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Abstract

The main purpose of this paper is to show that we can ex-
ploit the difference (/;-norm and l3-norm) in the probabil-
ity calculation between quantum and probabilistic compu-
tations to claim the difference in their computational pow-
ers. It is shown that there is a language L which contains
sentences of length up to O(n°t!) such that: (i) There

is a one-way quantum finite automaton (qfa) of O(n°+4)
states which recognizes L. (ii) However, if we try to sim-
ulate this qfa by a probabilistic finite automaton (pfa)
using the same algorithm, then it needs Q(n2ct4) states.
It should be noted that we do not prove real lower bounds
for pfa’s but show that if pfa’s and qfa’s use exactly the
same algorithm, then qfa’s need much less states.

1 Introduction

It is well known that BPP can be simulated by BQP al-
most directly, i.e., quantum computation with a bounded
error is at least as powerful as its probabilistic counterpart
[BV97). Furthermore, it appears that quantum compu-
tation has several merits over probabilistic computation,
which include: (i) Quantum computation efficiently gives
us useful information about the period of a periodic func-
tion [Sho94, Sim94]. (ii) Negative values for amplitudes
are allowed, which can be used, for instance, to cancel
other amplitudes [DJ92] and to “shift” some amplitude
from one state to another E}rogﬁ. (i4¢) Even complex
numbers (i sin ¢+ cos ¢) can be used for amplitudes, which
allows us to do tricky operations by rotating the complex
number appropriately [AF98].

In this paper, we focus our attention on more basic fea-
ture of quantum computation which has been relatively
less focused on in the literature, namely, the difference in
the way of probability calculation. It is a fundamental rule
of quantum computation that if a state ¢ has an ampli-
tude of o, then g will be observed not with probability o
but with probability 02. Suppose that there are ten pairs
of state (plaQI)’ Tty (Plo, 010) where, foreach1 <i < 10,

either p; and ¢; has the amplitude 1/1/10 (we say that p;
is ON if it has the amplitude and OFF otherwise.). We
wish to know how many p;’s are ON. This can be done
by “gathering” amplitudes by applying a Fourier trans-
form from p¢’s to r’s and observing 1o (see later sections
for details), if all ten p;’s are ON, then the amplitude of
r10 after Fourier transform is one and it is observed with
probability one. If, for example, only three p;’s are ON,
then the amplitudes of ryp is 3/10 and is observed with
probability 9/100.

In the case of probabilistic computation, we can also
gather the probability of p;’s (= 1/10 for each) simply by
defining a (deterministic) transition from p; to ryg. If all
pairs are ON, then the probability that g is observed is
again one, but if only three p;’s are ON, the probability
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is 3/10. If the latter case that only three p;’s are ON is
associated with some erroneous situation, this probability
of 3/10 is much larger than 9/100 in the quantum case. In
other words quantum computation can enjoy much smaller
error-probability only due to the difference in the rule of
probability calculation.

The question is of course whether we can turn this fea-
ture into some concrete result or how we can translate this
difference in probability into some difference in efficiency
like time and space. In this paper we give an affirmative
answer to this question by using quantum finite automata;
we prove that there is a language L which contains sen-
tences of length up to O(n°*!) such that: (i) There is a
one-way quantum finite automaton (qfa) of O(n°t4) states
which recognizes L. (i) However, if we try to simulate
this gfa by a probabilistic finite automaton (pfa) using the
same algorithm, then it needs Q(n2°+4) states. It should
be noted that we do not prove real lower bounds for pfa’s
but show that if pfa’s and qfa’s use exactly the same algo-
rithm (the only difference is the way of gathering ampli-
tudes mentioned above), then gfa’s need much less states.
As one can see later, the algorithm is probably the best one
and even if there would be another algorithm, it probably
produces a similar difference in the size of finite automata
only due to the difference (i.e., {;-norm or [3-norm) in the
probability calculation.

Quantum finite automata have been quite popular in
the literature since its simplicity is nice to understand mer-
its and demerits of quantum computation {AF98, AG00,
A199, ANTV99, KW97, Nay99]. Among these papers, the
first important result by Kondacs and Watrous E(WQ?
also exploited the feature of l3-norm, although they di
not mention explicitly, when proving that 2-way qfa’s can
accept non-regular languages. Thus this scheme of exploit-
ing the feature of [3-norm could be another new technique
which can bring out the power of quantum computation.
Ambainis and Freivalds [AF98] also proved a quadratic
(and even exponential) differences in the size of qfa’s and
pfa’s for one-letter languages, but their technique is based
on the rotation of complex numbers, which is completely
different from ours.

