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0. Introduction
Let ) be a bounded smooth domain in R? and let
v [0,t0] Dt v(t) e R (2o >0)
be a smooth curve without self-intersection. We impose the following hypotheses on € and +.
(H1) 0€8Q, ~(0)=0, ~(to)€ 09, and ~((0,t)) C Q.
(H.2) There exists ro € (0,%0) such that
7(t) = (t’ 0) on [O’ 7'0],
Qn{zeR? |z|<r}={z=(z1,22) € R% x>0, |z|<mo}
(H.3) The curve v intersects 92 transversely at y(¢o)-
The set Q\v((0,to)) consists of two connected components. Let 24 be the connected component of
2\7((0,t)) which contains (ro/2, +70/2).
For € € (0,19), we set
Qe = Q\'Y([ea tO))’
Qc={ue HY(Q); uv=0 on 09},
ge(u,v) = (Vu, Vo) 12(q), %,V € Q..

Let L. be the self-adjoint operator associated with the form ge. The operator L. is the negative Laplacian
on Q. with Dirichlet’s boundary condition on 8Q and Neumann’s boundary condition on ~v((e,20)). We
denote by )j(€) the j-th eigenvalue of Le counted with multiplicity. The function A;(-) is monotone
non-decreasing. We study the asymptotic behavior of A;(€) and Ag(€) as € tends to 0. We set

Qf ={ue HY(Q4); u=0 on NN},
qu(u, v) = (Vu’ vv)Lz(Qi)v u,v € Q(:)E

Let LT be the self-adjoint operator associated with the form gi. Let M < A < --- be the eigenvalues
of L} repeated according to multiplicity. We further assume that

(H4) ] =7,

Let cpf be the eigenvector of LT associated with the eigenvalue Ali which is normalized by the conditions
©F >00n Q4 and el L2(n.) = 1. We claim that % is real analytic in a neighborhood of 0 and oF is
given by a convergent power series expansion: ‘

o J
oE(z) = EZ Cji’,c 7271 cos(2k — 1)8 in a neighborhood of 0 with C’fl >0, (1)
i=1k=1
where (r,8) is the polar coordinate of z centered at 0. Let
ct. C;.
K={j>2 =% #} .
{ g Cii" Chy
We define v = min K if and only if K # 0. We set Ao = A{ (= A'). Our main result is the following.



THEOREM 0.1. The function Ay(€) admits the asymptotic ezpansion:

oo m-—1

M) ~ X+ DD Amne®™(loge)” as €—0, Xo>0. (2)

m=1 n=0
If K # 0 then the function \1(€) admits the asymptotic expansion:

oo [(i—2v+1)/3]

MO ~X+ D D mjeP(loge) as €—0, pgo10>0. (3)
i=2v—1 j=0

If K =0 then Ay(€) = Ao for sufficiently small e > 0.

This work is inspired and motivated by that of Dauge and Helffer [2]. In a more general setting,
they proved that lime_oAj(¢) = k; forall j € N, where k3 < k2 < --- are the rearrangement of
{)\;’ }321U{A; }32, repeated according to multiplicity. This result interests us in the asymptotic behavior
of Aj(e) as € tends to 0. They also suggested the following problem called geometric tunneling. The
problem they suggested is to estimate Ag(e) — A1(€) in the case that  is symmetric with respect to the
z1-axis and v is a line segment on the x;-axis. Our Theorem 0.1 also solves this problem.

There are many works on asymptotics of eigenvalues of elliptic differential equations on singularly
perturbed domains. R. Gadyl’shin and A. M. II'n [6] considered a domain with a narrow slit. S. Ozawa
[9] and V. Maz’ya, S. Nazarov, and B. Plamenevskii [8] considered a domain with a small hole. S. Jimbo
[7], R. Gadyl'shin [5], and J. Arrieta, J. Hale, and Q. Han [1] considered a dumbbel domain with a
shrinking handle. R. Gadyl’shin [3, 4] considered a problem to change the boundary condition on a
small part of the boundary. In (8, 4, 5, 6], R. Gadyl’shin and A. M. II'n used the method of matched
expansion: they decomposed the region into overlapping subregions and constructed asymptotic solutions
on the respective subregions such that the solutions are asymptotically same on the intersection of the
subregions. In [8], V. Maz’ya, S. Nazarov, and B. Plamenevskii used the method of compound expansion
which is somewhat similar to the method of matched expansion.

We use the method of matched expansion to construct an approximate solution in the proof of Theorem
0.1. Our procedure to construct the approximate solution is somewhat similar to the procedure used in
[6). But the form of the approximate solution in this paper differs from that in [3, 4, 5, 6, 8]. In the
present paper, we prove only (2) for simplicity.

1. FEigenvector of the limit problem

We begin with introducing some notations and conventions which we use throughout this paper. For
z € R? and r > 0, we denote by D(z,r) the open disk of radius r centered at z. For r > 0, we define

D(r) = D(0,7), Di(r)={(z1,z2) € D(r); =zz1 >0}, Dii(r)={(z1,22) € Dy(r); =xz2 > 0}.

Let f,g € Nsc(0,r0)L? (4 \D4++(6)). If the principal value lims_..o(f, 9)L2(0s\D,4(5)) €Xists, then we
denote it by (f, g)a,. To avoid cumbersome classification, we use the following conventions about sum-
mations and sequences: if p > q, we define ZLP a; = 0 and {a;}]_, = 0. We regard an undefined term
as 0 in formulae. For example, if b) and b are defined and b, is not defined, then the formula b, + by = b3
means b; = bs.

In order to construct the asymptotic expansion of A;(e) and A;(e), we first analyze the asymptotic
behavior of the eigenvector <pf near 0. Let us show the following.

