr(zo,to)

2 Local existence and uniqueness of strong solutions

In this section, we investigate the solution with (1.1). To this end, we define the strong
solutions.

Definition 2.1 Let a € L. A measurable function u defined on R™ x (0,T) is called a
strong solution of (N-S) on (0,T) if

(i)

(2.1) we C((0,T);LY), ==, Au € C((0,T); L);

0
ot
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(ii) u satisfies

du . — : n .
(2.2) St tAu+P(u-Vu)=0, inLgfor0<t<T,
u(0) = a.

In the above definition, P denotes the Helmholtz-Weyl projection from L" onto L for
1 < 7 < oo. More precisely, P = {Pji};k=1,..n can be represented as Pjp = d;x + R; Ry,

where J;; is the Kronecker symbol and R; = F‘l(‘/—?g‘F), j=1,-

transforms(F'; Fourier transform). A = —PA is the Stokes operator.

-,n are the Riesz

Remark 2.2 It is easy to see that every strong solution u of (N-S) on (0, T) is regular as
in (1.2).

Concerning the existence and uniqueness of the strong solution, we have

Theorem 2.3 (Kato [9], Giga-Miyakawa [6], Brezis [1]) For n < r < oo, there is a
constant v = y(n,r) > 0 with the following property. If the initial data a € L and T\ > 0
satisfy

(2.3) s 3G e~ a|, < v

then there eists a unique strong solution u(t) of (N-S) on [0,T.). Moreover, such a
solution u has the property t3(=x~%)u(-) € C([0,T3); L") with

(2.4) lim ¢8G=) [lu(t)|l, = 0.

If, in addition, a € L? N L2 satisfies (2.3), then u is also a weak solution of (N-S) on
(0,T).

Under the condition (2.3) we can construct a strong solution u on the interval (0, 7% ) by the
successive approximation. To verify (2.3), we make use of the following L? — L™-estimates
for the Stokes semigroup {e7*4}:>0;

(2.5) { letAall, < Ct=30/P=Un|g|l,, 1< p<r < oo,

[Ve-t4all, < O+ 30/ 1M=12a]l,, 1<p<r < oo
hold for all @ € LY and all ¢t > 0, where C = C(n,p,r). Hence, if a € L? N L™ for some
n < 7 < 00, then (2.3) can be achieved in such a way that

2r

0 r—n
2.6 Ty ==
(29 = (crer)
with the same constant C asin (2.5). If a € L%, by the density argument, for every £ > 0,
we can take a € C§S, so that |la — é@||, < e. Hence by (2.5) with p = n, we have

t%‘%-ﬂue-“anr < 136D (@ - @)l + 3 e al,
(2.7) < Clla=dlla + Ct3&=0)|a|,
< Ce+ 2Dy,
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which yields lim sup t%(%'%)lle_ma”r < Ce. Since ¢ is arbitrary, we obtain
t—+0

(2.8) Jim t3G=D|le4al, = 0

which ensures existence of T, in (2.3) for a € L?. However, this convergence is not uniform
for a in any fixed bounded subset of L?. So, it is not clear whether the interval T, for
existence of strong solution with the initial data a € L can be characterized in terms of
the L™-norm of a such as (2.6). To overcome this difficulty, Brezis [1] considered a class
of precompact subsets in L.

Proposition 2.4 (Brezis) Let n < r < oo. For every precompact set K in L7 there
ezists a monotone non-decreasing and uniformly bounded function 6.(t; K) of t > 0 with
thlitlo 5-(t; K) = 0 such that ' '

(2.9) t3G=D|le*all, < 6,(t; K)

holds for all a € K and all t > 0. In particular, we can take T, = T.(K) so that (2.3)
holds for alla € K.

Proof. 4,(t; K) can be given by the following definition

0-(t; K) = sup < sup T%(%-%)He"”‘allr) .
ae K \0<T<t

Indeed, since K is precompact in L7, it is bounded. Hence there is a constant L > 0

such that ||all, < L for all @ € K. By (2.5) we see that the right hand side of the above

definition is finite and that d,(t; K) is well-defined with

5,(t; K) < CL, ¥t > 0.

