A polynomial time approximation scheme
for the minimum maximal matching problem in planar graphs

Hiroshi Nagamochi †, Yukihiro Nishida †, Toshihide Ibaraki †

† Department of Information and Computer Sciences
Toyohashi University of Technology
Toyohashi 441-8580, Japan
naga@ics.tut.ac.jp

‡ Department of Applied Mathematics and Physics
Graduate School of Informatics
Kyoto University
Kyoto 606-8501, Japan
{nishida,ibaraki}@amp.i.kyoto-u.ac.jp

Abstract: Given an undirected graph \(G \), the minimum maximal matching problem asks for a
minimum matching in \(G \) where no two adjacent edges have both endpoints in the
same connected component of \(G \). The problem is known to be \(\mathbf{NP} \)-hard even if the graph is planar. We consider the problem for planar graphs, and show that
a polynomial time approximation scheme (PTAS) can be obtained by a divide-and-conquer
method based on the planar separator theorem. For a given \(\epsilon > 0 \), our scheme delivers in
\(O(n \log n + \alpha(\alpha^2+\epsilon)n) \) time a solution with size at most \((1+\epsilon)\) times
the optimal value, where \(n \) is the number of vertices in \(G \) and \(\alpha \) is a constant number.

Keywords: graph algorithm, approximation algorithm, matching, planar graph, separator.

1 Introduction

Given an undirected graph \(G = (V,E) \), a matching is a subset \(M \) of \(E \) containing no two adjacent edges. A matching \(M \) is said to be maximal if there is
no matching \(M' \) which strictly contains \(M \). The minimum maximal matching problem asks for a maximal matching containing the minimum number of edges. The problem is one of the \(\mathbf{NP} \)-hard problems included in the list of \(\mathbf{NP} \)-complete problems [3, p.192], and the problem remains \(\mathbf{NP} \)-hard for planar graphs and for bipartite graphs, in both cases even if no vertex degree exceeds 3 [10]. As to approximability, the problem is shown to be \(\mathbf{APX} \)-hard for general graphs [1, p.374]. In this paper, we consider the complexity status of the minimum maximal matching problem for planar graphs.

An algorithm is called an \(\alpha \)-approximation algorithm to a minimization problem if it outputs a solution whose weight is at most \(\alpha \) times the weight of an optimal solution. A polynomial time approx-
general method for providing PTASs for a variety of the optimization problems on planar graphs, which includes the minimum vertex cover problem and the maximum independent set problem. The paper also pointed out some NP-hard problems to which her method cannot be applied in a straightforward way. For example, it says that the minimum maximal matching problem is one of such problems because the restriction of an optimal solution M in G on a vertex subset X (i.e., the set of edges in M whose endvertices belong to X) may not be a maximal matching in the graph induced by X. (We remark that the similar difficulty necessarily arises for the minimum edge dominating set problem, which is claimed to admit a PTAS in [2].)

In this paper we use the divide-and-conquer approach to solve the minimum maximal matching problem for planar graphs. However, a naive application of this approach does not yield a PTAS to the problem. One of the reasons is that the size of a minimum maximal matching can be arbitrarily small, compared with the size $|V|$ of a graph $G = (V, E)$. For this, we reduce an arbitrary planar graph $G = (V, E)$ to a particular planar graph, called an irreducible planar graph, so that the size of a minimum maximal matching is $O(|V|)$ (this property is important to obtain a PTAS by the divide-and-conquer approach). Another difficulty of the problem is that the restriction of an optimal solution M in G on a vertex subset X may not be feasible. We overcome this by a careful analysis of the performance of our divide-and-conquer method. As a result, for a given $\epsilon > 0$, our scheme delivers a $(1+\epsilon)$-approximate solution in $O(n \log n + n^{3/2} \epsilon^{-1} n)$ time, where n is the number of vertices in a given planar graph and α is a constant number.