PROPOSITION 1.1. The function cpf is real analytic in a neighborhood of 0 and <p1i is given by a
convergent power-series expansion:

co J .
i(z) = chji,k 729" cos(2k —1)8 in a neighborhood of 0 with Cfl > 0.
d=1k=1



Proof. We prove the assertion only for ¢] because that for ¢y is similar. In the proof, we use the
method of reflection. We set

¢f (z1,29) for z € Dii(ro),
"ﬁ(wl,ﬂ??) = +
@1 (z1,~x2) for z € Dy_(ro).
The function ¢(z) is even with respect to z;. Because ¢ € QF, we have
YeH (Di(r0)),  ¥=0 on {0} x (~r0,70). ' (4)
Moreover we get ,
—Ay = X9 in the sense of distribution on D, (ro). (5)

Using (4), (5), and the regularity estimate for elliptic differential equations, we obtain ¢ € H?(D, (r0/2)).
We set,
1/’(11,272) for z€ D+(7"0/2),

Y(z1,79) = { —¢(—z1,3) for z € D_(ro/2).

The function 9(z) is even with respect to z, and odd with respect to z;. From (4), we have ¢ €
HY(D(r0/2)). Besides we get

—~A%g = Xo¢) in the sense of distribution on  D(r/2). ' (6)

Thus the regularity estimate for elliptic differential equations implies that ¥ € C*(D(ro/2)). Moreover,
the analytic hypoellipticity for elliptic differential equations with analytic coefficients implies that ¥ is real
analytic in a neighborhood of 0. Combining this with the fact that ¢'(I1, z9) = —(—z1, T3) = ¥(z1, —z9)
on D(ro/2), we obtain ¥(z) = Yot Yoo dik 237722k in a neighborhood of 0. Rewriting this in the
polar coordinate, we infer that there exists 7y € (0,79/2) such that

oo
= Z Z Cler¥ 1 cos(2k—1)8 on  D(fo). , (7
=1 k=1 v

Let us show that Cfl > 0 by a contradiction. Note that ¢ = ¢7 in an Q. -neighborhood of 0. Because
@] >0in Q and cosd > 0 on (0,7/2), we have C; > 0. We assume that Cf, = 0. Using (6), (7), and
the analiticity of ¢ near 0, we obtain '

| N
+ + :
ik = "I TRG T 1R ®)

for > 1 and 1 <k <'j. Let us show that for all 7 € N,
CJ‘.‘,’,‘:O for 1<k<j (9)

by using induction on j. (9) is valid for j = 1 by the assumption. Let m € N. Suppose that (9) is valid
for j < m. Then (8) implies that C} ,, , =0 for 1<k < m. So, (7) implies that

(1’) m+1 m+17'2m+1 cos(2m +1)6 + O(r 2m+3)

as 7 — 0. Because ] > 0in Q, and cos(2m +1)8 tak& both positive and negative sign on (0, 7/2), we
get CF F+1ms+1 = 0. Hence (9) is valid for j < m+ 1. Thus (9) holds for all € N. This together with the
analiticity of ¢ at 0 implies that ¢y =0 in a neighborhood of 0. But this violates the fact that ] > 0in
Q4. Therefore we get C1 1 > 0. This completes the proof of Proposition 1.1. [J
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2. Preliminaries for the construction of the asymptotic expansion of the second eigenvalue

In order to analyze the asmptotic behaviour of the eigenvalues, we use the method of matched expansion
(see [6]). We define

¢ =¢lz.

The variable £ is called the inner variable. We denote by (p, 8) the polar coordinate of £ centered at 0.
We seek the asymptotic expansions of the second eigenvalue of L, and the associated eigenvector in the
following form.

o© m-—1
Aei=dot+ Y. Y €¥™(loge) Amn, (10)
m=1n=0
oo i-1
@2t E(z) = pdo(z) + ) D H(loge)pf;(x) on Qp\Dyi(e¥?), (11)4
i=1 j=0
. oo k-1
) :—E e*L(loge)lvk (€) on Dy(2eV?)NQ.. - (12)
k=1 1=0

We shall construct ¢i" and ¢+ such that ¢i® asymptotically coincides with ¢2"* in the intermediate
region D (2€'/2)\D4+(€'/?). Inserting (10) and (11)1 into the equation —Ap2"* = A 2"+ and
identifying the powers of ¢ and loge, we get the outer equation:

min{p—m,q}

(A+Xo)pf, = — Z > Amig-i Pa-mj O Qu,
m=1j=max{0,q—m+1}

(OUT)iq

d
Lp;,t‘q =0 on 80N, %cp;t,q =0 on T :=+((0,t)).
We put
I ={(£,&) € R & > 0}\([1,00) x {0}).

Inserting (10) and (12) into the equation —Agi® = A.i" and identifying the powers of € and loge, we
get the inner equation:

p—1 min{q,p—m—1}
Avpt1,g = —Aovp,g = E Z Am,g~1Vp-my on II,
m=1 |=max{0,g—m+1}
(IN)p.q

Yp+1,4=0 on {0} xR, ‘vp+1,q( +0)=0 on (1,00).

l3

We introduce some notations and function spaces. We put
P =(0,00)x (0,00), P}=P\(D(0,6)uD(1,0)8)), §€ ()

Let (7,8) be the polar coordinate centered at (1,0). Let A denote the class of function f € C*°(P)
satisfying the following (i) and (ii).

