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1. Introduction.

This paper is concerned with vector-valued variants of the following type of inequality:
if f(z,z) <0 for all z, then
{,’é‘,’} sup f(z,y) <0,

which is equivalent to the famous Fan’s minimax inequality (this equivalence was proved by
Takahashi [8, Lemma 1] firstly). This inequality is one of the main tools in the nonlinear and
convex analysis, equivalent to Brouwer’s fixed point theorem, Knaster-Kuratowski-Mazurkiewicz
theorem, and so on. As an analytical instrument, in many situations it is more appropriate
and applicable than other main theorems in nonlinear analysis. We refer to [2] for various type
equivalent theorems in nonlinear analysis.

In this paper we show four kinds of vector-valued Fan’s type inequality for multifunctions.
One of them (Theorem 3.1) generalizes the main result of Ansari-Yao in [1], namely, the existence
result in the so-called Generalized Vector Equilibrium Problem. Any of our Theorems 3.1-3.4
implies the classical Fan inequality, while the main result in [1] does not imply it in its full
generality, but only for continuous functions. Our proofs are quite different from that in [1] and
are based on the classical scalar Fan inequality. More precisely, in the proofs we use a new result
(see Theorem 2.3) which follows from a two-function result of Simons [7, Theorem 1.2] (used in
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[7] to derive Fan’s inequality), which we prove directly by Fan’s inequality. For a simple proof of
the classical Fan inequality, based on Brouwer’s fixed point theorem, we refer to (3] and ?7?.

Our main tool in this paper (Theorem 2.3) is a slightly more general form of a two-function
result of Simons [7, Corollary 1.6] and as a consequence of our results, it implies the classical Fan
inequality.

The proofs of the main results (Theorems 4.1-4.4) use Theorem 2.3 for special scalar func-
tions possessing semicontinuity and convexity properties, inherited by the semicontinuity and the
convexity properties of the multifunctions. The four types of Fan’s inequality can be regarded as
generalizations of the classical Fan'’s inequality by substituting the nonpositivity of of the scalar
function (f(z,y) < 0) by various types of set relations between the images of multifunction and
cone; see Figures 1-4.

2. Fan’s inequality and a new two-function result.

Theorem 2.1 (Fan). Let X be a nonempty compact convex subset of a topological vector space
and f : X x X — R be quasiconcave in its first variable and lower semicontinuous in its second
variable. Then

min sup f(z,y) < sup f(z,z).
YEX zeX zeX

Theorem 2.2 (Simons [7, Theorem 1.2]). Let Z be a nonempty compact convex subset of a

topological vector space, f : Zx Z — R lower semicontinuous in its second variable, g: ZxZ — R

quasiconcave in its first variable, and f < g on Z x Z. Then

min sup f(z,y) < supg(z, 2).
VE€Z ez 2€Z
Proof. Define the function co f as a quasiconcave envelope of f with respect to the first variable:
n n
co f(z,y) :== sup{ie{ri:inn}f(mi,y) rT = z/\imi,:z:i €Z,)>0, Z)\,- =1,n € N},
e i=1 i=1

where N is the set of the natural numbers. This function satisfies the conditions of Fan’s inequality
and applying the latter, we obtain the result.
Now we prove our main tool in this paper. Its proof is similar to that of [7, Corollary 1.6].

Theorem 2.3. Let X be a nonempty compact conver subset of a topological vector space, a :
X x X — R lower semicontinuous in its second variable, b : X x X — R quasiconvez in its
second variable, and

z,y € Xand a(z,y) > 0= b(y,z) < 0.

Suppose that inf e x b(z, z) > 0. Then there erists z € X such that a(z,z) < 0 for all x € X.

Proof. The proof is straightforward from Theorem 2.2 by defining f(z,y) = 1 if a(z,y) > 0
and f(z,y) = 0 otherwise; g(z,y) = 1 if b(y,z) < 0 and g(z, y) = 0 otherwise.
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3. Definitions and auxiliary results.