This implies uniform boudedness. Obviously by definition, d,(t; K) is a monotone non-
decreasing function of ¢ > 0. Now, it suffices to show that

lim &,(t; K) = 0.
t—+0

Let U.(a) = {b € L?;||b — a|ln < €}. For any € > 0, there holds K C Uuek Ue(a). Since
K is compact, we can select finitely many points a;(€), a2(€), -+, am(e) € K such that
K C Ujz1 Ue(aj(e)). Since Cg5 is dense in L", we may assume that a;j(e) € Cg5, for all
1 < j < m. Define M, = Max{||lai(¢)lr,-- -, llam(€)ll+}. For any a € K there is some
1 < jo < m such that a € U.(ajo(€)). For such jo we have in the same way as in (2.7)
with the aid of (2.5)

nel 1 — nel 1 —
2D le |y Clla = ajo(e)lln + 727 e aj0(e)Ir
n 1 .
Ce+Cr2 .'1;—7)“0:]'0(5)”7'

< Ce+CM.A53G—)

IA A
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for all 0 < 7 < t. Taking the supremum of the above estimate for 7 € (0,¢] and a € K, we
obtain L

6-(t; K) < Ce + CM 427,

Letting ¢ — +0 in both sides of the above, we have limsup d,(¢; K) < Ce. Since € > 0 is
t—+0
arbitrary, this implies that

Jlim 6,(t K) = 0.
O

Proposition 2.4 has two applications. One is refinement of the classical theorem on unique-
ness of strong solutions, and another is simplification of the proof of regularity criterion on
weak solutions in C([0,7"); L™). Although both of them are relatively well known for the
experts of the Navier-Stokes equations, we give here a sketch of proofs. In particular, we
should notice that our investigation is closely related to the question on regularity given
by Remark 1.4 (iii).

First, we consider uniqueness of strong solutions in Theorem 2.3. In the classical result
of Fujita-Kato [4] and Kato [9], they imposed the restriction (2.4) on the behaviour necar
t = 0 of ||u(t)||r for n < r < co. Later on, Brezis [1] showed that (2.4) is redundant by
proving that every strong solution u of (N-S) necessarily fulfills (2.4).

By Duhamel’s principle, (2.2) can be reduced to the following integral equation.

t
(2.10) u(t) = e~ t4a — / e NAP(u . Vu)(r)dr, 0<t<T.
0

The classical result on existence uniqueness reads as follows.

Theorem 2.5 (Fujita-Kato [4], Kato [9]) Let a € L" and let n < r < co.

(i) If a and T, satisfy (2.3), then we can construct a solution u(t) of (2.10) on [0,T)
in the class C([0,T.); L2) N C((0,Ty); L") with the property (2.4).

(ii) Suppose that u is a solution of (2.10) in C([0,T); L2)NC((0,T); L"). If u satisfies
(2.4), then u is the only solution of (2.10) .

To show that (2.4) is redundant for uniqueness, we need

Proposition 2.6 Let K be a precompact set in LT and let n < r < 0o. Suppose that
0-(t; K) is the same function of t > 0 as in Proposition 2.4. Then there exists T, > 0
such that for every a € K we can construct a solution u(t) of (2.10) on [0,T.) in the class
C([0,T.); L) N C((0,T%); L™). Moreover, such a solution satisfies

(2.11) 2G| |u(t)|lr < 20, (;K) for all0 < t < Ts.
In particular, u fulfills (2.4).

Remark 2.7 This proposition asserts that the time-interval T, of existence of solutions
to (2.10) can be taken uniformly on each precompact subset K of the initial data in L?.
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Proof of Proposition 2.6. Since lim;_,4+06,(t; K) = 0, we can choose T, > 0 so that
0,(Ts; K) < v, where v is the same constant as in (2.3). Since 6,(¢; K) is a monotone
non-decreasing of ¢, we have by (2.9) that

sup t%(%_%)ﬂe_m

0<t<T.

allr <vy foralla€ K.

Then it follows from Theorem 2.5 (i) that for every a € K there is a solution u(t) of (2.10)
on [0,7) in the class C([0,T.); L?) N C((0, T.); L") with the property (2.4). Let us define
M(t) by
M(t) = sup T%(%_%)HU(T)”T.
0<r<t

By (2.4), we see that M € C([0,7%)). Then by (2.5) and (2.10) there holds

t
@l < e “all + /O 1PV - e~ DAy @ w)(r) | dr

t
< lealy +C [ (6= Hju(r)ar
0
t
< ||e"tAa||r+CM(t)2/ (t—r) % 3rFldr
0
< e tAal, + CAM@HA3GD,  0<t< T,

where 8 = B(1/2 — n/2r,n/r), C = C(n,r). Applying Proposition 2.4 to the above
estimate, we have

1

B u@)ll < 6 (6K) + CBM(H?, 0<t<T..