@) feC' D ) C=@).
8€(0,1/2)
(ii) There exists a constant C' > 0 such that

FA (o) + 72| 2 1(5, o) + 72| oL £(F,9)| < C on D(1,0),3) 0 P.
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We identify R? with C by the map R? 3 (y1,y2) — y1 + vV—1y € C. For n € C, we put

€m) = vVn +1,
where the branch cut of the square root is the positive real axis. Let B denote the class of function
g € C*(P) such that there exists a function h € C*(R?\{y/—1, —v/—1}) satisfying the following (i),
(it), and (iii).
. 2
(i) h(n) = #g9(é(n)) on P.

(ii) h(n1,m2) = h(n1, —m) = —h(—m1,m2) on R\ {V=1, —/=T1}.
(iii) The function h is bounded near {v/—1} and {—v/=1}.

For « > 0 and r > 0, we define
Ji(r)={f € CYD(r)); f(z1,22) = f(z1,—22) = —f(~21,72) on D(r)}.
We choose x € C*°([0, 00)) such that ‘
x(ry=1 for r<1 and x(r)=0 for r>2.

Instead of giving a complete proof of (2), we prove the following lemma which plays a central role in
the proof of (2).

LEMMA 2.1. There exist {¢}}i0 U {PN i1 v IN31,i30, {UN+i+1,N}N30,i20, and {AV4i, NIN30451
satisfying A1 0 > 0, (IN), (OUT)*, and the following (P1)~(P9).

(Pl);n
UN+i+1,N () = Vi pir1, N (€) + npip,n(€), E€IL
(P2)i,N
i+1 j
Vv, n(6) = ZZCz’,j,k,NPQj—I cos(2k — 1)6.
J=1k=1

(P3)i,n The function vy, ;.1 n(€1,°) 45 odd, and vy ;.4 N(€) € ANB.
(P4); n The function vy, +1,n has the following asymptotic expansion which can be differentiated term
by term two times.

[i+1)/2]) o i l oo i
U rirtn(€) ~( Z o+ Y Y+ Yo ,net M eos(25 —1)8
=0 j=l—i I=[(i+1)/2)+17=1 I=it+1j=l—i
[+1)/2] i—25+1
+ D> D dijuneP Tt ogpeos(2) — 1)
=1  1=0
as p— o0, £ € P.

(P5)p,q The function cp;t+p,q € C™(Q+) has the following asymptotic expansion which can be differentiated
term by term inﬁn-itely many times.

2p-—2
2 —~2p+1 .
LPQ'*'P‘I E Z Z Z+ E Z ) 3,0,3, q TP C(S(2J - 1)0
s=0j=p—s s=p j=1 s=2p—1j=p—s
oo min{va_p+11[(3+1)/2]}
+ Z Ljampogtrg™ 7 logr cos(2j —1)0
j=1 .

asT — 0, € Q4. Besides, ((,ofl‘L‘_{_p,q(:r:),c,oli)ni is well defined.

(P6)p,q The function
(p;-}-p,q(z) fOT T€ Q+,
Paipq(T) for T€Q_

Patp,e(T) = {

satisfies
(1- X(E_l/zr))‘Pqﬂr.q(I) € D(L)
for sufficiently small € > 0.
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We rewrite the asymptotic expansions of vn4i+1,N and <p1df, +i,n as follows.

vN+i+1,N(€) ~ Zh,m (p,8 +Em.,N<p, 8)logp (p—oo, £€Il, & >0), (13)+
=0 =1
O i (T) ~ Zt;ﬁ,.,N(r, 0) + Eu;ﬁw(r, 0)logr (r—0,zeQNy), (14).
s=0 a=i

where hf',7q(~,0), f, q(- 8), t* 21,4(0) and ua f q( 0) are homogeneous polynomials of degree 2s — 21 + 1.
(P7)p,q Forp>1 and q >0, there exists rp 4 > 0 such that for all M > 2p — 1, the function

Pripa(®) — (Zt AT 0)+Zu,,,.,re>logr)
8=0 s=i

can be ertended to a function which belongs to Jorsr—2p+3(7pq)-
(P8)  The following ‘matching conditions’ are satisfied. For 0 < q, 1 <1, andl < s, we have

uf (.0 =m¥ (-6). (M.1)*

For0<gq,0< s, and 0 < I, we have

s,l,q

alq( 0) lq( 0) a+l l+1,q-—l( 0) (M'2).‘:Jt,l,q

(P9) For N >0 and M > 1, the following ‘compatibility condition’ holds.

M-1 ‘
- m _
ey {_ Z '2'(2M_23 1)Con,m—-s NCir- s,M—a
s=0
N+M—-1 N+M-s
Yo > An-i(himeeg D)0y
s=1 j=N-—s+1

M-1

o n - -

=—(Cry)~! { Z '2‘(2M = 25— 1)C; p M-, NCh—s,M—s
8=0

N+M—-1 N+M-—s
- Z z ’\s.N—j(‘PKHM—a,,w‘Pf)n_ . (C)m,N
8=1 j=N-—s+1

REMARK. The number Apin,n is equal to the both sides of (C)m,n. Besides, it can be proved that
Av+in = 272N 3N {(CF)? + (Cry)?) for N >

REMARK. The matching conditions in (P8) are derived as follows. Inserting (14), into (11),, we
obtain a formal power series of ¢ and log e whose coefficients are polynomials of r. Inserting (13), into
(12) and using the coordinate change £ = ¢z, we also obtain a formal power series of € and log e whose
coefficients are polynomials of . Identifying the powers of € and log ¢ of these two formal power series, we
get (M. 1),,q and (M. 1)_,,q Similarly, we obtain (M.1),; , and (M.1),; , by using (11)_, (12), (13)_,
and (14)_.