Further let E and Y be topological vector spaces and F,C : E — 2Y two multivalued mappings
and let for every z € E, C(z) be a closed convex cone with nonempty interior. We introduce
two types of cone-semicontinuity for set-valued mappings, which are regarded as extensions of
the ordinary lower semicontinuity for real-valued functions; see [5].

Denote B(z) = (int C(z)) N (2S5 \'S) (an open base of int C(z)), where S is a neighborhood
of 0 in Y, and define the function h(k,z,y) = inf{t : y € tk — C(z)}, Note that h(k,z,-) is
positively homogeneous and subadditive for every fixed x € F and k € int C(z). Moreover, we
use the following notations h(k,y) = inf{t : y € tk — C}, and B = C N (25 \ S), where C is
a convex closed cone and S is a neighborhood of 0 in Y. Note again that h(k,-) is positively
homogeneous and subadditive for every fixed k € int C.

Firstly, we prove some inherited properties from cone-semicontinuity.

Definition 3.1. Let & € E. The multifunction F' is C(&)-upper semicontinuous at zg, if for
every y € C(£)U(—C(Z)) such that F(zp) C y + int C(&), there exists an open U 3 z¢ such that
F(z) C y+intC(Z) for every x € U. If Y is a Banach space, we shall say that F' is (—C)¢-upper
semicontinuous at o, if for any € > 0 and k € C such that (k + eBy — C) N F(zp) = @, there
exists § > 0 such that (k + By — C) N F(z) = 0 for every z € B(xg;9).

Definition 3.2. Let £ € E. The multifunction F' is C(&)-lower semicontinuous at zg, if for
every open V such that F(zg) NV # ), there exists an open U 3 zg such that F(z) n (V +
int C(Z)) # 0 for every z € U. If Y is a Banach space, we shall say that F is C(&)-lower
semicontinuous at xg, if for any € > 0 and yo € F(zp) there exists an open U 3 zg such that
F(z)N (yo + By + C(Z)) # @ for every z € U, where By denotes the open unit ball in Y.

Remark 3.1. In the two definitions above, the corresponding notions for single-valued function
are equivalent to the ordinary one of lower semicontinuity for real-valued function whenever
Y = R and C = [0,00). When the cone C(Z) consists only of the zero of the space, the notion
in Definition 3.2 coincides with that of lower semicontinuous set-valued mapping. Moreover, it
is equivalent to the cone-lower semicontinuity defined in [5], based on the fact of V + int C(%) =
V + C(%); see [9, Theorem 2.2].

Proposition 3.1 If for some zg € E, A C int C(zg) is a compact subset and multivalued map-
ping W(-) =Y \ {int C(-)} has a closed graph, then there exists an open set U > zy such that
A C C(z) for every x € U. In particular C is lower semicontinuous .

Proof. Assume the contrary. Then there exists a net {z;} converging to z¢ such that for every
i there exists a; € A\ C(z;). Since A is compact, we may assume that a; — a € A. Since W has
a closed graph, it follows that a € W (zy), which is a contradiction. I

Lemma 3.1. Suppose that multifunction W : E — 2¥ defined as W(z) = Y \ intC(z) has a
closed graph. If the multifunction F is (—C(z))-upper semicontinuous at = for each x € E, then
the function ¢1|x (the restriction of

z):= inf sup h(k,z
(pl( ) kEB(w)yGFI()x) ( 3 )y)

to the set X ) is upper semicontinuous, if (F, X) satisfies the property (P);

(P) for every x € X there exists an open U > z such that the set F(U N X) is precompact in
Y, that is, F(U N X) is compact.

