oboooooooOoooO 120560 2001 0 154-159

154

Unrestricted LR(k) Grammars and its Parser, where k = 0, 1

HE4 IRX (Hiromitsu Shiina):
[ILE A KFE (Okayama University of Science)
» 81L/% (Shigeru Masuyama):
B MBI FE K (Toyohashi University of Technology)

1 Introduction

Many parsers were developed for context-free lan-
guages. However, we often need to parse non
context-free languages in natural language process-
ing. Some parsers [1)[2][4] were developed for
classes larger than that of context-free languages.
Vold’man(1] and Harris[2] developed parsers for the
unrestricted grammar.

Along this line, we proposed the unrestricted
LR(k) grammar and the unrestricted LR(k) parser
(4). The conventional LR(k) grammar (3] has looka-
head strings which consists of terminal symbols. On
the other hand, in the unrestricted LR(k) grammar,
we proposed to regard lookahead strings as nonter-
minal symbols corresponding to roots of subtrees
of deducible parse trees. Note that the unrestricted
LR(k) parser also works deterministically by us-
ing lookahead strings and parses the language L(G)
where it is in the class of recursive languages.

In this paper, we shall show how to transform
an unrestricted LR(k) grammar to an unrestricted
LR(1) grammar for ahy k > 2, which implies that
there is an equivalent unrestricted LR(1) grammar
for any unrestricted LR(k) grammar, k > 2, in
that they generate the same language. A conven-
tional LR grammar where generation capacity of
LR(k),k > 2, grammar also coincides with LR(1)
grammar when k is finite[3]). However, it is interest-
ing that this is also true even when k = co when we
consider the unrestricted LR grammar. Moreover,
we clarify that a language generated by any recur-
sive phrase structure language can be generated by
some unrestricted LR(k) grammar, where k = 0, 1.

2 Definitions

We define the unrestricted LR(k) grammar, G =
(N, T, P,S), where N is a finite set of nonterminal
symbols, T is a finite set of terminal symbols, P is
a finite set of production rules and S is a start sym-
bol. As preliminaries, we define the extended LR(0)
state transition diagram(LTD for short), the reach-
ability state transition diagram (RTD for short) and
lookahead strings where LTD, RTD and lookahead

strings are used in the definition of the unrestricted
LR(k) grammar.

2.1 Deﬁnition‘ of an LTD

An extended LR(0) state transition diagram (LTD
for short) is constructed from production rules of a
phrase structure grammar G = (N, T, P, S), which
specifies a control part of a pushdown automaton.
This LTD extends the LR(0) state transition dia-
gram to the phrase structure grammar. Basically,
the creation algorithm is the same,

An LTD is constructed by a 6-tuple My = (Qr,
d,, 0., 90, 8ace, S')' Here, Qb={’03 9y.00y 801, -’n}
is a set of states, §, is a set of shift functions sat-
isfying &,(8,X) = ¢, 8,8/’ € QL, X € NUT, 6,
is a set of reduce functions satisfying 4,(s, X) =
{(A = p,8') & € Qu,A = p € P}, s is an ini-
tial state, s5cc is a final state and for convenience’
sake let s5cc = 34, and S’ is a dummy symbol to
construct an LTD in an initial step.

A state 8; € QL, i1 = 0,1,...,n, is constructed
from items called LR(0) items. An LR(0) item.
consists of production rules with a dot (-) like
A = ppa)y A = pr - pa] and A = prpg]. A
set of states and functions of LTD are constructed
by the following five actions. Note that the length
of string g is shown as |u|, and an empty word is
shown as ¢.

[Action A: Initial action] As an initial action,
we append a dummy rule §' = S to P, define
an initial state s and a final state s,...

50 := {[S" = -5]},
Sace = {[Sl = S]} and
d,(30,S) := sqcc.
[Action B] If [A = 'p1-Xpg) € s; where s; € Qp,
P, 43 € (NU T)‘, then .

o for each X§ — n € P where £, €
(NUT)*t,
s; = 8 U{[X¢ =)}

o for each s; € Qp such that [A - u; X .
#2] ¢ 85,

create a new state sg,
QL := QL U{sk} and
s := s U{[A = 1 X - pa]}.
[Action C] If (A - py - Xpa] € 85, [A & ;X -
2] € s; where s;,s; € QL and py,p2 € (N U
T)*, then

8,(8:, X) := sj.

