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Abstract

In this paper, we present prediction-preserving reducibility with membership queries on
formal languages, in particular, simple CFGs and finite unions of regular pattern languages.

1 Introduction

The task of predicting the classification of a new example is frequently discussed from the
viewpoints of both passive and active settings. In a passive setting, the examples are all chosen
independently according to a fixed but unknown probability distribution, and the learner has no
control over selection of examples (7, 9]. In an active setting, on the other hand, the learner is
allowed to ask about particular examples, that is, the learner makes membership queries, before
the new example to predict is given to the learner [1, 4].

Pitt and Warmuth [9] have been formalized the model of prediction and a reduction be-
tween two prediction problems that preserves polynomial-time predictability called a prediction-
preserving reduction in a passive setting. Angluin and Kharitonov [4] have extended to the
model and the reduction in an active setting. The reduction is called a prediction-preserving
reduction with membership queries or pwm-reduction for short.

Concerned with language learning, we can design a polynomial-time algorithm to predict
deterministic finite automata (DFAs) in an active setting [1], while predicting DFAs is as hard
as computing certain apparently hard cryptographic predicates in a passive setting [7]. Further-
more, predicting nondeterministic finite automaton (NFAs) and unrestricted context-free gram-
mars (CFGs) is also hard under the same cryptographic assumptions in an active setting [4].
Here, the cryptographic assumptions denote the intractability of inverting RSA encryption, rec-
ognizing quadratic residues and factoring Blum integers.

In this paper, we present the prediction-preserving reducibility with membership queries on
formal languages. First, we deal with the following simple CFGs: linear grammars (Liinear),
right-linear grammars (Lright-linear), and left-linear grammars (Lieft-tinear), k-bounded CFGs 2]
(Lk-bounded-CFG), the sequential CFGs [5] (LsqcFa), the properly sequential CFGs (Lpsqcrc),
and the k-CFGs (Li-crg). Next, we introduce a regular pattern [10] that is a string of variables
and constants of which each variable occurs at most once. A regular pattern language is a
language consisting of strings as instances of a given pattern. Then, we deal with the bounded
finite union of regular pattern languages by some constant m (Lyu,.rp) and the unbounded finite
union of regular pattern languages (Lurp) [11].

By using pwm-reduction, we present the following results: Lynpa pwm Lright-linears LNFA Zpwm
Lieft-lineary LNFA Jpwm Liinear; LNFA Spwm Lk-bounded-cFG for each k > 1, LoNF Dpwm LpsqCFG,
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LDNF <pwm Li-cre for each k£ > 1, LDONF Qpwm LsqCFG> LunRP Jpwm LDFA for each m > 0, and
Lpnr Jpwm Lurp- Hence, we obtain the following predictability with membership queries.

1. Liinears ['right-linea.r, Lieft-linear 80d Lg-bounded-cFg (k > 1) are not polynomial-time pre-
dictable with membership queries under the cryptographic assumptions.

2. If Lsqora, LpsqcFas Lk-crg and Lurp are polynomial-time predictable with membership
queries, then so are DNF formulas.

3. Ly,,rp (m > 0) is polynomial-time predictable with membership queries.

2 Preliminaries

2.1 Simple CFGs and finite unions of regular pattern languages

Let ¥ and N be two non-empty finite sets of symbols such that NN = 0. A production A — «
on ¥ and N is an association from a nonterminal A € N to a string a € (N UX)*. A context-
free grammar (CFG, for short) is a 4-tuple (N, X, P,S), where S € N is the distinguished
start symbol and P is a finite set of productions on ¥ and N. Symbols in N are said to be
nonterminals, while symbols in ¥ terminals. Then:

e A linear grammar is a CFG G = (N, %, P,S) such that each production in P is of the
forms T — wUvor T — w for T,U € N and w,v € ¥*. In particular, a right-linear (resp.,
left-linear) grammar if it is a linear grammar such that each production is of the forms
either T — wU (resp., T — Uw) or T — w for T,U € N and w € £*.

e ACFG G = (N,X%, P,S) is called k-bounded [2] if the right-hand side of each production
in P has at most k£ nonterminals.

e A CFG G = (N,X,P,S) is called sequential [5] if the nonterminals in N are labeled
S = Ty,---, T, such that, for each production T; - w, w € (RU{T; |[i < j<n})* In
particular, A sequential CFG satisfying that, for each production T; — w, w € (2 U {Tj} |
i < j < n})* is called properly sequential.

e A CFG G = (N,3,P,S) is called a k-CFG if |N| < k.