2 Preliminaries

Let $G = (V, E)$ stand for a simple undirected graph with a vertex set V and an edge set E. The vertex set (resp., edge set) of a graph G may be denoted by $V(G)$ (resp., $E(G)$). For a subset $X \subseteq V(G)$, $G - X$ denotes the graph obtained from G by removing the vertices in X together with edges incident to them. Let $V[e]$ be the set of endpoints of an edge e. Let $d_G(v)$ denote the degree of a vertex $v \in V$. Let $\delta(G) = \min_{v \in V} d_G(v)$. A vertex v with $d_G(v) = 1$ is called a leaf vertex. An edge incident to a leaf vertex is called a leaf edge. An non-leaf edge one of whose endpoints is incident to only leaf edges is called a fringe edge. A maximum matching is a matching of the maximum size. Let $\mu(G)$ denote the size of a maximum matching of G and $\rho(G)$ denote the size of a minimum maximal matching.

We introduce lower bounds on the size of a minimum maximal matching in a graph G. It is easy to see that the size of any maximal matching is at least half of the size of a maximum matching. That is,

$$\rho(G) \geq \frac{1}{2} \mu(G).$$

(1)

Thus we can use any lower bound on the size of a maximum matching as that on the size of a minimum maximal matching within a constant factor. We always assume that a given planar graph is equipped with a fixed plane embedding. Namely G is a plane graph. The following fact about planarity is known.

Theorem 2.1 [4] Every planar graph with $n \geq 3$ vertices contains no more than $3n - 6$ edges.

A following lower bound on $\mu(G)$ for planar graphs is known.

Theorem 2.2 [7] If $G = (V, E)$ is a connected planar graph with $\delta(G) \geq 3$ and $n = |V|$, then $\mu(G) \geq \min \{ \lfloor \frac{n}{2} \rfloor, \lceil \frac{n+2}{3} \rceil \}$.

Our algorithm uses the following partition of a vertex set of a planar graph.

Theorem 2.3 [5] Let G be a planar graph with n vertices. Then the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than $\frac{3}{4}n$ vertices, and C contains no more than $2(2n)^{1/2}$ vertices. Such a partition can be found in linear time.

A vertex set C in the theorem is called a planar separator. In the following sections, we prove the next theorem.

Theorem 2.4 Given a connected planar graph $G = (V, E)$ and $\epsilon > 0$, the minimum maximal matching problem is $(1 + \epsilon)$-approximable in $O(n \log n + \alpha^{1/2} \epsilon^{-1}n)$ time, where $n = |V|$ and α is a constant number.

A subset D of edges in $G = (V, E)$ is called an edge dominating set if every edge in $E - D$ is adjacent to an edge in D. The edge dominating set problem asks to find an edge dominating set of the minimum size. As pointed out in [10], the size of a minimum maximal matching of a graph G is equal
to that of a minimum edge dominating set in G and, from any maximal matching M, an edge dominating set D with $|D| = |M|$ can be constructed in linear time. Then the above theorem implies the next result.

Corollary 1 The edge dominating set problem in a planar graph G admits a PTAS with the same performance in Theorem 2.4. □

3 Algorithm

3.1 Preprocess

For an arbitrary planar graph G, $\rho(G)$ cannot be bounded from below by $c|V(G)|$ for any constant c. In this subsection, we present how to process a given graph to obtain a graph G' with $\rho(G') = \Omega(|V(G')|)$ without losing the optimality of the problem.

Definition 1 A graph G (not necessarily planar) is called irreducible if

(i) G is simple and connected,

(ii) G has no fringe edges,

(iii) each vertex $v \in V(G)$ has at most one leaf vertex adjacent to it,

(iv) any two vertices $u, v \in V(G)$ have at most two common neighbors of degree 2. □

The following procedure converts a given graph G into an irreducible one without changing the optimality of the minimum maximal matching problem.

Algorithm REDUCE

Input: A connected graph G.

Output: An irreducible graph G' and a matching M' of G such that $\rho(G) = \rho(G') + |M'|$.

Let $M' := \emptyset$.

while there is a fringe edge e do

Choose a fringe edge e and let $M' := M' \cup \{e\}$, discarding all edges adjacent to e.

end while

while there is a vertex u to which at least two leaf vertices are adjacent do

Choose such a vertex u.