[Action D] If (A - p- X] € 8, [A > pX] € s;
A = -uX] € 3 and
6:(6:(~--51(64(3ka#1)7ﬂ'2)"'p‘hl])vx) = 8
where s;, $iy Sk € QrL, p = 1 p2 ... Pl
By M2, - B € NUT, then

8.(84, X) 1= 8, (85, X) U{(XA = pX, s)}-
[Action E] If [\ — -¢] € s; where s; € Qf, then

8; = 5; U{[A = &-]} and
5,.(35,6) = 5,.(8,',6) U {(/\ — &, 3.‘)}.

Here, we use a grammar G1 = ({S, 4, B, C, D,
E}, {S— DE, DE - ED, E - ABB, E - CB,
A—>AA A—a, C—-CAC—>a,B—>b D—d
}, {a, b, d}, S) as a working example. We can
construct an LTD My = (Qyr, 4,, -, 30, Sace, S')
for the grammar G; where QL = {so, $1, ..., 514,
Sacc} and function é, and 4, are shown in Tables 1
and 2.

In addition, contents of states are the following
LR(0) items,

[S'—-S], [S — -DE],

[DE — -ED), [E — -ABB],

[E — -CB], [A — -A4], ,
[A— -a], [Cc —-AC),

[C - -a] [D — -d]

$1 = {[A—)a-], [C—)a-]},
[S— D-E], [E—-ABB]

Il

S0

B [E— -CB], [A— AA]
%2 = [A — -a], [C — -AC) '
[C — -a],

2.2 Definition of an RTD

In order to construct an RTD, we consider a push-
down automaton which begins with s; of an LTD
by a nonterminal symbol X and stops at s; of an
LTD. Then we create a transition from s; to s; by
X in an RTD. In short, we write s; X, sj. An
RTD is constructed by this transition for all pairs
of states of an LTD and nonterminal symbols, and
is nondeterministic automaton. '

Table 1: Function 4, for G;.

6.(30; S) = 8ace
5.(80, D) = 82
8.(s0,A) =87
5-(32’ E) =33
5.(32,0) = 31
5.(34, D) = 35
5;(341 E) = 84
8,(24,C) = su
5:(379 A) = 3s
8s(87,b) = 513
Su(s8, A) = s
5.(33, B) = 810

8:(s9,B) = s10

5.(311,3) = 314

5,(30,0) = 81

5.(30,E) = 84

5-(30.0) = Su"

8:(s2,A) = s7

5.(34,(1) = 8¢
5.(34,14) = 87

5,(37,3) = 89 '

5.(37,0) =38
8,(ss,8) = 5

65(381 C) = 812

5.(69,5) = S13 :

8:(s11,b) = s1s

155

An RTD Mp is a 4-tuple (Qr, SR, 30, 3acc) Where
QR is a finite set of states of Mg, 0 is a finite set
of functions, sg is an initial state, sqcc is a final
state. A set of states Qg and a set of functions
dg is defined by the following [shift action] and
[reduce action], respectively.

[shift action] If (s;, X)} (sj,€) where s;,5; €
Qr and X € N, then o

Qr = QrU{si, 35},
Or(s:, X) := dr(si, X)U {s;}.

[reduce action] If (s;, X) lf (sj,a) Ff (sk,€)
where s;,3j,8, € Qr, (a - BX,s;) €
6. (s:,X), a - BX € P, a € (NUT),
B=p1PB2...Bp, B € NUT and X € NU{e},
then -

QR - RU{S,,Sk}
Or(si, X) = JR(sz,X) U {3k}

Among the above actions, we use the followmg
three relations (s;,a), f and F}'

e (s;,a) denotes that the current state of an LTD
is s; and a next input symbol a € (N UT)".

e I denotes a transition of a pair of a state of
an LTD and next input symbols. If §,(s;, X) =
s; and (a — BX,s;) ¢ 0,(s;,X), then
(si, X a) I (sj,@). On the other hand, if (a -
BX,s;) € 8,(si, X), then (s, X7) | (s5,a7).

° F}‘ denotes a finite number of transi'tioﬁs ofa
pair consisting of a state of an LTD.