If the mapping C is constant-valued, then ¢ is upper semicontinuous.
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Proof. Assume that (F, X) has property (P). Let € > 0 and z¢ € X be given. By the definition
of 1 there exists kg € B(zp) such that

sup h(ko,z0,y) < ¢1(xo) + €.
yEF(a:o)

Since supye p(z,) h(ko; Zo,y) = inf{t : F(zo) C tho ~ C(z0)}, we can take
inf{t : F(zo) C tko — C(z0)} < to < w1(wo) + €.
Since F is (—C(zp))-upper semicontinuous at zg, there exists an open U 3 z¢ such that
F(z) C toko — int C(zg) for every z € U.

By Proposition 3.1 and property (P), for tg < t' < ¢1(z0) + &, there exists an open U; C U such
that
F(z) c t'kg—intC(z) and ko € B(x) for every z € Uy N X.

Then
z) = inf sup h(k,=z,
e1(z) keB(z)yepﬂ) (k, z,y)
< sup h(k0a$7y)
y€t'ko—~C(x)
= t’h(ko,:l),ko)*i- sup h(ko,iv,y)
ye—C(z)
<t
< pi(zo) +e.

The proof of the second statement (when C is constant-valued) is similar, but in this case there
is no need to use Proposition3.1 and property (P). |

Lemma 3.2. Suppose that the multifunction F is —C(x)-lower semicontinuous for each z € E
and the multifunction W : E — 2Y defined by W(z) = Y \ intC(z) has a closed graph. Then the
function @2|x (the restriction of

p2(z) := kéﬁfz)yé?fx) h(k,z,y)

to the set X ) is upper semicontinuous, if (F,X) satisfies the property (P). If the mapping C is
constant-valued, then @3 is upper semicontinuous.

Proof. Let € > 0 and zp € E be given. By the definition of 3, for tg € (w2(zo), w2(z0) + <)
there exists ko € B(zg), ko € int C(zg), and 29 € F(zg) such that 29 — tokp € —int C(zg). By
Proposition 3.1, there exists an open set U; 3 zg such that

20 — tokp € —intC(z) and ko € int C(z) for every z € Uj.

Therefore
h(ko,z,20) <tg for every z € Uj. (3.1)

Let v < /2. By (—C(=p))-lower semicontinuity of F', there exists an open set Uy C Uy, zg €
U, such that

G(z) := F(z)N[20 + vko — int C(z0)] # O  for every z € Us. (3.2)

Hence

G(Uz N X) C zg + vko — int C(wo)
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G(U2NX) C 2 + 2vko — int C (o).
By Proposition 3.1 there exists an open Us C U, U3 3 x¢ such that
G(U2N X) C 2+ 2vykg — int C(z) for every z € Us.
This implies
F(z)N (20 + 2vko —int C(z)) # @ for every xz € U3N X.

Take z € Us N X and y; € F(z) N (20 + 2vko — int C(z)). Therefore y, = 20 + 27k + ¢z, where
cg € —int C(z). We obtain

wa(z0) +e > to
> h(ko,x,20) (by (3.1))
= h(ko,z,y — 27ko — cz)
> h(ko,z,y) — h(ko,z,2vko) — h(ko, z,cz) (by subadditivity of h(ke, z,))
> h(ko,z,y) —2v
> pa(z) —e.
Hence

w2(zo) + 26 > pa(z)  for every r € Us N X.

The proof of the second statement (when C is constant-valued) is similar, but in this case there
is no need to use Proposition 3.1 and property (P). l

Lemma 3.3. Suppose that Y is a Banach space and the multifunction F : E — 2Y is (-=C)¢-
upper semicontinuous and locally bounded (it means that for every point xo € E there exists an
open set U > xg and p > 0 such that F(xz) C pBy for every x € U, where By denotes the
open unit ball in Y). Suppose that the multifunction C has a closed graph and the cone C(z)
has a compact base B(z) = (2By \ By) N C(z) for every z. Then the function vy is lower
semicontinuous.

