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Abstract

We prove that the BMO norm of the vorticity controls the blow-up phenomena of
smooth solutions to the Euler equations in the whole space R™.

Introduction.

In this paper we prove that the BMO norm of the vorticity controls the blow-up phe-
nomena of smooth solutions to the Euler equations.

the Euler equations in R™ (n > 3) are as follows:

Ou . . n
() { a+u-Vu+Vp—0, divu=0 inze R",t>0,

Uli=0 = a
where u = (u'(z,),4%(z,1), - -,u(z,t)) and p = p(z,t) denote the unknown velocity vector
and the unknown pressure of the fluid at the point (z,t) € R™ x (0,00), respectively, while
a = (a(z),a?(z),---,a™(z)) is the given initial velocity vector.

It is proved by Kato-Lai [3] and Kato-Ponce [4] that for every a € W2P for s > n/p + 1,
1 < p < oo, there are T > 0 and a unique solution u of (E) on the interval [0, T) in the class

(CE).p u € C(0,T); Wy ®) N CH(0,T); Ws %),

where subindex o means the divergence free. It is an interesting question whether the solution
u(t) really blows up as t 1 T. '
Beale-Kato-Majda [1] proved that under the condition

T
/ |lrot w(t)||peedt < oo
0
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u(t) can never break down its regularity at t = T. (See also [4].) To prove this assertion, in
(1] they made use of the logarithmic inequality such as

(0.1)  [Vullze < C (1 + [lrot ul|ze(1 +log™ ||ullwesrs) + [Irot ul|z2), sp>n

for all vector functions u with div u = 0, where logta =logaifa>1,=0if0<a < 1.
The purpose of this paper is to extend these results to BMO which is larger than L.
(It is possible to extend these to more general classes, see [7].)

In a forthcoming paper, we will discuss the blow-up of smooth solutions to the Euler
equations in a bounded domain.

1 Result.

Before stating our result, we introduce some function spaces. Let C&", denote the set of all
C® vector functions ¢ = (¢!,¢?,---,¢™) with compact support in R™, such that div ¢=0.
L7 is the closure of C§5, with respect to the L™-norm || - ||; (,-) denotes the duality pairing
between L and L™, where 1/r + 1 /r' = 1. L" stands for the usual (vector-valued) L"-space
over R", 1 < r < co. W2P denotes the closure of Coe with respect to the W*P-norm.

Our result on (E) reads as follows.

Theorem 1 Let1<p < oo, s > n/p+ 1. Suppose that u is the solution of (E) in the class
(CE),, on (0,T). If either

T
(1.1) /0 llrot u(t)|| parodt(= Mo) < oo
or

T
(1.2) /0 IDef u(t)|| prodt(= My) < oo

holds, then u can be continued to the solution in the class ( CE),, on (0,T") for some T’ > T.
Here Def u denotes the deformation tensor of u, i.e., (Def u)ij = B! +0jut, (1 < j, k < n).
Corollary 1 Let u be the solution of (E) in the class ( CE),, on (0,T) for 1 < p < oo,

s > n/p+1. Assume that T is mazimal, i.e., u cannot be continued to the solution in the
class (CE), ,, on (0,T") for any T' > T. Then both

T T
/ lrot u(t)|lppmodt = 0 and / | Def u(t)|| ppmodt = oo
0 0



2 Preliminaries.

In what follows we shall denote by C various constants. In particular, C = C(x,---,*)
denotes constants depending only on the quantities appearing in the parenthesis.

We first recall the Biot-Savart law. By the Biot-Savart law, for solenoidal vectors u, we
have the representation

(2.1) v = Rj(Rxw), j=1,---,n, wherew =rot u;
Oz;
8’11,1 n . Buk au'
(2.2) 52, Rj(kz=:1 Ri(Def w)p), j,l=1,---,n, where (Def u)x = oo T Far
0 -1 . . .
Here R = (Ry,---,Ry), and R; = %(—A) 2 denote the Riesz transforms. Since R is a

j
bounded operator in BMO, we have by (2.1), (2.2) that

(2.3) IVullpmMo < C|lrot ul|lamo;
(2.4) \Vullsmo < C||Def u|pmo-

Now we prove the following lemma which is an extension of (0.1).

Lemma 2.1 Let 1 < p < co and let s > n/p. There is a constant C = C(n,p, s) such that
the estimate

(2.5) I flleo < C (1 +|IfllBMo(1 +1og™ || fllwes))
holds for all f € W*P.

Remark. Compared with (0.1), we do not need to add || f||z2 to the right hand side of
(2.5). This makes it easier to derive an apriori estimate of solutions to the Euler equations
than Beale-Kato-Majda [1].

Proof of Lemma 2.1.