As an example of the RTD, we illustrate an RTD
Mg = (Qr, R, %0, Sacc) of the grammar G;.

First, we have Qr = {so0, 52, 34, 37, 88, 39, 811,
SGCC}'

Table 2: Function 4, for G;.

8+(30,0) = {(A — a,30)}

5,-(83, E) = {(S - DE, So)}

8.(s2,0) = {(4 = a,s2)}

6,-(.!4, E) = {(DE - ED,so), (DE — ED, 34)}

8r(34,8) = {(A = a,384), (C > a,384)}

5,.(34, d) = {(D - d, 34)}

8r(s7,4) = {(A o AA, 50), (A = AA,s3),
(Ao AA,)}

8.(s7,8) = {(A = a,87), (C = a,s7)}

6.-(87,5) = {(B - b, 37)}

8:(s7,C) = {(C = AC, s0),

(C = AC,s), (C - AC,s4)}

6.-(.93, A) = {(A - AA, Jo), (A b d AA, 83),
(A= AA,8), (A5 AA,s7), (A o AA)}

8.(3s,8) = {(A = a,3s), (C — a,3s)}

8-(38,C) = {(C — AC,s7), (C = AC,)}

6,-(39, B) = {(E - ABB, So), (E - ABB,SQ),
(E —» ABB,s,)}

5,-(89,6) = {(B - b,.ﬂ)}

5.-(311,8) = {(E - CB,SO), (E - CB,S:),
(E - CB,s,)}

dr(s11,b) = {(B = b,s11)}

o For sg € Qg, we are able to consider the tran-

sitions (s0,5) ff (3ace,€)s (30, D) if (s3,¢),
(30a E) r (341 E), (’07‘4) |T (’7’8) and (301 C)
b‘ (311,6).
We have five function values of dp from the
above five transitions, dr(s0,S) = {sacc}
dr(s0, D) = {s2}, 8r(s0, E) = {84}, dr(s0, A)
= {37}, dr(%0,C) = {s1u1}.

e For s7; € Qgr, we are able to consider transi-
tions (s7, A) f (ss,¢), (s7,4) 1 (s0,4) Iy
(371 8), ("71 A) &_ (321 A) IT (37$€)l (’7’ A) 'T
(s4,A) lf (s7,¢) and (s7,B) lr (s0,¢).

And, we have the following two function val-
ues of Op, Or(s7, A) = {s4,87,38}, or(s7,B) =
{so}.

We illustrates a RTD in Fig. 1. Note that
dr(s:,X) € s; is shown as a path from s; to s;
with label X (s; & 3;).

2.3 Definition of lookahead strings

A set of lookahead strings of length k is constructed
as follows, using an RTD Mpg.

ai
8; ’iﬂ) UT
8; 7 Sace

The above formula shows that an unrestricted
LR(k) parser needs a nonterminal string w as a

LK([a1 — -a3],8;) = {headk(ws")

156

Figure 1: The RTD of G,

lookahead string to reduce “a; — a3”, a nonter-
minal string w is necessary for a transition from a
state s; to a final state s, on an RTD.

Here headj(A) consists of the prefix string of
length k, and is defined by the following formula:

, ifA=§y, =k, >0,
head, () = { i o <EZ,I€I Inl >

where A, §, 7 € (NUT)*.

In addition, s; —?_—) s, means a transition from
s; to s, by a nonterminal string a, it de-
notes Op(si, A1) O si,, Or(si,,42) O sy, ...,
Or(i.»Aja}) D sk where a = A14;... A,
Al,Az,...,A|a| € N and 8iy8igy. 0y 88,15k € Qnr.

For example, lookahead string LK, with length
2 is calculated as follows.

LK3([DE — -ED], so)

DE
- {headg(eS‘ 0 Saces }: {s$).
Sace F7 Sace

The transition from a start state sg with the in-
put string DE in the above formula reaches a final
state s,... Therefore, an unrestricted LR(k) parser
does not need an input string, that is, its lookahead
string is sufficient with an empty word.