Proof. Firstly we shall prove that the function g(k, ) := infycp(g) h(k, z,y) is lower semicon-
tinuous. It is easy to see that

g(k,z) = inf{t : (tk — C(z)) N F(z) # 0}
(if (tk — C(z)) N F(z) = @ for every t, we put g(k,z) = +00). Take (ko,z0) € Y x E and let
{xi}, {ki} be sequences such that x; — zo and k; — ko. Let liminf h(k;, x;) = I. There exists a
subsequence {(ki,, ;,)} of {(ki,z;)} such that k;, — ko € B(zo) and I = lim g(k;,, x;,). Assume
that ! < g(ko,zo). Then there exists € > 0 such that A
I+ & < g(ko, zo) — €. (3.3)
By the definition of g, there exists
vi € F(zi) N[(g(ki,zi) +e)k; — C(2:)] Vie N,

Hence

yi = [9(ki, i) + elki — ¢ , (3.4)

for some ¢; € C(z;). By the locally boundedness of F' and from the compactness of B(xg), we
obtain that the sequence {c¢;} is precompact. Then by (3.4), passing to limits and using the fact
that C has a closed graph, we obtain

limy; = yo = (I + €)ko — co, o (3.5)
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where cg € C(zg). Since F(zp) is bounded and B(zp) is compact, the distance between the sets
F(zo) and [g(ko, To) — €]ko — C(zo) is positive, so there exists o > 0 such that

(lg(ko, z0) — €]ko + aBy — C(z0)) N F(zo) = 0.
By the (—C)°-upper semicontinuity of C' we obtain that for some index ig € N,
vi € [9(ko, o) — €]ko + aBy — C(zo) Vi> ip.

Hence passing to limit, by (3.3) we obtain yo & [l + £]ko — C(z0), which is a contradiction with
(3.5). So we proved the lower semicontinuity of g at (ko, zo). Now, we apply Proposition 3.1.21
in [2] and finish the proof. |

Lemma 3.4. Suppose that Y is a Banach space and the multifunction F : E — 2¥ is C(x)-
lower semicontinuous for each x € E and locally bounded. Suppose that the multifunction C has
a closed graph and the cone C(z) has a compact base B(z) = (2By \ By) N C(z) for every z.
Then the function yp; is lower semicontinuous.

Proof. Firstly we shall prove that the function g(k, z) := supyep(z) h(k, =, y) is lower semicon-
tinuous. Take (ko, o) and let {z;}, {ki} be sequences such that z; — zo and k; — ko. Let ¢ > 0
be given. There exists yg € F(zp) such that

h(ko, Zo,y0) > g(ko, zo) — €. (3.6)
Since F is C-lower semicontinuous, for 8 > 0 there exists index ip such that
F(zi)N[yo + BBy + C(zo)] # 0 Vi > iy.
Take y;i € F(z;) N [yo + BBy + C(z0)]. Hence
¥i = yo + b+ ci, (3.7)

where ¢; € C(xo) and b € By. Since y; € [h(ki,zi, y;) + €]ki — C(x;), we have y; € [g(ki, ;) +
glk; — C(z;), and hence

—yo—PBb—ci+ [g(k,-, :L'i) + E]ki € C(.’L‘,) (3.8)

By the locally boundedness of F, from (3.7) and the compactness of B(xp), we obtain that
the sequence {c;} is precompact. Let liminf h(k;, z;,y0) = I. Without loss of generality (taking
subsequences) we may suppose that k; — ko € B(zo) and I = lim g(k;, z;). Then by (3.8), passing
to limits and using the assumption that C has a closed graph, we obtain yo+8b € (I+¢)ko—C(z0).
Hence by (3.6), g(ko, zo) — € < h(ko, Zo,%0) < !+ & + a, where a = h(ko, zo, —3b). Since ¢ > 0,3
are arbitrarily small (therefore o is arbitrarily small too, by continuity of h(ko, zo,)), we obtain
h(ko, zo,¥0) < l. This proves lower semicontinuity of g at (ko, o). Now, we apply Proposition
3.1.21 in [2] and finish the proof.