Since both 8,(t; K) and M(t) are non-decreasing functions of ¢ > 0, this implies

(2.12) M(t) < 6,(t; K) + CBM(t)?, 0<t<T,.
Since tlirJrrlo dr(t; K) = 0, we may assume T} satisfies also
5, (Toi K) < ——
TR 4cp°

Hence by (2.12), there holds

1— /1= 4CB6, (5 K)

(2.13) M) < - (< 26,(t K)
1+ /1= 4CB5,( K) 1
(2.14) M(t) > - (z 205)

for all 0 < t < T,. Since M(t) is continuous on [0, T,) with limy_, 1o M(t) = 0 (see (2.4)),
the latter case (2.14) cannot occur. Hence we obtain from (2.13)

M(t) <26, (t; K), 0<Vt<T,
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This proves Proposition 2.6.

Because of Theorem 2.5 (ii), to prove assertion on uniqueness in Theorem 2.3, we may
show the following lemma.

Lemma 2.8 (Brezis [1]) Let a € L? and let n < 1 < oo. Every solution u of (2.10) in
the class C([0,T); L?) N C((0,T); L") fulfills (2.4).

Proof. We first define K as
K = {u(t);0 < t < T/2}.

Since u € C([0,T); L?), K is a precompact subset of L. For this K, we take the function
6:(t; K) given by Proposition 2.4. Furthermore, by Proposition 2.6 we can take T, > 0
and a solution @(t) of (2.10) on (0,7,) for every initial data @ € K. Let us denote this

u(t) by
a(t) = S(t)a, 0<t<T,

By (2.11), there holds

(2.15) t3G-D|S®)alr < 26-(; K), 0<t<T.

for all @ € K. Let us take s arbitrarily as 0 < s < Min.{T/2,7.}. Then we have
u(s) € K. Since u € C((0,T); L"), we see tlirilot%('vli"%nlu(t + 8)||» = 0. Hence it follows
from Theorem 2.5 (ii) and definition of the map S(t) that

u(t +s) = S(t)u(s), 0<t<T..

From (2.15) we obtain

nel 1

3Dt + 8)||y = t3ED|SE)u(s)]l- < 26,4 K), 0<t<T.

Since u € C((0,T); L"), by letting s — 0 in the above estimate we have

1.1

3G |lu@)|lr < 26-(; K), 0<Vi<T..
Since lim;_, ;¢ ,(¢; K) = 0, this yields
i E(%_%) =
Jim (HG=Du(®); = 0.

O
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We shall next apply Proposition 2.4 to the proof of regularity of weak solutions in C ([0,T); L™).

Theorem 2.9 (Giga [5], von Wahl [20] ) Let a € LZ. Every weak solution u of (N-5)
in C([0,T); L™) is regular as in (1.2).



Proof. Let us define the set K by
K ={u(t);0 <t < T}

Since u € C([0,T); L") with div u = 0, K is a precompact subset of Lg. We take some
n < r < co. Then it follows from Proposition 2.4 that there exists T = Ti(K,r) such
that L '
(2.16) sup tz(z= 7| Ha|, <6 (Tw; K) <7,
- o<t<T,
for all a € K where ~ is the same constant as in (2.3). Let p = T,/2. For every t, € (0,T)
we have by (2.16) that
nel 1
sup tz(mP|le Mu(te — p)llr < -
o<t<T, '
By Theorem 2.3 and Remark 2.2, there exists a strong solution v of (N-S) with v|¢=¢,—p =
u(t. — p) such that

Jv oMt tany

2.1 Cllty — pote +p); L7, —, a0

€ C(R" x (ts — p,t« + p))

where @ = (a1, -+, ay) is an arbitrary multi-index with la| = aj + -+ + an < 2. Notice
that v is also a weak solution. Then uniqueness result of Theorem 1.3 (i) yields

u(t) = v(t) fort € [ty — pyts + p)-

Since t, € (0,T) can be taken arbitrarily, we can conclude that u is regular as in (1.2).
O

To deal with the problem on regularity of weak solutions in L>(0,T; L"), the above proof
proposes us the following question.
Question. For every weak solution w in L*(0,7; L") is the set

K={u(t);0<t<T}

e 41 n
precompact in L} 7
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