On the other hand, the transition from a start
state sg with input string E reaches a state s4 in
the following formula. Therefore, w is necessary for
the transition from the state s4 to the final state

Sace-
LKQ([E - 'CB], 30)

E
heads(w$*) *0 F* °*
34 _.F') Sace
"= {AA, AB, AC, CB, D$, EA, EC, EE }.
For each LR(0) item of s, if each length of looka-
head strings is two, then we get lookahead strings
LK,’s as follows.

LK+([S — -DE], s0) = {88}

LKQ([DE g -ED],so) = {$$}

LK,([E — -ABB), s0) = {AA, AB, AC,CB, DS,
EA,EC,ED,EE}

LK,([E — -CB),s0) = {AA, AB,AC,CB, D$, EA,

EC,ED,EE}

LK,([A — -AA), s0) = {AA, AB, AC,BB,CB}

LK,([A — -a],s0) = {AA, AB, AC, BB,CB}

LK,([C — -AC),s0) = {BA,BC,BD,BE}

LK+([C — -a], s0) = {BA, BC,BD, BE}

On the other hand, for the case of each length of
the lookahead strings is one, we have the following
equations.

LKl([A — -a],so) = {A,B,C} and LKl([C b
-a), s0) = {B}.

2.4 Definitions for an unrestricted
LR(k) grammar

First, for a phrase structure grammar G = (N, T,
P, S), we construct an LTD. And if all states of
an LTD does not have the item like [a; — a3] or
[B1 — Ba-] where dot(-) is the end of a production
rule in the same state of an LTD, then the grammar
G is defined as an unrestricted LR(0) grammar. On
the other hand, if a state of an LTD has an LR(0)
item, the grammar G is defined as an unrestricted
LR(k) grammar, k > 1, which satisfies the following
two conditions:

e (Condition 1) Let an LTD My, of an unre-
stricted LR(0) grammar be (Qr, dr, 50, Sace,
S'). Each production in P has either of the
following three forms:

(a) A—>a, AeEN,a€eT.

(b) A — ¢, A € N, where ¢ is the empty
word.

() A= p, \,p ENT.

e (Condition 2) Each production a; — 8 € P,
a; € N*, exists in the same state s; € Qr, and
LK, satisfies

n LK;,([G,- — ,@], 3]') = 0

a;:a;—+BEP

Condition 1 is not essential as transformation
, because any phrase structure grammar can be
transformed to a grammar satisfying condition 1
which generates the same language.

For the grammar G; defined in section 2.1,
LK]_([A - '(1],80) N LK]_([C — '(1],30) = {B}
Therefore, G; is not an unrestricted LR(1) gram-
mar. On the other hand, no string is shared among
lookahead strings of length 2 (see Table 3). There-
fore, G1 is not an unrestricted LR(1) grammar but
an unrestricted LR(2) grammar.

157

Table 3: The set of the lookahead strings LK, for
Gr.