We shall make use of the Littlewood-Paley decomposition; there exists a non-negative
function ¢ € S (S; the Schwartz class) such that suppy C {271 < |¢| < 2} and such that

Z ©(27%¢) =1 for £ # 0. See Bergh-Lofstrom [2, Lemma 6.1.7]. Let us define ¢o and ¢,

k=-o00
as
)

-1
$o(6) =D_p(2*¢) and 41(6)= Y (2%),
k=1 ) k=—c0
respectively. Then we have that ¢o(§) = 1 for |{| < 1/2, ¢o(§) = O for |£] > 1 and that

$1(€) =0 for [€| < 1, ¢1(£) =1 for |£] > 2. It is easy to see that for every positive integer N
there holds the identity

N
(2.6) 02V + D w27+ 4127 V) =1, €£+#0.

k=-N
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Since Cg° is dense in W*? and since W*? is continuously embedded in BM O, implied by
s > n/p, it suffices to prove (2.5) for f € C§°. For such f we have the representation

f(z) = /yeRnK(m—y)-Vf(y)dy with K(y) = — 2

NWy W’

for all z € R™, where w, denotes the volume of the unit ball in R™. By (2.6) we decompose
f into three parts:

f@) = /yeR,.Ku—y)x

N
x (¢o(‘2”(m —))+ ). e FE-y)+ a2 V(- y))) -V £(y)dy

k=—N
(2.7) = fo(z) + g(z) + f1(=)
for all z € R™. -
We can show that
(2.8) |fo(2)| < C27PN| fllwee

for all z € R", where 8 = f(n,p, s) is a positive constant. For detail, see [6].
By integration by parts we have

N
gz} = 3 (div®)*f(z), z€R",
k=-N
where ¥ (z) = K(z)p(z) and y(z) = t™"¢(z/t) for t > 0. Since ¥ € S with the property
that

/ _div ¥(z)dz = 0,
R

it follows from Stein [9, Chap. IV, 4.3.3] that

N
lgllo < D II(div &), * flloo
k=—-N
N

< kEN sup l(div &); * £llco

(2.9) | < CNI|flismo,

where C = C(n) is independent of N.
Integrating by parts, we have by a direct calculation

1@ = |[_gedivy (Kl - 0607 ) S
(2.10) < 027VF (1,

for all x € R"™, where C = C(n,p) is independent of N.
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Now it follows from (2.7) and (2.8)-(2.10) that

(2.11) Iflleo < C@ ™ Ifllwer + Nl fllBr0)

with v = Min.{3,n/p}, where C = C(n,s,p) is independent of N and f. If || fllwee <1,
then we may take N = 1; otherwise, we take N so large that the first term of the right hand

1 .,
side of (2.11) is dominated by 1, i.e., N = [i’ylll{)!—v;i] + 1 ([-]; Gauss symbol) and (2.11)

<C + - — 4 .
"f”oo S {1 ”f”BMO ( Tog 2 1

becomes

In both cases, (2.5) holds. This proves Lemma 2.1.

3 Proof of Theorem 5.

We follow the argument of Beale-Kato-Majda [1]. It is proved by Kato-Lai [3] and Kato-
Ponce [4] that for the given initial data a € WP for s > 1+ n/p, the time interval T' of
the existence of the solution u to (E) in the class (CE), , depends only on lla|lws». Hence
by the standard argument of continuation of local solutions, it suffices to establish an apriori
estimate for u in W*? in terms of a,T, My or a,T, M; according to (1.1) or (1.2). Indeed,
we shall show that the solution u(t) in the class (CE), , on (0,T) is subject to the following
estimate:

(3.12) oiltlET lu@)|lwer < (lallwsr + €)% exp(CTa;) with o = M j=0,1,

where C = C(n,p, s) is a constant independent of a and T'.
We shall first prove (3.12) under (1.1). It follows from the commutator estimate in L?
given by Kato-Ponce [4, Proposition 4.2] that

14
(3.13) lu@llwee < llallwer exp (C f ”vu(T)”oodT) , 0<t<T,
0

where C = C(n,p, s).
By the Biot-Savard law (2.1), we have

(3.14) IVullsmo < Cllrot uliBmo

with C = C(n). Hence it follows from (3.14) and Lemma 2.1 that

(3.15) IVa®)lleo < € (1 + llrot u(®)llzaro(1 +1og™ [[u(®)llwes))
for all 0 < t < T with C = C(n,p, s). Substituting (3.15) to (3.13), we have

[u@)llwer +e

< (|la|]lwe> + €) exp (C ‘/:{1 + ||rot u(7)|| Bao log(llu(7)||ws» + e)}d*r)



for all 0 < t < T'. Defining z(t) = log(||u(t)||ws» + €) , we obtain from the above estimate
t
2(t) < 2(0)+ CT +C / llrot w(r)l|smoz(r)dr, 0<t<T.
0

Now (1.1) and the Gronwall inequality yield

) < (O+0T)exp(C [ frot u(r)lawodr)
< (2(0)+CT) o

for all 0 < t < T with C = C(n,p, s), which implies (3.12) for j = 0.
Similarly we prove (3.12) for j = 1 under (1.2). This proves Theorem 5.
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