Next, we show some inherited properties from cone-quasiconvexity.

Definition 3.3. A multifunction F : E — 2Y is called C-quasiconvez, if the set {z € E :
F(z) N (a — C) # 0} is convex for every a € Y. If —F is C-quasiconvex, then F is said to be
C-quasiconcave, which is equivalent to (—C)-quasiconvex mapping.

Remark 3.2. The above definition is exactly that of Ferro type (—1)-quasiconver mapping in
[6, Definition 3.5].

Definition 3.4. A multifunction F : E — 2Y is called (in the sense of [6, Definition 3.6])
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(a) type-(iii) C-properly quasiconvez if for every two points z1,z2 € X and every X € [0, 1] we
have either F(z1) C F(Az1 + (1 — N)z2) + C or F(z2) C F(Az1 + (1 — N)zg) + C.

(b) type-(v) C-properly quasiconvez if for every two points z1,22 € X and every A € [0,1] we
have either F(Az; + (1 — A)zg) C F(z1) — C or F(Az1 + (1 — X)z2) C F(zg) —
If —F is type-(iii) [resp. type-(v)] C-properly quasiconvex, then F' is said be type-(iii) [resp.

type-(v)] C-properly quasiconcave, which is equivalent to type-(iii) [resp. type—(v)] (—C)-properly
quasiconvex mapping.

Remark 3.3. The convexity of (b) above is exactly that of C -quasiconvez-like multifunction in
[1].

Lemma 3.5. If the multifunction F : E — 2Y s type-(v) C-properly quasiconvez, then the
function

P1(z) == mf sup h(k,y)
B yeF(z)

s quasiconvez.

Proof. By definition, for every A € [0,1] and every z1,z2 € X we have: either F(Az1 + (1 —
Nz2) C F(z1)—C or F(Az1+(1—A)z2) C F(z2)—C. Assume that F(Az1+(1—A)zg) C F(z;)—-C.
Then

wl()\ml + (1 — A):Ez)

li

inf sup{h(k,y) : y € F(Az1 + (1 - N)z2)}

< nf sup{h(k,y) : y € F(z1) - C}
= inf sup h(k,y—c
keB ’AIEF(I:I) (ky )
< inf sup (h(k,y) + h(k,—c)) (by subadditivity of h(k,-))
keB ver(z)
< (=)
< max{y1(z1), Y1(z2)}-
Analogously we proceed in the second case, when F(Az; + (1 — N)zg) C F(z2) — C. |

Lemma 3.6. If F' is C-quasiconvez, then for every k € B the function
Ya(x; k) == inf{h(k,y) : y € F(z)}
18 quasiconver.

Proof. By the definition of ¥, for every € > 0 and z1,z2 € F there exist 2; € F(z;),t; € R
such that

z; —tik € —C, (3.9)
and
t; < ’t,bk(l‘z) +e,1=1,2. (310)
Since s1k — C C sk — C for s1 < s3, by (3.9), we have z; € t;k — C C max{t1,t2}k — C. Hence,
by the C-quasiconvexity of F', for every A € [0, 1] there exists y € F(Az1 + (1 — A)z2) such that
y € max{t1, t2}k — C, which means
h(k,y) < max{ty,t2}
< max{Yx(z1), Yr(z2)} + ¢
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(by 3.10) and since, the definition, we have
Ye(Az1 + (1 — A)z2) = inf{h(k,y) : y € F(Az1 + (1 - A)z2)},
and € > 0 is arbitrarily small, we obtain ¥, (Az1 + (1 — A)z2) < max{yx(z1), ¥r(z2)}- [

Lemma 3.7. If the multifunction F : E — 2Y is type-(v) C-properly quasiconcave, then the
function ¥o(z; k) is quasiconcave, where k € int C.