Let G be a CFG (N, X, S, P) and a and 8 be strings in (X U N)*. We denote a =¢ g if
there exist a1, ay € (EUN)* such that @ = a1 Xag, f = a1yaz and X — v € P. We extend the
relation = to the reflexive and transitive closure =>¢,. For a nonterminal A € N, the language
Lg(A) of Ais the set {w € £* | A =& w}. The language L(G) of G just refers to Lg(S).

Let X be a countable set of variables such that NX = . A pattern is an element of (ZUX)*.
A pattern 7 is called regular [10] if each variable in 7 occurs at most once. A substitution is a
homomorphism from patterns to patterns that maps each symbol a € X to itself. A substitution
that maps some variables to empty string ¢ is called an e-substitution. In this paper, we do not
deal with e-substitution. By w8, we denote the image of a pattern by a substitution 8. For a
pattern m, the pattern language L(7) is the set {w € £t | w = 7@ for some substitution 6}.

2.2 Prediction-preserving reduction with membership queries

Let U denote S*. If w is a string, |w| denotes its length. For each n > 0, UM = {w € U |
|lw| < n}. A representation of concepts L is any subset of U x U. We interpret an element
{u,w) of U x U as consisting a concept representation u and an ezample w. The example w
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is a member of a concept u if (u,w) € L. Furthermore, define the concept represented by u as
ke(u) = {w | (u,w) € L}. The set of concepts represented by L is {kc(u) | u € U}.

To represent CFGs, we define the class Lcrg as the set of pairs (u, w) such that u encodes a
CFG G and w € L(G) Also we define the classes Ljipear, Eright-lineara Lieft-lineary Lk-bounded-CFG;
LseqCFG, LpsqcFa, and Li-crg, corresponding to a linear grammar, right-linear grammar, left-
linear grammar, k-bounded CFG, sequential CFG, properly sequential CFG, and k-CFG, re-
spectively, as similar.

To represents regular pattern languages, the class Lgrp denotes the set of pairs (u,w) such
that u encodes a regular pattern 7 and w is in the concept represented by c iff w € L(w).
Furthermore, the class L,,rp of a bounded finite union of regular pattern languages [11] denotes
the set of pairs (u,w) such that u encodes m and a finite set 7y, -, 7, of m regular patterns
and w is in the concept represented by c iff w € L(w;) for at least one ;. Similarly, the class
Lurp of an unbounded finite union of regular pattern languages [11] denotes the set of pairs
(u,w) such that u encodes a finite set m,- -+, 7y of regular patterns and w is in the concept
represented by c iff w € L(m;) for at least one ;.

Additionally, we introduce the following classes. The class Lppa (resp., Lnra) denotes the
set of pairs (u,w) such that u encodes a DFA (resp., NFA) M and M accepts w. The class
Lpnr denotes the set of pairs (u,w) such that u encodes a positive integer n and a DNF formula
d over n Boolean variables z1,---,z, such that |w| = n (w = w;---w,) and the assignment
z; = w; (1 <1 < n) satisfies d.

In order to obtain the results of this paper, it is sufficient to introduce the following concept
of prediction-preserving reducibility [4, 9]. Hence, we omit the formal definitions of the prediction
algorithm and the predictability. See the papers [4, 7, 9] for more detail.

Angluin and Kharitonov [4] have extended the prediction-preserving reduction by Pitt and
Warmuth [9] with membership queries. It also a tool for showing hardness results of predicting
some classes of representations with membership queries.

Definition 1 (Angluin & Kharitonov [4]) Let £; be a representation of concepts over do-
main U; (i = 1,2). We say that predicting £, reduces to predicting Lo with membership
queries (pwm-reduces, for short), denoted by L; Spwm L2, if there exist an instance mapping
f:NXxNxU; — U, a concept mapping g : N x N x L1 — L,, and a query mapping
h:N x N x U; — U U{T, L} satisfying the following conditions.

1. For each z € Ul["] and u € E[f], z € kg, (u) iff f(n,s,z) € key(g9(n, s, u)).
f is computable in time bounded by a polynomial in n, s and |z|.

The size of g(n, s, u) is bounded by a polynomial in n, s and |u|.

L

For each 2/ € U; and u € 5[18], if h(n,s,2’) = T then 2’ € Kc,(g9(n, s,u)); if h(n,s,z’) = L
then =’ & Kc,(g(n, s,u)); if h(n,s,2') = z € Uy, then it holds that =’ € kc,(g(n, s, u)) iff
z € kg, (u).