LK, (S = -DEJ, %) = {85}

LK([DE — -ED), 50) = {88}

LK2([E — -ABB), 50) = {AA, AB, AC,CB, D$, EA, EC,

ED,EE}
LK2((E = -CBJ, s0) = {AA, AB, AC,CB, D$, EA, EC,
ED,EE}

LKa([A — -AA], 50) = {AA, AB, AC, BB,CB}

LK2([A — -a), 50) = {AA, AB, AC, BB,CB}

LK,([C — -AC], %) = {BA, BC, BD, BE}

LK2([C — -a],50) = {BA, BC, BD, BE}

LIG([E = -ABB), s;) = {88}

LK ([E — -CB), s2) = {$$}

LKz([A - -AA], ;) = {AA, AB, AC, AD, AE, BB,CB}

LK2([A - -a], s2) = {AA, AB, AC, AD, AE, BB,CB}

LK,([C - -AC],s2) = {BA,BC,BD,BE}

LK:([C — -a),s2) = {BA,BC,BD,BE}

LK,([DE — -ED]),s4) = {$8}

LK:([D - 'd],s;) = {$$}

LK:([E — -ABB], s1) = {AA, AB, AC,CB, D$, EA, EC,

ED,EE}
LK, ([E - -AC),ss) = {AA,AB,AC,CB, D$,EA, EC,
ED,EE}

LK2([A — -AA], 1) = {AA, AB, AC, AD, AE, BB,CB}

LK2([A — -], ss) = {AA, AB, AC, AD, AE, BB,CB}

LK2([C — -AC), s) = {BA, BC, BD, BE}

LK:([C — -a],s4) = {BA, BC, BD, BE}

LK2([A — -AA], s7) = {AA, AB, AC, AD, AE, BB,CB}

LK»([A — -a], s7) = {AA, AB, AC, AD, AE, BB,CB}

LK:([B — +b),37) = {BA, BC,BD, BE}

LK»([C — -AC), s7) = {BA, BC,BD, BE}

LK([C — -a),s7) = {BA, BC, BD, BE}

LK2([A — -AA], ss) = {AA, AB, AC, AD, AE, BB,CB}

LK:([C — -AC), ss) = {BA, BC, BD, BE}

LK>([C — -], ss) = {BA, BC, BD, BE}

LK»([B =],0) = {AA, AB, AC,CB, D$, EA, EC,
ED,EE}

LK2([B =], s11) = {BA, BC, BD, BE, $8}

3 The transformation from an
unrestricted LR(k) gram-
mar, £k > 1, to an unre-
stricted LR(1) grammar

The transformation [3] of a conventional LR(k)
grammar replaces a pair of a nonterminal symbol
corresponding to a root of a subtree of deducible
parse trees and a lookahead string of its nonterminal
symbol with a nonterminal symbol. On the other
hand, the transformation in this paper replaces a
head of lookahead strings with a nonterminal sym-
bol, and its replacement is repeated until the length
of lookahead strings becomes 1. In this section, we
illustrate how to transform an unrestricted LR(k)

grammar, k > 1, to an unrestricted LR(1) gram-
mar.

For an unrestricted LR(k) grammar G, k > 1 >
1, a set of lookahead strings satisfies

LKk([A1 - -p], s;) n LK),([/\Q — ~p],s,-) = @ and
LK{([/\l — ';l.], 3;) N LK{([A: — -[l,], 3,') Sa

where a = Aa’,a,0’ € (NUT)* and A € N.
Clearly, we have LK;([A1 — -],) N LK;([A2 —
1), 8) D A.

To reduce from a lookahead string a to a nonter-
minal symbol, we prepare a new nonterminal sym-
bol B ¢ N and replace production rules so that
LK1([/\1 b d -p], 3,') 3 B and LK1([/\3 — -p],s,-)]
A. The following transformation describes precise
conditions and replacement of production rules.

[Reduction of multiple symbols]

If LKl([;l.l — -,3],3.-) n LKl([[l,z - ';6],3.‘) 5 A
where 1 — B, p2 = B € P, s; € Qr, 8 €
{sklsi 5% su,sx € Qr}, {la = a1 - Ay} € 35
and ¥; = ai417/, then

(1)P:= P - {a > a1 Avi}.

(2)P := PU {a = a1 By;,Baj41 = Yit1,
Ba;ia = Yig2s -+ Ban, = 1, }-

(3)N =NU {B})

The above transformation is repeated until the
grammar G becomes an unrestricted LR(1) gram-
mar, i.e., until the following condition is satisfied:

For each B8 € N*, s; € Qr,

| LKi(la—-B,s)=0.

a:a—+»pBeP

Note that the above transformation does not de-
pend on the length k of a lookahead string and
works even if & = oo.

4 Properties of a transforma-
tion

In the above section, we showed the transformation
of an unrestricted LR(k) grammar. In this section,
we shall show some properties of the transforma-
tion.

Theorem 1: The transformation of the grammar
introduced in section 3 does not change the lan-
guage L generated by the grammar if L is in the
class of recursive languages.

Proof. Let G’ be the resulting grammar ob-
tained from a grammar G, by an application of

158

[Reduction of multiple symbols] in section 3,
where a — ay A«; is deleted and a« — a3 By; and
Ba;,1 — vi41 are appended for production rules
a = a1 Avyi, Aaiyy — Yip1 of G, where y; = a; 417"
Then we shall show that L(G) = L(G’).