Lemma 2.1 can be proved by induction. For simplicity, we give a construction only for the first two
terms of (11)4 and (12). We first give the precise form of <p3:,o and v o, which are the coefficients of the
leading terms of (11). and (12) respectively. To this end, we introduce some harmonic functions. For

7 € N, we define
=R(Ve-1)¥1), fel,
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where the branch cut of the square root is the positive real axis. We claim that U; is harmonic on II,
U; € ANB, and Uj(¢;, -) is an odd function. Moreover, U; has the following asymptotic expansion which
can be differentiated term by term infinitely many times. '

o0
Uj(€) ~ £ 700" # cos(2 -2 —1)0 as p—oo, £€Il, +£>0, - (15)
' 1=0
where 11,1 = —%, Ty = —%, and 70 =1 for j € N. We recall Proposition 1.1. We put

0 = £CT197
Then we get
tpoi,o(a:) = :E(Cfl)Qrcos9+ O@F®) as r—0, €. (16)

We claim that ‘Poi,o satisfies (OUT)&O:

(A+X)ggo=0 on O,

(Poi'o =0 on NN aﬂi, -a—a’r—l(poi’O =0 on T.

We put

1 _ = 1 - -
vio(€) = 5((Cff1)2 = (Ci1)Y)peost, wvig(€) = 5(((1{1)2 +(CL)HUL(E),  v1,0(8) = vTo(€) +v10(E)-
The functions vfo(gl, -) and v7 o(£1, ) are even and odd respectively. We claim that vy ¢ satisfies (IN); o:

A'UI,O =0 on H,
5 .
v10=0 on {0} xR, E)_g_”l"’(" +0)=0 on (1,00).
2
Hence, the functions (poi’O and vy o satisfy (P1)o,0—(P7)o,0. From (15), we obtain

vi,0(§) = £(CE1)’peos8+O(p7") as p—ooo, E€M, +6>0. (17)

(1) and (15) allow us to write the asymptotic expansions of %i,o and vy 0 as follows.

oo
‘Poi,o(x) ~ Eti0,0(ra 0) as r— 01 T € Q:E'J
s=0 :

vio(€) ~ 3 hEo(p,0) as p—ooo, EeIl, £&>0,
=0

where tsi,o,o(w ) and hoi,z,o(', 6) are homogeneous polynomials of degree (2s+1) and (—2{+ 1) respectively.
It follows from (16) and (17) that :

tao,o(', 9) = hoi,o,o('a 9)-

So (M .2)%, , holds. Moreover, (C)1,0 holds.
Let us construct cpfo, vg,0, and Ay 9. We shall prove the following.

LEMMA 2.2. There exist cpfo, va,0, and Ao > O satisfying (IN)1,o, (OUT)fO, (P1)1,0 — (PT)1,0,
(M1)E; 07 (M2)E 5 for0< s <1,0<1<L; (Chao. ‘

We need the following proposition in the proof of Lemma 2.2.
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PROPOSITION 2.3. Suppose that g € B has the following asymptotic expansion which can be differen-
tiated term by term two times.

g(&) ~ Zao,;',p_”“cos(% —1)0 as p— oo, E€P. (18)
1=0
Then the problem
-Av=g on P, %v =0 on I'i:=(l,00)x {0}, v=0 on Ty:=09P\I'; (19)
2

has a solution v € AN B having the following asymptotic expansion which can be differentiated term by
term two times.

1 (<)

0 !
v(§) ~ (E E +Z Z Jasip 23 cos(25 — 1)0 + byooplogpcosd as p— oo, E£€ P

1=0 j=il-1 =2 j=l-1

To prove this proposition, we need the following.

PROPOSITION 2.4. Suppose that the function f satisfies the following (i)—(iv).
(i) f e C®R\{v-1, —V-1}).
(ii) The function f is bounded near {y/—1} and {-/—1}.
(iii) f(y1,m) = f(y1, —92) = —=f(~y1,92) on RA\{V-1, —v/=T}.
(iv) There ezists an integer N > 10 such that for any multi-inder o satisfying || < 2, there exists
Ca > 0 such that 0% f(y)| < Caly|™N-121  for |y| > 2.

We put )
u(n) = o / log |n — y|f(y) dy.
]Rﬂ

Then we have the following.
u € C®(R*\{vV—1, —v=1}) nC}(R?).

-Au=f on RA®\{Vv-1, —v-=1}.
u(n1,m) = u(m, -m) = —u(-ny,m) on R
Moreover, u has the following asymptotic expansion which can be differentiated term by term two times.
um) = Y Cjp Y cosjuw+O(5 NS

1<5<([N/2] -4
j=1mod?2

as p — oo, where (p,w) is the polar coordinate of 7).

Since this proposition is derived by a straightforward computation, we omit the proof. By using this
proposition, we shall prove the following.

PROPOSITION 2.5. Let g(§) € B. Suppose that there erists an integer N > 10 such that for any
multi-indez a satisfying |a| < 2, there exists C, > 0 such that

1889()| < CaleI™—1 for €€ P, €| >2. (20)

Then the boundary value problem

—Av(§) =g(§) on P,
5 (21)

£v=0 on Iy, v=0 on I
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has a unique solution v € AN B having the following asymptotic expansion which can be differentiated
term by term two times.

we)= 3. Cipicosjo+0(p ™A as p= g - co. (22)
1<5<[N/2) -4 '
j=1mod2

Proof. It is easy to see that £ = £(n) is a conformal map from P onto P and that £ maps {0} x [0, c0)
and (0,00) x {0} onto I'y and I'; respectively. Thus the problem (21) is equivalent to the problem

_ _ Il :
Auln) = rol€(m) i P,

Bi—u_o on (0,00) x {0}, u=0 on {0} x (0,00).
2
We set f(n) = —|,’1|——|g( £(n)). From (20), we claim that for any multi-index a satisfying |a| < 2, there

exists Co > 0 such that |82 f(n)| < Caln|~¥~le! for n € P, |n| > 2. Because g € B, the function f
satisfies the assumptions (1) (iii) in Proposition 2.4. From Proposition 2.4, we claim that there exists

u € C°(R2\{V/=1, —v/=1}) N C*(R?) such that
—Au=f on R:{V-1, —v-1},

u(771a772) = u(nl) —772) = _u(_nl’ 772) on RQ'

Moreover, the function u has the following asymptotic expansion.