2 Problem EQ

Suppose that Alice and Bob have n-bit numbers = and
y and they wish to know whether or not x = y. This
problem, called EQ, is one of the most famous prob-
lems for which its randomized communication complexity
(= O(log n)) is significantly smaller than its deterministic
communication complexity (= n + 1) [KN97]. In this pa-
per, we need a little bit more accurate argument on the
value of randomized (and one-way) communication com-
plexity: Consider the following protocol Mgqg: (i) Alice
selects a single prime p among the smallest N primes. (i7)
Then she divides = by p and sends Bob p and the residue



a. (ii1) Bob also divides his number y by p and compares
his residue with a. They accept (z,y) iff those residues
coincide.

It is obvious that if ¢ = y then protocol Mgq accepts
z,y) with probability one. Let E(N) be the maximum
error) probability that Mgq accepts (z,y) even if z # y.

To compute E(N), we need the following lemma: In this
paper, logn always means log, n and [ f(n)] for a function
f(n) is simply written as f(n).

Lemma 1. Suppose that £ # y and let S be a set of
primes such that x = y mod p for any p in S. Also, let s
be the maximum size of such a set S for n-bit integers
and y. Then s = ©(n/logn).

Proof. Let p; be the i-th largest prime and n(n) be the
number of different primes < n. Then the prime number

theorem says that lim,,_,o W%%,Ln = 1, which means that
Pn/logn = O(n). Consequently, there must be a constant
c such that Pn/logn *Pn/logn+1 ' * " * Pen/logn > 2" since
n"™/ 198" — 9" Thus a n-bit integer z has at most cn/logn
different prime factors. Note that £ = y mod a iff [z —y| =
0 mod a. Hence, s < cn/logn. Also it turns out by the
prime theorem that there is an n-bit integer z such that
it has ¢'n/logn different prime factors for some constant
¢/, which proves that s > ¢'n/logn. [ |

In this paper, Ny denotes this number s which is
©(n/logn). Then

Lemma 2. E(N) is Ny/N.

For example, if we use N = n2/logn different primes in
MEgq, its error-rate is 1/n.

3 Our Languages and gfa’s

A one-way gfa is the following model: (i) Its input head
always moves one position to the right each step. (i)
Global state transitions must be unitary. (iii) Its states
are partitioned into accepting, rejecting and non-halting
states. (iv) Observation is carried out every step, and if
acceptance or rejection is observed, then the computation
ends. Otherwise, computation continues after evenly dis-
tributing the amplitudes of accepting and rejecting states
to non-halting states. We omit the details, see for exam-
ple [KW97]. In this paper, we consider the following three
languages.

Logn; = ?uliw’2 f we{0,1}"},

Li(n wifwallflwaftwal | w1, we, ws, wys € {0,1}7,

(w1 = wf) V ((wrws) = (W3w4)R)J,
La(n, k) = {wi1fwiaffwiafiwiabff - - - #iHwir fwioffiwiswis
- - - Bl Bwro i wiswral
Wiy, W52, Wiz, Wiq S {Ovl}nyl S 1 S k and 1 S 3] S k
s.t. (wj1 = wg) A(foralll <i<j-—1, (wipwp)=
(wizwig) )}

In the next section, we first construct a qfa M2, which
accepts strings * € Lo with probability 1 and strings
y € Lo with probability at most % MOQ simulates the
protocol Mgq in the following way (see Fig 1). Given
an input string ¢w;fws$ (¢ is the leftmost and $ is the
rightmost symbols), M(? first splits into IV different states
Gpyy* " Gpir - Gpy With the same amplitude by reading
¢. Then from g,,, submachine My; divides integer w; by
the i-th prime p;. This computation ends up in some state
of My; which corresponds to the residue of the division.
This residue information is shifted to the next submachine
M>;, and then Mp; carries out a completely opposite op-
eration while reading wo. If (and only if) two residues are

the same, Mj; ends up in some specific state ¢?. M(? then
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applies a Fourier transform from ¢? to s; for 1 < i < N.

M(? thus simulates Mgq by setting sy as its only accept-
ing state.