We consider the following derivation from a string
wyawy, by production rules a — ajAy; and
Aa¢+1 - Yi+1 of G.

wiaws = wyay Av;we = wiay Aa; 19 ws
= w1a1Yi417 W2

We also consider the derivation shown as follows
by production rules a — a1 B%; and Ba;;1 — i1
of G'.

waws = wiayBy,w, = wyayBa;1Y'w, =
W11 Y417 W2

Hence, the same strings are derived from w; a;w,
by G and G', respectively. Thus we conclude that
L(G) = L(G") if L(G) is in the class of recursive
languages. By repeating the above discussion m
times where m is the number of applications of
[Reduction of multiple symbols] in section 4
to obtain an unrestricted LR(1) grammar, we have
shown that this theorem holds. O

Theorem 2: Any phrase structure grammar G
where L(G) is in the class of recursive languages
can be transformed to either an unrestricted LR(0)
grammar or an unrestricted LR(1) grammar.

Proof. By the definition of the unrestricted LR(k)
grammar, it is easy to see that we can construct an
unrestricted LR(k) grammar for any phrase struc-
ture grammar which generates the same language

if we allow k to be oo. The transformation from

an unrestricted LR(k), k > 1, grammar to an un-
restricted LR(1) grammar introduced in section 4
works even if k = oo, as the transformation proce-
dure does not depend on k. Thus consider the un-
restricted LR(k) grammar G which generates the
same language as the given phrase structure gram-
mar. If k& > 1, then, by Theorem 1, there is an
unrestricted LR(1) grammar which generates the
same language as the given phrase structure lan-
guage when it is in the class of recursive languages.
The case of k = 0 is trivial. Thus we have proved
the theorem. O

5 An example of the transfor-
mation and parsing

The lookahead strings LK;’s of the grammar G;
consist of

LK,([A — -a],30) = {A,B,C} and
LK1([C - -a],.!o) = {B}

Figure 2: The LTD of G,

From the above lookahead strings, we have the
following equation.

LK, ([A — -a],s0) N LK, ([C — -a],s0) = {B}.

Hence, to reduce each length of the lookahead
strings, we prepare a new nonterminal symbol F ¢
N; and replace B with F such that

LK, ([A — -a],50) = {4, F,C},
LKl([C - 'G],SO) = {B}

From the RTD of Gy (see Fig. 1), we have
5R(A, 80) = 87 and (53(0, 80) = S811. Therefore,
there is B followed by a dot () in an LR(0) item
of s7. In fact, there is the LR(0) item [E — A -
BB] in s7. Consequently, we replace a production
rule £ — ABB with production rules £ —+ AFB
and F — b. Here a new nonterminal symbol F is
followed by a dot (-) in an LR(0) item.

e P:=P-{FE— ABB}
e P.:=PU{E— AFB,F — b}
e N:=NU{F}

By the above transformation, we have the follow-
ing grammar G; = ({S, 4, B, C, D, E, F}, {a,

159

Figure 3: The RTD of G

b, d}, {S - DE, DE — ED, E — CB, A — AA,
A—>a, C—->CAC —>a B—b E— AFB,
F 5 b, D ->d}, S). In addition, we define an
example of the LTD in Fig. 2 and the RTD in Fig.
3. Clearly, LK1([A — -a],30) N LK;1([C — -a], s0)
= @, in short, the grammar G, satisfies

N IKi(a— -8,s)=0.

a:a—BEP

The resulting grammar G5 by the transformation
is an unrestricted LR(1) grammar.

6 Concluding Remarks

In this paper, we showed how to transform an unre-
stricted LR(k) grammar to an unrestricted LR(1)
grammar without changing the generated language
which is in th class of recursive languages. Al-
though a conventional LR(k), k > 1, grammar can
be transformed to LR(1) only when k is a finite in-
teger. Even if k = oo as was shown in Theorem
2, we can trasform an unrestricted LR(k), k > 1,
grammar to an unrestricted LR(1) grammar.

References

[1] G.Sh. Vold’man, A parsing algorithm for
context-sensitive grammars, Program. Com-
put. Software, 7 (1981) 302-307.

(2] L.A. Harris, SLR(1) and’LALR(1) parsing for
unrestricted grammar, Acta Inform., 24 (1987)
191-209.

[3] S. Sippu and E.Soisalon-soininen, ‘Parsing
Theory Vol. II:LR(k) and LL(k) Parsing,
Springer-Verlag, (1990).

[4] H. Shiina and S. Masuyama, Proposal of the
unrestricted LR(k) grammar and its parser,
Mathematica Japonica, 46 (1) (1997) 129-142.