Choose one leaf vertex adjacent to u and discard the rest of all leaf vertices adjacent to u.

end while

while there is a pair of vertices u and v which have at least three common neighbors of degree 2 do

Choose such a pair of vertices u and v.

Choose two vertices of degree 2 adjacent to u and v and discard the rest of all vertices of degree 2 adjacent to u and v.

end while

Let G' be the resulting graph. □

Then we have the following result (the proof is omitted). We denote by $E^{opt}(G)$ a minimum maximal matching in G.

Lemma 1 For a given graph $G = (V, E)$, let G' and M' be the graph and the matching obtained from G by Algorithm REDUCE. Then for any $E^{opt}(G')$, $E^{opt}(G') \cup M'$ is a minimum maximal matching in G, and G' is irreducible. REDUCE can be implemented to run in $O(n+m)$ time, where $n = |V|$ and $m = |E|$. □

For a planar graph G with n vertices, Algorithm REDUCE runs in $O(n)$ time by Theorem 2.1. In what follows, we consider how to find an approximation solution to an irreducible planar graph G. If $|V(G)| \leq 36$, then we find a minimum maximal matching $E^{opt}(G)$ by checking every subset of E. Otherwise (i.e., $|V(G)| \geq 37$), we use the property that $\mu(G) = \Omega(n)$ in an irreducible planar graph G.

Lemma 2 Let $G = (V, E)$ be an irreducible planar graph with $n = |V| \geq 37$. Then, $\mu(G) \geq \frac{1}{42}n + \frac{13}{21}$.

Proof: See Appendix. □

3.2 Approximation algorithm

For a graph G with a sufficiently small number of vertices, we find a minimum maximal matching by using the next lemma.

Lemma 3 For a graph G with n vertices and m edges, a minimum maximal matching can be found in $O(2^n \sqrt{nm})$ time.

Proof: Omitted. □

Now we are ready to describe our approximation algorithm.

Algorithm DIVIDE

Input: An irreducible planar graph G and a real number $\epsilon > 0$. □
Output: A maximal matching \(E^{\text{opt}}(G) \) of \(G \) such that \(|E^{\text{opt}}(G)| \leq (1 + \epsilon)\rho(G) \).

1. Let \(L := \frac{(1943/\epsilon)^2}{2} \), and \(C^* := \emptyset \).

2. while \(G - C^* \) has a connected component with more than \(L \) vertices do
 Choose such a connected component \(G' \),
 Find a planar separator \(C \subseteq V(G') \) by applying Theorem 2.3 to \(G' \),
 \(C^* := C^* \cup C \).
end while

3. For each of connected components \(G_i = (V_i, E_i) \)
 \(i = 1,2, \ldots, p \) of \(G - C^* \) (where \(|V_i| \leq L \) for all \(i \)),
 find a maximum cardinal matching \(E^{\text{opt}}(G_i) \) by using Lemma 3.

4. Extend a matching \(\bigcup_{1 \leq i \leq p} E^{\text{opt}}(G_i) \) to a maximal one in \(G \) by adding a set \(M^* \) of independent edges.
 Let \(E^{\text{apx}}(G) = \bigcup_{1 \leq i \leq p} E^{\text{opt}}(G_i) \cup M^* \).

Notice that each edge in \(M^* \) must be incident to a vertex in the final \(C^* \) by the maximality of each \(E^{\text{opt}}(G_i) \). Thus \(|M^*| \leq |C^*| \).

3.3 Analysis

We first analyze the approximation ratio of algorithm \textsc{Divide}.

Lemma 4 Let \(E^{\text{apx}}(G) \) be a maximal matching obtained from an irreducible planar graph \(G \) with \(|V(G)| \geq 37 \) by Algorithm \textsc{Divide}. Then \(|E^{\text{apx}}(G)| \leq (1 + \epsilon)\rho(G) \) holds.