Fig 1. gfa MOQ

We can use exactly the same state transition for the
probabilistic counterpart, pfa M{, except for determinis-
tic transitions from ¢ to sy. As mentioned before we can
achieve a quadratic difference in the probability of error,
like (1/n)? for M v.s. (1/n) for ME. This could be
traded to a quadratic difference in the necessary number
of different primes or a quadratic difference in the size of
automata. However, note that we do not need this small
(like 1/n or 1/n?) error rate, but something like 1/3 is
enough, by the definition. Then here are some difficul-
ties: First of all, it seems hard to calculate the number of
states very accurately, i.e., the number of states which is
just right to achieve this kind of constant error rate. Fur-
thermore, even if we could do that, there would be no big
difference in the size of automata that corresponds to the
di/ﬁerence in the error probabilities between, e.g., 1/3 and
1/9.

There is a standard technique to overcome these difficul-
ties, namely, the use of iteration. Consider the following
string:

wy fwiafiwer fwaolltl - - - fwn1fwns
where the accepting condition is that for some 1 < j < n,
wj1 = ijz. When all pairs (wj1,wj2) do not satisfy this
condition, the (error) probability of accepting such a string
is roughly O (1) x n = O(1), which appears desirable for
our purpose.

This argument does not seem to cause any problem for
pfa’s but it does for qfa’s for the following reason: After
checking wy; and w1, the gfa is in a single accepting state
if the condition is met, which is completely fine. However,
if wyy # wﬁ and the observation is not accepting, then
there are many small amplitudes distributed to many dif-
ferent states. Note that we have to continue the calcula-
tion for wp; and wy; which should be started from a single
state. (It may be possible to start the new computation
from each non-halting state, but that will result in an ex-
ponential blow-up in the number of states and no clear
separation in the size of automata either.) One can see
easily that we cannot use a Fourier transform this time
to gather the amplitudes since there are many different
patterns in the distribution of states which have a small
nonzero amplitudes.

This is the reason why the next language L;(n) plays
an important role. Suppose that wy # wf. Then the re-
sulting distribution of amplitudes is quite complicated as
mentioned above. However, no matter:how it is compli-
cated, we can completely “reverse” the computation for
wiflwe by reading wsfwy if (wiw2) = (waw4)®. This re-
verse computation should end up in a single state of am-
plitude one (actually it is a little less than one) since the



original computation for w; # w§ starts from the (single)
initial state. One can now see that the third language,
La(n, k), is exactly for the iteration purpose mentioned
above.

4 Main Results

As mentioned in the previous section, we sequentially con-
struct our qfa’s and corresponding pfa’s for Lo(n), Li{n)
and La(n,n¢). Recall that N is the number of primes used
in protocol Mgg and Ny = 8(n/logn).

Lemma 3. There exists a gfa M(? which accepts strings
in Ly with probability one and strings not in Lo with prob-
ability at most (%‘1)2 The number of states in M is
O(N%log N).

- Proof. Mg) has the following states: (i) An initial state
g0, (#%) gp,,jx,1 (in submachine My; of Fig 1), (iii) gp, .2
(in Mz.' of Flg 1), ('L‘U) ok ,jx,rej (also in Mz,’ of Fig 1), Sl\)’)
s;,wherelSIc:sN,i’Sj;c <pr—1land1l<{<N.
pr denotes the k-th largest prime (but we exclude two
from p; for the reason mentioned later). sy is only one
accepting state, gp, j,re; 8nd 8 (1 <1 < N — 1) are
rejecting states and 21l the others are non-halting states.
We give a complete state transition diagram of MoQ in
Table 1, where V,|Q) = 01]|Q1) + -+ + o4|Q:) + -+ +
o |Q@m) means that if M(? reads symbol o in state Q, it
moves to each state Q; with amplitude a; (|as|? +--- +
|om|? = 1).

When reading ¢ of the input string ¢wflw,$, MZ splits
into N submachines (denoted by My; in Fig 1) with equal
amplitudes (see transition (1) of Table 1). The k-th sub-
machine M} computes the residue when dividing w; by px
(by using transition (2 — a) to (2—d) in Table 1). This di-
vision can be done simply by simulatin% the usual division
procedure as shown in Fig 2 (a) and (b) for w; = 110001
and pa = 101 (= 5). State j in Fig 2 (b) corresponds to
dpa,j,1- The starting state is 0 and by reading the first
symbol 1 it goes to state 1. By reading the second sym-
bol 1, it goes to state 3 (= 11). Now reading 0, it goes
to state 1 since 110 = 1 mod 101. This continues until
reading the last symbol 1 and My ends up in state 4. It
should be noted that these state transitions are reversible:
For example, if the machine reaches state 2 (= 10) from
some state Q) by reading 0, then Q must be state 1 since
Q cannot be greater than 2. (Reason: If Q is greater than
2, it means that the quotient will be 1 after reading a new

symbol. Since M, 9 reads 0 as the new symbol, the least
significant bit of the residue when divided by 5 must be 1,
which excludes state 2 as its next state.) Hence the quo-
tient must have been 0, and so the previous state must be
1. (Note that this argument holds because we excluded
two from pi which is only one even prime.)