Proof. By definition, for every A € [0, 1] and every 1, 2 € X we have either F/(Az1+(1—A)z) C
F(z1) + C or F(Az1 + (1 — A)x2) C F(z2) + C. Assume that F(Az; + (1 — A)x2) C F(z1) +C.
Then

P1(Az1 + (1 — N)z2; k) inf{h(k,y) : y € F(Az1 + (1 — N)z2)}

> inf{h(k,y+c):y € F(x1),ceC}
> inf{h(k,y) — h(k,—c) : y € F(z1),c € C}
> inf{h(k,y) : y € F(z1)}
= Yi(z1;k)
> min{¢1(z1; k), Y1(z2; k)}.
Analogicaly we proceed in the second case, when F(Az; + (1 — A)z2) C F(zg) + C. [

Lemma 3.8. If the multifunction F : E — 2Y¥ is type-(iii) C-properly quasiconcave, then the
function

Y1(z; k) = sup{h(k,y) : y € F(z)}

is quasiconcave, where k € int C.

Proof. By definition, for every A € [0,1] and every z1,z2 € X we have either F(z;) C
F(Az1 4+ (1 — N)x2) — C or F(zg) C F(Az1 + (1 — N)z2) — C.
Assume that F(z;) C F(Az1 + (1 = M\)z2) — C. Then

Ya(z1; k) sup{h(k,y) : y € F(z)}

sup{h(k,y —c):y € F(Az1 + (1 — N)z2),c € C}
sup{h(k,y) + h(k,—c) : y € F(Az1+ (1 — N)z2),c € C}
sup{h(k,y) : y € F(Az1 + (1 — N)z2)}

PYa(Azy + (1 — N)z2; k),

and hence min{v2(x1; k), ¥Y2(x2; k)} < ¥2(Az1 + (1 — A)x2; k).
Analogicaly we proceed in the second case, when F(z3) C F(Az1 + (1 — M)z2) — C. |

IANIA A

4. Set-valued Fan’s inequalities.

Now we state the main results in this paper. The following theorem is a generalization of that in
[1]. The main difference between our result and that in [1] is the condition (iii), but it allows us
to recover the classical Fan inequality, when Y is the real line. The result in [1] recovers it only
for continuous functions.

Theorem 4.1 Let K be a nonempty convex subset of a topological vector space E, Y be a topo-
logical vector space. Let F: K x K — 2Y be a multifunction. Assume that

(i) C: K = 2Y is a multifunction such that for every z € K,C(z) is a closed convez cone in
Y with int C(z) # 0;
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(i) W : K — 2¥ is a multifunction defined as W(z) = Y \ int C(z), and the graph of W is
closedin K xY;

(iii) for every z,y € K, F(-,y) is C(z)-upper semicontinuous at x with closed values on K and
if the mapping C is not constant-valued, then the mapping F(-,y) maps the compact subsets
of K into precompact subsets of Y ; '

(iv) there exists a multifunction G : K x K — 2Y such that

(a) for every z € K, G(z,x) ¢ int C(z),

(b) for every z,y € K, F(z,y) C int C(z) implies G(z,y) C int C(z),

(c) G(z,-) is type-(v) C(z)-properly quasiconcave on K for every z € X,
(d) G(z,y) is compact, if G(z,y) C int C(z);

(v) there exists a nonempty compact convex subset D of K such that for every z € K\ D, there
exists y € D with F(z,y) C int C(z).