Proof: Let \(n = |V(G)| \). By the inequality (1) and Lemma 2, it holds

\[
|E^{\text{opt}}(G)| = \rho(G) \geq \frac{1}{2} \mu(G) \geq \frac{1}{84} n. \tag{2}
\]

By \(|M^*| \leq |C^*| \),

\[
|E^{\text{apx}}(G)| = \sum_i |E^{\text{opt}}(G_i)| + |M^*| \leq \sum_i |E^{\text{opt}}(G_i)| + |C^*|. \tag{3}
\]

We now compare \(\sum_i |E^{\text{opt}}(G_i)| \) with \(|E^{\text{opt}}(G)| \). It should be noted that \(E^{\text{opt}}(G) \cap E_i \) is not necessarily a maximal matching in \(G_i \) in Step 3, and we may need to add some edges from \(E(G_i) \) to \(E^{\text{opt}}(G) \cap E_i \) in order to make it maximal in \(G_i \). Then, each of these edges joins two vertices \(u \) and \(v \) that are adjacent to vertices in \(C^* \) via some edges \(e_u, e_v \in E^{\text{opt}}(G) \). Thus the number of such edges \(e_u, e_v \in E^{\text{opt}}(G) \) is at most \(|C^*| \). Hence the number of edges to be added to \(E^{\text{opt}}(G) \cap E_i \) over all \(G_i \) is at most \(\frac{1}{2} |C^*| \). Therefore we have

\[
\sum_i |E^{\text{opt}}(G_i)| \leq |E^{\text{opt}}(G)| + \frac{1}{2} |C^*|. \tag{4}
\]

By (3) and (4), we get

\[
|E^{\text{apx}}(G)| \leq |E^{\text{opt}}(G)| + \frac{3}{2} |C^*|. \tag{5}
\]

Now, we claim that \(|C^*| \leq \delta n \) holds for a constant number \(\delta \). Consider all the connected components which appeared during an execution of the above procedure. Assign a level to each component as follows: the final components (with at most \(L \) vertices) have level 0; and each of the components has a level one greater than the maximum level of the components produced from it. Obviously any two components of the same level are disjoint.

Since a component of level \(i \) has at least \((\frac{3}{2})^i \) vertices, the maximum level \(\ell \) must satisfy \((\frac{3}{2})^{\ell} \leq n \) or \(\ell \leq \log_3 n \). Since every component of level 1 has at least \(L \) vertices, every components of level \(i \) has at least \((\frac{3}{2})^{i-1} L \) vertices. Therefore the number \(c_i \) of components of level \(i \) is at most \((\frac{3}{2})^{i-1} \) because of \(c_i (\frac{3}{2})^{i-1} L \leq n \).

Now we can bound the size of \(C^* \) as follows. Let \(n_j, 1 \leq j \leq c_i \), be the number of vertices in the \(j \)th component of level \(i \). Then we have

\[
|C^*| \leq \sum_{1 \leq i \leq \ell_1 \leq i \leq \ell} 2(2n_j)^{1/2} \leq 2(2)^{1/2} \sum_{1 \leq i \leq \ell} (c_i \sum_{1 \leq j \leq \ell} n_j)^{1/2} \leq 2(2)^{1/2} \sum_{1 \leq i \leq \ell} c_i^{1/2} n^{1/2} \leq 2\sqrt{6} \frac{1 - (\sqrt{\frac{3}{2}})^{\ell - 1}}{\sqrt{3 - \sqrt{2}}} \cdot \frac{n}{\sqrt{L}} \leq 6\sqrt{2} + 4\sqrt{3} \cdot \frac{\epsilon n}{1943}. \tag{6}
\]

The approximate ratio is evaluated by (2), (5) and (6) as follows.

\[
\frac{|E^{\text{apx}}(G)|}{|E^{\text{opt}}(G)|} \leq 1 + \frac{3}{2} \frac{|C^*|}{|E^{\text{opt}}(G)|} \leq 1 + \frac{n}{84} \cdot \frac{6\sqrt{2} + 4\sqrt{3} \cdot \epsilon n}{1943} \leq 1 + \epsilon. \tag{7}
\]
We finally evaluate the running time of Algorithm DIVIDE for a planar graph $G = (V, E)$, where $n = |V|$ and $m = |E|$. First, we consider the running time by Step 2. A planar separator C is found in linear time by Theorem 2.3 and the number of recurrences during Step 2 is $O(\log n)$ since the separator partitions a graph into two graphs so that the size of these graphs decrease by a constant factor. Therefore it takes $O(n \log n)$ time to decompose a given graph into subgraphs with at most L vertices.