5. h is computable in time bounded by a polynomial in n, s and |z'|.
If £1 Jpwm £2 and L3 Qpwm L1, we denote L1 Zpym Lo

The following theorem is useful for showing the predictability or the hardness of predictability
of the class of representations.

Theorem 1 (Angluin & Kharitonov [4]) Let £; and L, be representations of concepts and
suppose that L1 Qpwm L2. If L2 is polynomial-time predictable with membership queries, then so
is Ly. If L is not polynomial-time predictable with membership queries, then neither is Lo.
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It is well known the following statements:
1. Lpra is polynomial-time predictabie with membership queries [1].

2. Lnra and Lcorg are not polynomial-time predictable with membership queries under the
cryptographic assumptions [4].

3. Lpnr is either polynomial-time predictable or not polynomial-time predictable with mem-
bership queries, if there exist one-way functions that cannot be inverted by polynomial-sized
circusts [4].

3 PWDM-Reducibility

In this section, we fix f, g and h to an instance mapping, a concept mapping, and a query map-
ping. Furthermore, the parameters n and s denote the bounds of examples and representations,
respectively. '

3.1 Simple CFGs

First note that, by using the equivalent transformation between a NFA and a right-linear gram-
mar [6] as a concept mapping, we observe that LnrA =pwm Lright-linear- Furthermore, for a
CFG G = (N,%,P,S), let GE be a CFG (N,X%,P',S) such that T — w® € P’ for each
T — w € P. Here, R denotes the reversal of a word. For a right-linear (resp., left-linear)
grammar G, construct f, g and h as f(n,s,e) = eF, g(n,s,G) = GF and h(n, s,e’) = ¢'E. Then,
it is obvious that Eright—linea: Jpwm Lieft-linear (7€SP-, Liefi-linear <pwm Eright—linear)a so it holds that
['right—linear =Lwm Lieft-linear- Summary:

Theorem 2 Lnra ZHwm L for L € {Eright-linearyEleft—linear}- Also, LnFA i]pwm Liinear and
LNFA Fpwm Lk -bounded-cFG for each k > 1.

Theorem 3 Lpnr Jpwm £ for L € {EpquFG, Esqcpg}.

Proof. Let d be a DNF formula ¢, V- -Vt over n Boolean variables x1, ..., zy. First, we define
w! (1<i<n,1<j<m)asw =1ift; contains z;; w] = 0if t; contains Z7; w] = T otherwise.
Then, construct f, g and h as follows:

f(n,s’e) = e,
g(nasad) = ({S?T}a{oal}vs’{‘s—*w%w}tl|w1nwg7T_’0|1})>
h(n,s,e) = ¢€. '

It is obvious that the above f, g and h satisfy the conditions of Definition 1. O
Theorem 4 For each k > 1, LONF Jpwm Lk-CFG-

Proof. Theorem 3 implies that Lpnr Jpwm Lk-crg for each k > 2. Then, it is sufficient to show
that LpNF Jpwm L1-crg. Let d =tV --- V ¢, be a DNF formula over n Boolean variables
T1,...,Tn. Then, define w{ (1<i<n1<j<m)as wf = 1 if t; contains z;; wf =0if t;
contains Tj; wf = S otherwise. Then, construct f, g and h as follows:

fns,e) = e
g(n.s,d) = ({S},{0,1},8,{8 = 0|1 w}---wh|... |wf - wP|S--S|...|8-:-S}),

n+l1 2n
¢ if|e|=mn,
h(n,s,€) = 1 ifl<|e|<n,

T ifle|=1or || > n.
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For each e € {0,1}", it holds that e satisfies d iff S =onsd) | (n,s,e). Furthermore, for
each ¢ € {0,1}*, if h(n,s,e¢’) = L, then S #;(n,s'd) €/, because g(n, s,d) generates no strings
of length more than 1 and less than n; If h(n,s,e’) = €/, then it holds that S = (n.s.d) e iff
h(n,s,e’) satisfies d.