GFum — Y G cosjw) = O(F W) as foo (23)

1GE(N/2) -4
j=1mod2

for m+n < 2, (5, w) being the polar coodinate of . We put n(£) = 1/£2 — 1, where the branch cut of the
square root is the positive real axis. This function is the inverse function of £(n). We set v(£) = u(n(£)).
Then we infer that v is a solution of (21). Besides, it can be verified that v € AN B. Let (p,0) be the
polar coordinate of £. Then we have '

577 cosjw = R(n(€) ) =D _ e I cos(j — 2k)0 (24)
k=0

for p > 2, where the above summation can be differentiated term by term infinitely many times. By a
direct computation, we infer that there exists C' > 0 such that

In(©)] < ClEl,

. and

%n(&) <C

%n(&)lsﬂfl‘a for 1€>2 (25)

where stands for the differentiation by the complex variable £. Using (23), (24), and (25), we obtain
(22). 7
Let us show the uniqueness of the solution of (21) which has the asymptotic expansion of the form
(22). Let vy, vy € A be the solutions of (21) which have the asymptotic expansion of the form (22). We
set h = vy — vy. Then we get
7]

~Ah=0 on P, p-h=0 on Iy h=0 on Ty (26)
2 ,

From (22), we infer that for any multi-index o satisfying |a| < 2, there exists C > 0 such that

|0Zh(€E)] < Calé] ™1™ for €] 2 (27)
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ForJE(O 1) and R > 2, we put
Qs,r =D, (R\D(1,8), As=08D(1,8)NdQsr, AR =08DR)N Qs r.
We have h € C=(Qsr) N C!(Qs,r)- Let (7,3) be the polar coodinate centered at (1,0). Using (26) and
Green'’s formula, we obtain
0= (-Ah)hd¢ = / |Vh|?d¢ + 4. hdS+/ b has. (28)
Qs,r As oF dp

From (27), we get | [, » 3‘9—h -hdS| < R‘2—»OasR—>oo Since h € A, we get | [, Zh-hdS|<C§—0

as § — 0. Taking the limit § — 0 and R — oo in (28), we get [, |[VA|? d¢ = 0. Because h =0 on I';, we
have h = 0 on P. This completes the proof of Proposition 2.5. [

Proof of Proposition 2.8. By using formulae
A(p*2m1 cog(25 — 1)8) = 4m(25 + m — 1)p%12™=3 cos(2;5 — 1)6, (29)

A(p*+™~11og pcos(2j — 1)) =4m(2j + m — 1)p*+2™30g pcos(2j — 1)8
- +2(2j +2m — 1)p¥+t2m =3 c05(25 —~ 1)8, j,m € Z, (30)

we claim that there exists a formal power series

1 0 o0 l
Qo D+ D aryge M2 cos(2j — 1)6 + by 0,00 log peos 8

1=0 j=I-1 1=2 j=I-1

such that the function
1 0 N 1

on (€)= D0+ 3 ara e+ cos(2j — 1)8 + by 00plog peosd

1=0 j=l-1 1=2 j=i-1
satisfies

N
—Avn(€) = aoup 1 cos(2l - 1)8 =: g ()
1=0

forall N > 2
Let N be an arbitrary integer satisfying —2N — 1 < —10. From (18), we have 3¢ (9(8) — gn(8)) =

O(p?*~2N—1-lal) a5 p — oo for |a| < 2. We choose ¥; € C®([0, 00)) such that X1( ) =0 for s < 2,
X1(s) =1 for s > 3. We put x1(£) = x1(|n(€)]). We seek a solution of (19) which takes the form

v==0N§ + X1VN. (31)
Inserting (31) into (19), we derive the equation for ¥:
Aty = (1 - X1)g + Xl(g - gN) +2Vx1 -Vouy + 'v1vAx1 =:hy on P,

9
23]
We have hy € B and 9ghn(§) = O(p~2N 1= ~laly as p — oo for |a| € 2. Thus, Proposition 2.5 implies

that the problem (32) has a solution ¥y € AN B having the following asymptotic expansion which can
be differentiated term by term two times.

(32)
iy =0 on Iy, oy=0 on T%,.

N—4
iv= Y engplcosif+O(p V) as p—s oo, (33)
i
jEmedﬂ
We show that the right side of (31) is independent of the choice of N. Let N; and N, be arbitrary
integers satisfying —2N; —1 < —10 (j = 1,2). We set w = (I, + x19N,) — (ON, + X19N,) (€ AN B).
From the definition of vy and (33), we get Fw=0(p” 1-lal) as p — oo for |a| < 2. As in the proof of
Proposition 2.5, we obtain w = 0. This completes the proof of Proposition 2.3. 0O
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3. Construction of the asymptotic expansion of the second eigenvalue
In this section, we complete the proof of Lemma 2.2.