Next, we consider the running time to find optimal solutions for all subgraphs. By applying Lemma 3 to G_i, where $|E(G_i)| = O(|V(G_i)|)$, an $E^{opt}(G_i)$ can be found in $O(2^L L^{3/2})$ time. Thus, the time to compute all $E^{opt}(G_i)$ is $O(2^L L^{3/2} \frac{n}{L}) = O(2^L \sqrt{L}n)$.

Thus Algorithm DIVIDE can be implemented to run in $O(n \log n + 2^L \sqrt{L}n) = O(n \log n + \alpha^2 \epsilon^{-1} n)$ time for $\alpha = 2^{(1943)^2}$.

This completes the proof of Theorem 2.4.

4 Conclusion

In this paper, we proved that the minimum maximal matching problem in planar graphs admits a PTAS. However, the current trade-off of the PTAS between the running time and the approximation ratio is not effective. Thus it is a future work to design a PTAS with a better trade-off.

References

Appendix

Proof of Lemma 2: Let G be a given irreducible planar graph. To prove the lemma via Lemma 2.2, we convert G into graphs G_1, G_2, G_3, G_4 in order to obtain a planar graph with the minimum degree at least 3. We first construct a graph G_1 from G by applying the following procedures 1 and 2.

1. If there is a pair of leaf edges (u, u') and (v, v') which are adjacent to the same edge, say (u', v'), then add three new edges $(u, v), (u, v'), (v, u')$ to the graph (where the resulting graph remains simple and planar, and each of u and v has degree 3). We repeat this until there is no such pair of leaf edges.

2. If there is a leaf edge (u, v) with a leaf vertex u, then add new edges $(u, w), (u, w')$ with two neighbors $w, w'(\neq u)$ of v by choosing w, w' so that the augmented graph remains planar (such a pair w, w' exists since the current graph has no fringe edge and no two leaf edges adjacent to the same edge). The resulting graph remains simple and the degree of u becomes 3. We repeatedly apply this until there is no leaf edge.

Claim 1 G_1 remains irreducible and planar, and satisfies $V(G_1) = V(G), \delta(G_1) \geq 2, \mu(G_1) \leq 2\mu(G)$.

Proof: Omitted.

We next augment G_1 to a graph G_2 by adding a maximal set of new edges such that the resulting graph remains simple and planar and has the same size of a maximum matching of G_1.

Claim 2 G_2 remains irreducible and planar, and satisfies $V(G_2) = V(G_1), \delta(G_2) \geq 2, \mu(G_2) = \mu(G_1)$. In G_2, $

\square$
(i) the two neighbors of a vertex of degree 2 are joined by an edge,
(ii) no two vertices of degree 2 are adjacent,
(iii) each vertex of degree 2 is adjacent to two vertices of degree at least 4, and
(iv) if two vertices of degree 2 are adjacent to the same two vertices \(u \) and \(v \), then both \(u \) and \(v \) have degree at least 5.

Proof: Omitted. \(\Box \)

For a graph \(H \), let \(V_2(H) \) denote the set of vertices of degree 2 in \(H \). Let us call an edge \(e \) covered if there is a vertex of degree 2 adjacent to both endpoints of \(e \), and uncovered otherwise.