Thus, if w; mod pr = ji, then M(? is in superposition
vl YN lapnsnt) after MS read wy. Then M reads f
and this superposition is “shifted” to —= o |Gpnini2)s

where M(? checks if wi mod py is also ji by using tran-
sition (4 — a) to (4 — d) in Table 1. This job can be done
by completely reversing the previous procedure of dividing
w; by pi. Actually, the state transitions are obtained by
simply reversing the directions of previous state diagrams.
Since previous transitions are reversible, new transitions
are also reversible. Now one can see that the k-th sub-
machine My is in state gy, 0,2 iff the two residues are the
same.
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Finally by reading $, Fourier transform is carried out
only from these zero-residue states g, 02 to s;. Other
states gp, j2 (j # 0) go to rejecting states gp, jrej. If the
residues are the same in only ¢ submachines out of the k
ones, the amplitude of sy is given as

N .
% ZZexp (%kl) |si)

|¢] I=1
N-1 .
t 1 2mi
= N|3N) + N EM ¢§=1 exp (—N kl) |s1),

which is equal to ¢/N. Thus the probability of acceptance
is (7‘7)2 If the input string is in Lo, then this probability
becomes 1. Otherwise, it is at most (No/N)? by Lemma
2. The number of states in M(? is given as

N N
1+2Y o+ (o -1+ N

k=1 k=1
N
=143 pe <1+3-N-py =O(N?logN),
k=1
which completes the proof. u

(1) Vilao) = g oL lgpn.0,0),

(2-a) Volgp i) = lgpe2in) (0535 <B),
(2-b) Volgpe,51) = |gpu,2i-p1) (B <J < px),
(2-0) Vilgpe,i1) = l@pe,2i+11) (0Sj< B 1),
(2-d) Vilgps,i1) = l@pr,25+1-pe1) (B — 1 <j <px),
(3) Vilapu.i1) = lgpn.i2)s

(4-a) Volgp..j2) =lgp, 42) (5: even),

(4-b) Volgp.s2) =g, s1pu ) (5 : odd),

(4—-¢) Vilgp,j2) =g, izits ;) (i : even),
(4—d) Vilgpi.iz) =lap, 15t 2) (5 : odd),

(5-a) Valap.,0.2) = i iy exp (2FEkD) s1),
(5-0) WVslap,,i2) = l@pr.jires) (1 <3 <)

Table 1: State transition diagram of MJ

001001
101)810001

o
e

--« 0Oinput
—— 1linput

state 0000000
(a) (b)
Fig 2. division procedure for w; = 110001 and
pr =5

Let us consider the pfa whose state transition is exactly
the same as M(? of f(N) states excepting that the state



transitions from gy, 02 to s; for Fourier transform are re-
placed by simple (deterministic) transitions from gp, 0,2 to
sn. We call such a pfa emulates the qfa. Suppose that
MP emulates M?. Then the size of MP is almost the
same as that of M9, i.e., it is also O(f(N)) if the latter
is f(IN), since the Fourier transform does not make much
difference in the number of states.

Lemma 4. Suppose that M emulates MOQ . Then M¥
accepts strings in Ly with pro(i)ability one and those not
in Lo with probability No/N.

Let us set, for example, N = Np/n. Then the error-
rate of MZ is (No/N)? = L and its size is O(n3/logn).
To achieve the same error-rate by a pfa, we have to set
N = Nyn, which needs O(n?/logn) states.

Remark. Suppose that we have once designed a specific
afa M (similar for MF). Then it can work for inputs of
any length or it does not reject the input only for the
reason that its length is not 2n+ 1. The above calculation
of the acceptance and rejection rates is only true when our
input is restricted to strings C {0, 1}™4{0,1}".

Now we shall design a qgfa MlQ which recognizes the
second language L1(n). N§ also denotes the number s in
Lemma 1 but for = and y of length 2n.