PROOF OF LEMMA 2.2. Let us construct ‘P:f,o- By using formulae (29) and (30), one can construct a
formal solution @7 of (A + Ag)p = 0: :

gy o) _‘Ehs 10(7' 6) +Zma 1,0(t,0)logr
3=0 s=1

—-ko1107’ cosB+Z Z k,mor cos(2_7—1 0+Zl,13 10r 1logrcosﬂ
s=1j=1-—s s=1 (34)

satisfying _
hg:,I,O(T’ 0) = h’Oi,l,O (Ta 0), » (35)

where Bsi,l,ﬂ(" 9) and r‘hf'l’o(-, 0) are homogeneous polynomials of degree 2s — 1. For N € N, we put

N N
Bro (@) =Y hEyo(r,0)+ Y M, o(r,0)logr. (36)
=0 s=1

We choose xo € C*°([0,00)) such that xo = 1 on [0,7¢/4] and xo = 0 on [Fy/2,00). We first seek a
solution gbf{ £ of (OUT)li,0 which takes the form
@Y (x) = xo(r)pls (x) + @ra (), Ve € DLE), (¢V5, ¥f)a, =0. (37)

We have
(A+X)p15 = (A+ X)P1a + x0(r)(A + Xo)ers + 15 Axo(r) +2Vxo(r) - Vela.  (38)

Substituting ¢11\foi for <p1i’0' in (OUT)li'O and using (37), (38), and the fact that ¢f0 is a formal solution
of (A + Xg)p =0, we get the equations for ¢11Y oi:

(A+ /\0)901 0 = ffm - )‘I,O‘P(ﬂio on £y,
(39)
- 0 . -
Plo =0 on 0QNx, @5 =0 on T, (FN5,¥)r2as) = ~(Xo(r)e1d #1)as,
where
f]%,l = ‘Pl 0 AXO - 2Vxo - V‘P1 0 — XO(T)/\O( N.1, o(r, 0) + mN 1, o(r,0)logr).

Let N > 2. Let us show that fi N1 € L?(Q4) and that the function fN,1 can be extended to a function
belonging to Jan_3(7o/4). Since

0
hf,l o(r,0) Z kN 14, or>*eos(2j — 1)0 and 77‘1:5,1,0(7', ) logr = i}tv,l,N_l,oﬂN—llogrcos 0,
j=1-N

we have
hﬁlo(r 8) € N2 Nyso Ji(r) and leO('r 8)logr € NysoJan—3(r). (40)

Because Axo =0and Vxp =0in a nelghborhood of 0, we have
—<P1 0 AXo —2Vxo - V‘Pl 0 € NZoJi(Fo/4)-

Thus we obtain
fy 1 € Jan—3(7o/4). (41)
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Moreover we obtain
~#l5 Axo = 2Vx0 - Violly = Xo(r)Mo(hi 1,0(r,0) + iy 1 o(r, 6) log ) € C=(R*\D(70/16)).

Thus, we get
fr 1 € L} (Q:\D(70/8)). (42)

Using (41) and (42), we get fN L € L2(Qy).
Let us consider the following equations derived by substituting )\ % for A1 in (39).

(A+/\0)¢{vak—f1v1 '\Ni‘Poo on Qy,
(43)

- a9 . -
@ro =0 on 80NN, 3 F=¢ro =0 on T, (@15, ¥t)r2@s) = —(xo(r)ela, oF)as

Because ) is a simple eigenvalue of LT, the equation (43) has a solution <p = D(L0 ) if and only if

+ 3
Nt _ NP0
10 = :
(¥50, 9T L2(0s)

(44)

We define A\f by (44). Then (43) has a unique solution which belongs to D(LE). We denote it by cﬁ

Now we compute the asymptotic expansion of <p (:z:) as z — 0, z € Q4. For this purpose, we ﬁrst
compute the asymptotic expansion of @] 5 N% by the reﬂectlon argument used in the proof of Proposition
1.1. From (41), we claim that there exists fN’l € C2N-3(D(7/4)) such that

foi=Ffy on Diy(Fo/4), ffi(z1,22) = fi (@1, —22) = —f ;(~21,22) on D(o/4).
Let ¥{'f (z) be such that
UV (2) = $13 () on Dis(Fo/8), WV (21,22) = e (w1, —22) = —¥N5 (21, —22) on D(70/8).
As in the proof of Proposition 1.1, we obtain

¥ € HY(D(70/8)),

(A+ 20975 = ffi, = ATwdo on D(70/8). (45)
From (41), we get
fa— Mg edo € C*N73(D(70/8)) ¢ H*N~3(D(50/16)). (46)

By using (45), (46), the regularity estimate for elliptic differential equations, and Sobolev’s imbedding
theorem, we obtain
¥ € H*N"Y(D(70/32)) c C*N~3(D(F0/32)).
Hence we have
BT (=) - Y ;3"‘1’ 7 (0)z%) = O(r*N=3-18l)
|| <2N -4
for |8] < 2N — 4. Because \Ilﬁ'," (z) is even with respect to x5 and odd with respect to x;, we get

-2 J

N
1 -
>, SRUNTO = Y vk Nt cos(2k — 1)e.

la]<2N—4 j=1 k=1
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Thus, we claim that cp + has the following asymptotic expansion which can be differentiated term by
term (2N — 4) times.

J
MY (x) = o (z) + ZZv;kar leos(2k —1)0+O(r*N3) as r—0, z€Qp.  (47)
i=1 k=1 '

In a similar fashion, ¢f{ o has the following asymptotic expansion which can be differentiated (2N — 4)
times.