The graph \(G_2 - V_2(G_2) \) may have a vertex of degree at most 2. Let \(u \) be such a vertex. By the irreducibility and (i) of Claim 2, the degree of \(u \) in \(G_2 - V_2(G_2) \) is exactly 2. Let \(v, w \) be the neighbors of \(u \) in \(G_2 - V_2(G_2) \). Let \(t_i, 1 \leq i \leq p \) denote the all vertices in \(V_2(G_2) \) that are adjacent to \(u \) in \(G_2 \); \(t_i \neq v, w \) by \(t_i \in V_2(G_2) \). By (i) and (ii) of Claim 2, each \(t_i \) is adjacent to \(v \) or \(w \). By the irreducibility and (iii) and (iv) of Claim 2, we see that \(2 \leq p \leq 4 \), and there exist \(t_1 \) and \(t_2 \) which are adjacent to \(v \) and \(w \), respectively, and we can assume that \(t_3 \) and \(t_4 \) (if any) are adjacent to \(v \) and \(w \), respectively (note that if \(p = 2 \) and both \(t_1 \) and \(t_2 \) are adjacent to \(u \) and \(v \) then \(u \) would be of degree 4, contradicting (iv) of Claim 2). Notice that in \(G_2 \) such a set of vertices \(u, v, w \) and \(t_i, 1 \leq i \leq p \) induces a connected subgraph \(S_u \) in which only vertices \(v \) and \(w \) are adjacent to the rest of the vertices. We then apply the following procedure to each of such induced subgraphs. For the above vertices \(u, v, w \) and \(t_i, 1 \leq i \leq p \), we remove \(t_3 \) and \(t_4 \) (if any), and add two new edges \((v, t_2), (w, t_2) \). Observe that the resulting graph remains irreducible and planar, and the degrees of \(v \) and \(w \) never decrease (hence Claim 2 remains valid). Also it is easy to check that the size of a maximum matching never increases. In particular, each vertex of \(t_1, t_2 \) has degree 3, and each of the eight edges that are incident to \(t_1, t_2 \) or \(u \) is uncovered. We repeat applying this procedure to a subgraph \(S_u \) as long as \(G' - V_2(G') \) has no vertex \(u \) of degree 2 in the current graph \(G' \). Let \(G_3 \) be the resulting graph. We then obtain the next property.

Claim 3 \(G_3 \) remains irreducible and planar, and satisfies \(\mu(G_3) \leq \mu(G_2) \). For \(n^* = |V(G_2)| - |V(G_3)| \), \(G_3 \) has at least \(4n^* \) uncovered edges. \(\Box \)

Thus, the graph \(G_4 = G_3 - V_2(G_3) \) satisfies \(\delta(G_4) \geq 3 \) and \(|V_2(G_3)| \leq 2(|E(G_2)| - 4n^*) \).

We are now ready to prove Lemma 2. Let \(n_i = |V_i| \) for \(i = 1, 2, 3, 4 \). By Theorem 2.1, \(|E(G_4)| \leq 3n_4 - 6 \). From this and \(|V_2(G_3)| \leq 2(|E(G_4)| - 4n^*) \), we have \(|V_2(G_3)| \leq 6n_4 - 12 - 8n^* \). By \(n_4 = n_3 - |V_2(G_3)| \), we have

\[
\begin{align*}
n_4 & \geq n_3 - 6n_4 + 12 + 8n^* \\
& \geq (n_2 - n^*) - 6n_4 + 12 + 8n^*.
\end{align*}
\]

Therefore, we get \(n_4 \geq \frac{n_2 + 12}{7} \). By Theorem 2.2, \(\mu(G_4) \geq \min\{\frac{n_2 + 12}{7}, \frac{n_2}{3} + 2\} = \frac{n_2}{3} + 2 \) (since \(n_4 \geq 7 \) by \(n_2 = n_1 = n \geq 37 \), \(n_4 \geq 7 \)). Then, we obtain

\[
\begin{align*}
\mu(G_1) & \geq \mu(G_2) \geq \mu(G_3) \geq \mu(G_4) \\
& \geq \frac{n_2}{21} + \frac{26}{21} = \frac{n}{21} + \frac{26}{21}.
\end{align*}
\]

Finally, by \(\mu(G) \geq \frac{1}{2} \mu(G_1) \), we obtain

\[
\mu(G) \geq \frac{n}{42} + \frac{13}{21}.
\]