Lemma 5. There exists a qfa. M. IQ which accepts strings
in Ly with probability 1 — (%?)2 + (£2)* and strings not
in Ly with at most (%‘})2 + (%f)2 -(1- %11)2 (14 %—‘11)2
M has ©((Ny1N3)2log Ny - log N3) states.

i’roof. Again a complete state transition diagram is
shown in Table 2, where accepting states are sy,,0,p,f
such that 0 < f < p; — 1 and ty,. Rejecting states are
Opr,epr,f,rej Such that e # 0O or f #0,0 < e < pp — 1,
0<f<p—1,tp04ysuchthat 1l <y< N;—1,andt,
such that 1 < z < N;—1. All other states are non-halting.

MIQ checks whether w; = wf using N; primes and also
whether (wywz) = (w3wq)® using N, primes. Note that
those two jobs have to be done at the same using composite
automata while reading w; jw,;. Hence M. 1Q first splits into
N1 - N3 submachines, each of which is denoted by M (k, 1),
1 <k < N,1<1l< N, Asshownin Fig 3, M(k,I)
has six stages, from stage 1 thorough stage 6. It might be
convenient to think that each state of M(k,!) be a pair
of state (qz,qr) and to think M(k,!) be a composite of
My, and Mpg. In stages 1 and 2, M has a similar state
transitions to those of Table 1 for checking w; # wg. Mp
has also similar transitions but only for the first part of it,

i.e., to compute wjw; mod p;. This portion of transitions
are given in (2) to (4) of Table 2.

¢ v vy @ oW W # $
(k, 1)
1,1} 1 F
2,175 Fl'|F - L®
T 5 O 1 ] F
1
N, 1) @ ]
F .
1,2): ' ' ' ' '®
¥ T i i
ol I 1OT 1k ©
, 7 |FLAIF] ; - —
Mot ] ¢ |_HO i
stagel stage2 stage3l staged stage5 stage6

Fig 3. qfa M, IQ
Now we go to stage 3. Here M, reading the first
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i, carries out the Fourier transform exactly as M (see
55 — a) in Table 2). After that My, reading the second
» execute Inverse Fourier transform from states sy, o.p,
1 <m < Ny —1), ie, from the states after the first
ourier transform excepting the accepting states, which is
shown in (6 — a) of Table 2. In this stage, Mg does noth-
ing; it just shifts the state information about (w;ws) mod

p1 (but only when w; # wi) to stage 4.

tages 4 and 5 are for the complete reverse operation
of stages 2 and 1. By doing this, the amplitudes for state
gL, which were once in turmoil after stage 2, are reorga-
nized and gathered in specific states, namely gp, 0,p,,0,4 if

(wrwe) = (wawg)®. Therefore, what we do is to gather
the amplitude of gp, 0,p,0,4 t0 tp, 0N, by Fourier trans-
form reading §. Now reading the rightmost symbol, we do
another Fourier transform, which gathers the amplitudes

of t,, o,N, to tn,.
'IPhe analysis of error probability is a little bit compli-

cated. The basic idea is as follows: When w; # w¥, a
small amplitude, Wlﬁ%l is “taken” by each of the N; ac-

cepting states in stage 3. This is basically the same as M(?

2
since its probability of observation is 3 _1v2, ( v %‘11) =

2
(%‘:) . So, the problem is how much of the remaining am-

plitudes distributed on other states in this stage can be
retrieved in the final accepting state ¢y, when (wjw;) =

(wawg)®. If we could retrieve 100%, then the accept-

ing probability at state ty, when (wiwz) = (wswq)F is
2

1-— (%‘ll) . Unfortunately, we cannot do that but the loss

is very small and our accepting probability at state ¢y, is

2
1 (M)’ =1 2N°2+ No*
N - Ny N )

which turns out to be enough for our purpose. |
Suppose that we set N; = Noy/n, and N = dN}. Then
= 71; and %—g < 3 if we select a sufficiently large
constant d. Namely, M IQ accepts strings in L; with prob-
ability 1 — % + ;1, and those not in L; with probability
at most § + - + . The number of states is G(b’g‘—;—n).

The probability distribution on acceptance and rejection
in each state is illustrated in Fig 4. »

Fig 4. probability distribution when N; = Ny/n,
N; =dN}

Let us consider pfa M{ which recognizes L;(n). The
state transition of M{ is the same as that of M{* except
Fourier transform and Inverse Fourier transform only M
performs. If string = satisfies w; # w¥, then M¥ accepts
z with at most probability %‘11 after reading wjfjw,. It



should be noted that MIQ accepts such a string with at
2
most probability (%‘}) after reading w;fjw,.