2

-2 J
o @) =l @+ D) v eos(2k —1)0+ OF*N %) as 10, zeQ_. (48)
J k=1

)
A

Next we show that cﬁf’ f)t = xo(r)cp1 7+ cﬁf’oi and Af{ét are independent of the choice of N > 2. We set
N; = 2. Let N, > N;. Because <pN‘dc and LpN”t are the solutions of (OUT)fO, we get

(A+Xo)prh = ~Ai*pE, on Qi for j=1,2

N . Na+
(801 bi’ Y1 )Q:t (‘Pl?) » P1 )Qi =0.

Thus we obtain

(A + Qo) (@t — g1aE) = (ANFE — M) e50r (49)
(‘PMi 951,5 » Pl )Q:t =0. (50)

Note that
M — o3t = xo(r)(e1ht — o }3T) + (BT — F15)- (51)

Because ¢ § Mk gollv(’)i' € D(LE), we have gbl’}, - g‘c':jlvai € D(LE). From (40), we have

Xo(r) (5T — oN5E) € Ja(7o/2) and  supp (xo(r)(¢}* — #157)) C Dyx(70/2). (52)
Note that for u € QF, we have u € D(L¥) if and only if there exists w € L?(Q4.) such that (Vu, Vo) 2(qy)

= (w,v)2(q,) forall v € QZ. Combining (52) with Green’s identity:
(@) 0

0
(Vu, V’U)Lz(ni) = / 5—14 cvdS — (Au,v)Lz(gi), U e Hz(ﬂi), vE Hl(ﬂi),
any oN

we have Xo(r)(clei - w{vai) € D(LE). So (51) impliés that
a6 —o1s € DILG). (53)

Note that @7 is the eigenvector of LE assocmted with the simple eigenvalue Ag. Thus (49) and (53)
imply that the right side of (49) is orthogonal to tpl in L2(Q.). So we have AN 1+ — AN 2+ This together
with (49), (50), and (53) imply that <p1 = L,bf%i Thus the function ¢11V(=)E and the number ANE ' are
independent of the choice of N > 2, which we denote by qpl o and )\1 o Tespectively.

Let us show that )\1 o0 and A, are given by the left side and the right side of (C)1,0 r%pectlvely Note
that
(A+ )\0)‘?:1‘:,0 = —)‘:1&,080&0 on . (54)

Multiplying (54) by (p:lt, and integrating over €}, we obtain
(A4 20)E0, ¢1)as = —ATo(Po,0 ¥1)2@0)- (55)

From (37), we get

(B + 203 001 )ay = (A +20)xo(M)els ") o] a, + (A +20)E06" ¢y (56)
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Because Lpf’(‘)'*, ¢ € D(LY) and (A + Xo)pf = 0, we have
(A+2)805", ¢ )a, = (BT, (A + Xo)eT )a, = 0. (57)
Let é € (0,7y/4). We put
9(r,0) =xo(r)e1}*, S5 = Di1(Fo/2\Ds+(8), wi=08D.4(70/2) N 8D(Fo/2),

Wa,6 = aD++ (5) n aD(J)’ wy,s = [6’ 7.‘0/2] X {O}a and Wy, = {0} X [61 7:0/2]'
We have 0S5 = w; Uwg s Uws s Uwys. Using (34) and (36), we get

9€C™(55), g(r6)=0 for r>7o/2, g9(6,0)=94*(6,0) on wyy,

8
g= 51; =0 on w;, g=0 on wsg, and a—ng=0 on ws ;.

Notice that £ =0 on wss and ] = 0 on wy s. Thus we obtain

(A + X0)(xo(r)e s ), 1 a,

= lim ¢1 (A +Xo)g(r, 0) dx
§=+0Ja,\D,(0,8)

= lim [ ¢f(A+Xo)g(r,0) de
8

§=+0 Jg
= lim {/ (wfﬁ—y—yiwf)ds—/ 9(A + o)t dz}
§—+0 | Jas,  ~ On on Ss
= i "/ 9 1+ N1+ 9 +
= Jim fo ( ST (6001 (6,0) + oy (6,6) 2 (5, o)) 5d6. (58)

From (34) and (36), we obtain

oihE(z) =k orcos+ O(r|logr]) as r— 0. (59)
From (1), we have
‘ vE(z) = Cflrcosa + 0 as r—0. (60)
Using (58)—(60), we get
T
(A + X0)(xo(r)e1st), ¢ )a, = 5’“3:1,1,00:1- (61)
Using (55)- (57) and (61), we get A\f, = ----Ic(J 1,1,0- In a similar fashion, we obtain A7, = —ko 1,1,0- From

(35), we have ko 1,1,0 = :F4((Cf1)2 +(Cy, 1)?). So we get '\1 0=Xo=5((C{ 1)+ (Ci1)?).
We set \1 o = )\10 (=] 0) From (34), (36), (37), (47), and (48), we claim that the function gol 0>

which is a solution of (OUT)1 o» has the following asymptotic expansion which can be differentiated term
by term infinitely many times.

) 0
é1, To(@) ~ ko,1,1,0m” 0080+2 E ,1,07' cos(2_7—1)0+zl’ 10— 107-23 Yogrcos(2j — 1)8
s=1j=1~ s=1

asr — 0, z € 4. We rewrite this as

[o ] [e o]
Fro(@) ~ Y o(r,0) + Y _uf, o(r,8)logr (r -0,z € Qy), (62)

8=0 s=1
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where t*;t’110(" 8) and "1.:,&,1,0(7', 6) are homogeneous polynomials of degree 2s — 1. From (34)—(36), (47) and
(48), we have

foi.l,o('ae) = 7’{3:,1,0(‘_, 9) = hBt,Lo('a 0)- (63)
Let us show that there exists a solution ¥ of (IN); ¢ satisfying the following (a)—(e).
(a) B2,0(8) = ¥3, 0(5) +35,0(€) for £ € I1.
(b) ; (&)= 121: 1 ;k0102J ! cos(2k — 1)8.
(c) The functlon ¥g.0(£1, ) is odd, and ¥, ,(§) € ANB.
)

(d) The function 9, 5(£) has the following asymptotic expansion which can be differentiated term by
term two times.