Finally, consider the case that h(n,s,e’) = T. It is sufficient to show that, for each k > 1,
it holds that S =>;( ) S---S foreach m (1 <m < n-1). If k=1, then, by the definition,

n,s,d
kn+m
it holds that S = s &S for each m (1 £ m £ n—1). Suppose that it holds that, for
n+m
some k >1, S :;(n,s,d) S-S for each m (1 £ m < n—1). Then, it holds that S :;(n,s,d)
kn+m
§$:-8 S=>¢nsa 8-S S§:--S= §:---§ for each m (1 <m < n-—1). Hence, g(n,s,d)
kn+(m—1) kn+(m-1) n+1 (k+1)n+m

generates all strings of length more than n, so if h(n,s,e’) = T, then S = n.s.d) e. 0

3.2 Finite union of regular pattern languages

Since each regular pattern language is regular [10], we can construct a DFA M, such that
L(M;) = L(m) for each regular pattern = as follows: Suppose that 7 is a regular pattern of
the form m = Toa1Z102 - Tn_10nTn, Where z; € X and o; = ajab---af, € TF. Then, the
corresponding DFA M, of m is a DFA (X,Q, 4, go, F) such that:

1. Q = {qup%v" ’p}nI,QIap%a--- ap12n2,Q2a-- -aQn—l,p?""ap%naqu} and F = {Qn}a
2. 6(gi,a) = pi*! and 8(gn,a) = gp foreacha € Tand 0<i < n —1,

3. 5(1’;",0;') =P§+1 and 5(p§ni,aini) =gqg;foreachl1<i<mnand1<j<m;-1,

4. 6(p§-,a) = p! for each a € ¥ such that a # ag.

It is obvious that |M| is bounded by a polynomial in |7|. We can easily shown that Lrp Jpwm
Lpra by constructing f, g and h for each regular pattern = as f(n,s,e) = e, g(n,s,7) = M,
and h(n,s,e’) = ¢'. Then, Lgp is polynomial-time predictable with membership queries [8].

Theorem 5 For each m >0, Ly,,rRp Jpwm LDFA.-

Proof. Let 71, ..., mm be m regular patterns. Also let My, = (Qi, X, &;, g, F;) be the correspond-
ing DFA of m;. First, construct a DFA My, . = (Q1%X - -XQm,%,6,(g,-.,qf), Fix-+-xFp)
such that 6((q1,...,9m),a) = (p1,--.,Pm) iff 8;(gi,a) = p; for each i (1 < i < m). Then, con-
struct f, g and h as f(n,s,e) = e, g(n,s,{m1,...,™m}) = Mp,, . r. and h(n,s,e') = €. Note
that the size of g(n,s, {m1,...,7™n}) is bounded by a polynomial in s, i.e., O(s™). It is obvious
that L(m) U---U L(mm) = L(Mp,, .. x,,), Which implies that Ly,,RP <pwm LDFa. O

Proof. Let d =tV --- V ty, be a DNF formula over n Boolean variables z1,...,z,. First, for
each term ¢; (1 <j < m)., construct a regular pattern m; = 71“{ --m) as 1rf =1 if t; contains z;;
7:;-7 = 0 if ¢; contains 73; 7r17 = :L'Z otherwise. Furthermore, let 7 be a regular pattern z; - - - £, p41-
Then, construct f, g and h as follows:

f(nvs’e) = €

g(n, S,d) = {7T1,...,7Tm,7f},
e if|e|=mn,

h(n,s, ') = T if €| > n,
1 ifle| <n.
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For each € € {0,1}*, we can check the properties of h in Definition 1 as follows. Since
L(m) = {w € {0,1}* | |w| > n + 1}, if h(n,s,e’) = T, then € € kg zp(9(n,s,d)). On the
other hand, since |7;| =n (1 < j < m) and |7| = n + 1, kg gp(9(n, s,d)) contains no strings of
length < n. So, if h(n,s,€e’) = L, then €' & k. zp(9(n,s,d)). Otherwise, i.e, if h(n,s,e') = ¢,
note that |¢/| = n, so € ¢ L(w). Then, ¢ € L(m)U--- U L(my,). Thus, there exists an index
i (1 <1 < m) such that ¢’ € L(m;) iff € is obtained by replacing the variables in m; with 0 or
1, which is correspondmg to a truth assignment satisfying t;. Hence, €’ € k¢ gp(9(n,s, d)) iff
€ € Krpyp(d)-

Furthermore, for each e € {0,1}", e € k., (d) iff f(n,s,e) € kg pp(9(n,s,d)). Hence, it
holds that LpNF Lpwm Lygrp. O

Shinohara and Arimura [11] have discussed the inferability of £, rp and L_grp in the frame-
work of inductive inference. They have shown that Ly grp is inferable from positive data,
whereas L_rp is not. In contrast, by Theorem 5 and 6, £ grp is polynomial-time predictable
with membership queries, whereas LUrp is not polynomial-time predictable with membership
queries if neither are DNF formulas.
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