Lemma 6. Suppose that M emulates M. Then
MY accepts strings in L, with probability 1 and those
not in L; with probability at most %—;‘11 + (1 - %‘:) . %‘;1
The number of states is approximately the same, i.e.,
O((N1N3)%log Ny log N3). (Proof is omitted.)

If we set N; = Non and Ny = dN|, then strings such
that w; # w¥ are accepted with probability at most %
after reading wjfiwz. Thus this probability is the same as
the qfa such that Ny = Npy/n and Np = dN{, but number

of states of this pfa is (T’Q;“)

og? n

Now we are ready to give our main theorem:
Theorem 1. For any integer c, there is a qfa M9 such
that M9 recognizes L(n,n°) and the number of states in

. c+4
M Q is O (l::g—’_n) .
Proof. The construction of M@ is easy: We just add a
new deterministic transition from the last accepting state
in stage 6 of MlQ to its initial state by {{, by which we

can manage iteration. Also, we need some small changes .

to manage the very end of the string: Formally speaking,
transition (11) in Table 2 is modified into

1 & (2mi
Viltp 0.N2) =\/_N'1'Z:exP ngz I¢2),

z=1

tn, is now not an accepting state but a non-halting state
and two new transitions

(10—c) Vslgpu,epi.ti4) = |Gpu,e,pr.fores)
(12) Viltw,) = la1)

are added.

We set N; = 2Non*/2 and Ny = dN}. Then Ny/N; =
gty and N§/N, < § if we select a sufficiently large con-
stant as d. Suppose that M9 has not stopped yet and
is now reading the i-th block wyflwiafiiw;stiwis. Then, we
can conclude the following by Lemma 5: (i) If wy = wg,
then M9 accepts the input with probability one. (ii) If
(wiwiz) = (wiaw;g)R, then (i1 — a) M9 also accepts the
input with probability 1/4n°¢ and (ii — b) rejects the input
with zl- — ;75 and (ii — c) goes back to the initial state
with 1 — 3;2‘7 + ﬁ,l-;gg (1) If (wiwie) # (w,-awu)R, then
(i4i — @) M9 accepts the input with g1z, (iii — b) rejects
it with % - s% - ﬁ,; and (iii — c) goes back to the ini-
tial state with } — giz + fgis=. The number of state is
OY{Z‘ log? n).

that the number of iteration is n° and suppose
that the input z is in L(n,n¢). Then, the probability that
x is rejected is equal to the probability that (ii—b) happens
before (i) happens. The probability that (i1 — b) happens
is at most 3;1‘-; per iteration, and so the probability that
(i4 — b) happens in some iteration is at most n° - o =
%. Therefore the probability that z is finally accepted is
well larger than 1/2. Suppose conversely that z is not in
L(n,n°). Then the probability that (i1 — a) happens in
some iteration is the same as above and is at most %. If
M@ does not meet a block such that (w;;wig) # (wizwie)®
until the end, then the accepting probability is at most
this 1/4. If M9 does meet such a block in some iteration,
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it rejects  with probability at least (1 — 1)(3 — z: —

1657 ) Which is again well above 1/2. Thus M9 recognizes
L(n,n°). ]

Theorem 2. Suppose that M¥ which emulates M?
recognizes L(n,n¢). Then the number of states of M¥ is
Q(n?*4/log® n).

Proof. M? is constructed by applying a similar modi-
fication as above to M{. Then it turns out from Lemma
6 that if we set N; = %Nonc, Nz = dNg then the number

of states in MF is Q(n?+4/log?n). Now suppose that
the input z includes a long repetition of blocks such that
(wirwiz) = (wiawie)®. Then z is accepted in each itera-
tion with probability a/n°. Therefore the probability that
this happens in the first k iterations is

S(-4) T (-2

i=1

Since the number of repetitions (= k) can be as large as
nec,

nc 1
lim (1 - i) = .
a

n—oo ne e

Thus if we select a sufficiently large constant a, then the
probability of acceptance can be almost 1. Such a MF
cannot recognize L(n, n°) obviously, which proves the the-
orem. ]

5 Concluding Remarks

The question in this paper is whether or not we can exploit
the difference in probability calculation between quantum
and probabilistic computations. We have shown that the
answer is yes using quantum finite automata. However,
what remains apparently is whether or not we can exploit
this property for other types of models and/or for other
types of problems which are preferably less artificial. Also
it should be an important future research to obtain a gen-
eral lower bound for the number of states which is needed
to recognize La(n, n¢) by pfa’s.
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Table 2: state transition diagram of M{
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