Then, the solutions set

S={reK:F(z,y) ¢ intC(z),for ally € K}
is a nonempty and compact subset of D.
Proof. Put

a(z,y) = — inf su h(k,y,z), b(z,y):= inf su hik,x,z).
(z,9) B (k,y,2), b(z,y) R (k,z,2)

It is easy to check that
a(z,y) >0 if and only if F(y,z) C intC(y)

by using the compactness of F(z,y), and also b(y,z) < 0 if G(y,z) C intC(y) by using
condition (d), and then a(z,z) < 0 and b(z,z) > 0.
Denote

Sy :={z € D:F(z,y) ¢ intC(x)}. (4.1)

Since a(y,-) is lower semicontinuous (by Lemma 3.1), the set S, is closed. Let Yp be a finite
subset of K. Denote by Z the closed convex hull of Yo U D. Obviously Z is compact and convex.
Lemmas 3.1, 3.5 and condition (iv) (b) show that the conditions of Theorem 2.3 are satisfied.
Now we apply Theorem 2.3 and obtain a point z € Z such that a(y,z) <0 for every y € Z,
which means

F(z,y) ¢ imtC(z) forevery yeZ. : (4.2)

The conditions (v) and (4.2) imply that z € D. Relation (4.1) implies that N{Sy : y € Yo} #
f. So we proved that the family {S, : y € K} has finite intersection property. Since D is
compact, N{S, : y € K} # @, which means that there exists 29 € K such that F(zo,y) ¢
int C(zg) for every y € K. So we proved that S is nonempty, and since S is a closed subset of
D, the proof is completed. I

Theorem 4.2. Let K be a nonempty convez subset of a topological vector space E, Y a topo-
logical vector space, and F' : K X K — 2Y o multifunction. Assume that

(i) C: K — 2¥ is a multifunction such that for every x € K,C(x) is a closed conver cone in
Y with int C(z) # 0;
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(i) W : K = 2Y is a multifunction defined as W(z) =Y \ int C(z), for every z € K such that
the graph of W is closed in K x Y';

(iii) for every z,y € K, F(-,y) is C(z)-lower semicontinuous with closed values on K and if
the mapping C is not constant-valued, then the mapping F(-,y), for everyy € K, maps the
compact subsets of K into precompact subsets of Y ;

(iv) there exists a multifunction G : K x K — 2¥ such that
(a) for every z € K, G(z,z) Nint C(z) = 0,

(b) for every z,y € K, F(z,y) NintC(z) # O implies G(z,y) Nint C(x) # 0,
(¢) G(z,-) is C(z)-quasiconcave on K for every x € K;

(v) there erists a nonempty compact convez subset D of K such that for every x € K\ D, there
exists y € D with F(z,y) Nint C(z) # 0.

Then, the solutions set
S={r e K:F(z,y)N(int C(z)) = 0, for all y € K}
is a nonempty and compact subset of D.

Proof. Put

a‘(way) = inf h(k,y, z)1 b(xi y) = inf h(k(z),mxz)y

inf
keB(y) z€—F(y,x) 2€-G(z,y)

where the function k is any fixed selection of the multivalued mapping z + int C(z), i.e., k(z) €
int C(z) for every z € K. It is easy to check that

a(z,y) > 0 if and only if F(y,z) N (int C(y)) # 0,
b(y,z) < 0 if and only if G(y,z) N (int C(y)) # 0,
a(z,z) <0, b(z,z)>0.

Lemmas 3.2, 3.6 and condition (iv) (b) show that the conditions of Theorem 2.3 are satisfied.
Further the proof is the same as that of Theorem 4.1, but in this case Sy := {x € D : F(z,y) N
(int C(z)) = 0}.

Theorem 4.3. Let K be a nonempty convex subset of a topological vector space E, Y a Banach
space, and F : K x K — 2¥ a multifunction. Assume that

(i) C: K = 2Y is a multifunction with a closed graph and C(z) is a closed convez cone with
a compact base B(x) = (2By \ By) N C(z) for every z;

(ii) for everyy € K, F(-,y) is (—C)°-upper semicontinuous and locally bounded;
(iii) there erists a multifunction G : K x K — 2Y such that
(a) for every z € K, G(z,z) N (-C(z)) # 0,

(b) for every z,y € K, F(z,y) N (-C(z)) = B implies G(z,y) N (-C(z)) =0,
(c) G(z,-) is type-(v) C(z)-properly quasiconcave on K for every xz € K;

(iv) there exists a nonempty compact convex subset D of K such that for every x € K\ D, there
exists y € D with F(z,y) N (-C(z)) = 0.
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Then, the solutions set
S={zeK:F(z,y)N(-C(z)) # B, for all y € K}
is a nonempty and compact subset of D.
Proof. Put

= inf inf h(k b :=— inf inf h(k .
a(z,y) kelB(y)ze;,n(f/’m) (k,y,2), b(z,y) pand ceint (kyz,2)

It is easy to check that
a(z,y) <0 if and only if F(y,z)N(-C(y)) # 0,

b(y, ) 2 0 if and only if G(y,z) N (-C(y)) # 0,
a(z,z) <0 and b(z,z) > 0.

Lemmas 3.3, 3.7 and condition (iii) (b) show that the conditions of Theorem 2.3 are satisfied.
Denote Sy := {z € D : F(z,y) N (-C(z)) # 0}. Since a(y,-) is lower semicontinuous (by
Lemma 3.3), the set Sy is closed. Let Y be a finite subset of K. Denote by Z the intersection of
K and the linear hull of Y U D. Obviously Z is compact and convex. Now we apply Theorem 2.3
and obtain a point 2 € Z such that

a(y,z) <0 for every y€ Z (4.3)

which means

F(z,y) N (-C(z)) #0 forevery ye€ Z. (4.4)

Assumption (iv) and condition (4.4) imply that z € D, and condition (4.4) implies also N{Sy, :
y € Y} # 0. So the family {Sy, : y € K} has finite intersection property. Since D is compact,
N{Sy : y € K} # 0, which completes the proof. [ |

Theorem 4.4. Let K be a nonempty convex subset of a topological vector space E, Y a Banach
space, and F : K x K — 2Y a multifunction. Assume that

(i) C: K — 2Y is a multifunction with a closed graph such that C(z) is a closed convez cone
with a compact base B(z) = (2By \ By) N C(z) for every x;

(i) for every xz,y € K, F(-,y) is C(z)-lower semicontinuous and locally bounded;
(iii) there exists a multifunction G : K x K — 2Y such that

(a) for every xz € K,G(z,z) C —C(z),
(b) for every z,y € K, F(z,y) ¢ —C(z) implies G(z,y) ¢ —C(z),
(¢) G(z,-) is type-(iil) C(z)-properly quasiconcave on K for every z € K;

(iv) there exists a nonempty compact convex subset D of K such that for every x € K\ D, there
exists y € D with F(z,y) ¢ —C(z).

Then, the solutions set
S={zeK:F(z,y) C —C(z),forally € K}

is a nonempty and compact subset of D.
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Proof. Put

a(z,y) = inf sup h(k,y,2), b(z,y):=— inf sup h(k, z,2).
S kEB(U)zEF(im) (k9,2) (=) kEB(x)zEG(E,y) ( )

It is easy to check that
a(z,y) <0 if and only if F(y,z) C —C(y),
b(y,z) >0 if and only if G(y,z) C —C(y),
a(z,z) <0 and b(z,z) > 0.

Lemmas 3.4, 3.8 and condition (iii) (b) show that the conditions of Theorem 2.3 are satisfied.
Further the proof is the same as that of Theorem 4.3, but in this case Sy := {x € D : F(z,y) C

—C(z)}.

5. Conclusions.

We have presented four type generalizations of the scalar Fan’s inequality in the following setting:

(1) set-valued maps with vector-valued images instead of scalar functions;
(i1) two-function type instead of single function type;
(i) parametric ordering structure instead of fixed ordering structure;

(iv) complete extensions including the result of [1].

As a corollary from any of Theorems 4.1-4.4, we obtain that Theorem 2.3 implies the scalar Fan
inequality.
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