IS
St

1 0 oo 3 '
30~ O D +Y. D )Cuu00™ M2 cos(25 — 1)8 + dy 0 0plog peos8 as p— oo, £€P.
1=0 j=l-1 1=2j=I-1
The conditions (a)—(d) allow us to write the asymptotic expansion of ¥, ¢ as follows.

o0

2,0(6) ~ D RE o, 8) + Ly o(p, O)logp as p— oo, €I, +£5 >0, (64)
=0

where h1 1,0(+ 8) and mf,’o(-, 9) are homogeneous polynomials of degree 3 — 21.

(e) We have 3
hfl,O(" o) = tfl,o('a 0)7 i (65)
ﬁli,o,o('v 0) = tfo,o('a 0), (66)
m1‘1,0('7 0) = &it,1,o('a 0), (67)

We seek a solution of (IN); g which takes the form

B2,0(8) = 93,0(6) +930(6), €€, (68)

where 9;(£1,-) and 95 (€1, ) are even and odd respectively. Inserting (68) into (IN)1 and identifying
the terms of the both sides which are even with respect to £;, we get

Ady o= )\0'7;;*',0 on P,
' (69)

930=0 on {0} x (0,00), vgo—o on (0,00) x {0}.

23}
Inserting (68) into (IN),0 and identifying the terms of the both sides which are odd with respect to &,
we get

Adg o= Aot;, on P,
(70)

U50=0 on Ty, v20—0 on I'y.

962
First, we consider the equation (69). Using (29), we infer that there exists a solution of (69) which
takes the form

by, o§) = Cl 2, 1/’ cosf. (11)

Next, we consider the equation (70). From Proposition 2.3, we claim that there exists a solution
959 € AN B of (70) having the following asymptotic expansion which can be differentiated term by term

two times.
1

0 0o l{ L
o300~ D+ Y )Cry ;64 cos(25 — 1)8 + dy,1,0plog peosd (72)

1=0 j=i—1 I=2 j=I—-1
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as p — 00, { € P. We extend 9; 4(€) to an odd function with respect to ¢&;, which we denote by D50(£)
again. We define 95 o(£) by (68), (71), and (72). Then we can write

o0
92,0(6) ~ D B 1o(p,0) +mE o(p0)logp as p—oo, £€Il, =+ >0, (73)
=0

where hf,, 10(+9) and mi a,1,0(+» 0) are homogeneous polynomials of degree 2M — 2 + 1. By adding some
harmonic function to 9M+1,0, We shall construct ;o satisfying (e) as well as (a)—(d). Let us show that

7 1i1,o("a 6) = f‘fl,o(r’ 6), (74)
hEoo(r,8) — tE4 o(7,8) = afr® cos 36, (75)
’A‘fm(", 6) - t1,1,0(7'» 8) = agrcosf, (76)

where af and of are some constant. From (IN)1,0, (29), (30), and (71)-(73), we get
A(ﬁl:lt'lvo(r, 0) log T) = —thg:,l,(h Ailit'O,o = —thak‘o’o,

’A‘1i1 o(r,8) = £C1 1 o7 cosé. (77)

Since (A+o)@s 0 ==\ o<p0 o on 4, we get A(u1 1,0(r,0)logr) = —XotE 9.1,0(r,8). Since (A+)\o)<P§,o =0
on 4, we have At1 0,0 = —Aoto 0,0- S0, we obtain

A{(r 1 o(r, 0) — 1 o(r, 6)) logr} = —Ao(hE; o — o),

A(’Ahi,o,o - t:lt,0,0) = —/\O(hc{o,o - tg,o,o)-
From (M .2)&0,0 and (63), we get

A{'ﬁ‘fgo(ﬂ 6) - ﬁfl,o(ra 6))logr} =0, (78)
NG t50,0) = 0. (79)

Note that X .
i, o(r,0) —aflo(r,o) = +d, 1orc050—l:f100rcos0 (80)

]——1 k—l

fl_l’o(r, 9) = Izzfl,o,orcose. (82)

From (77) and (82), we get (76). (75) follows from (79) and (81). We have (74) from (78) and (80). We
put

530(6) =920(6) ~ (ad + a6 cos30 - 2 (af — o7 JUale)
- 5(0F +ap)pcost ~ {3(af - a7) + 3(af - JUL(E).

Then it follow from (15) and (74)—(76) that the function ¥, ¢ satisfies (a)-(e).
We modify <p1 o and 930 such that the resulting functions satisfy the compatibility condition as well
as the matching condition. We put

‘Pib,o =rtpf + 55:1':,0, (83)

. 1 e 1 o
v2,0(€) = 92,0(€) + §(K+CI1 + k™ C11)pcosf + §(N+01Jf1 -k~ C11)U1(8), (84)
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x~ being a constant which we shall determine later. From (62), (83), and Proposition 1.1, we claim that
the function Lp:lt,o, which is a solution of (OUT):fO satisfying (P5);,0 and (PT7)1,0, has the asymptotic
expansion:

oo o o]
<Pfo($) ~ Ztsi,l,o(r’ 6) + Zuj:,1,o(7'a O)logr (r—0,z€Qy),
8=0 s=1

where tfﬁ,o('v 0) and uf’l’o(g 0) are homogeneous polynomials of degree 2s — 1. Besides we have

t({lvo(r, 0) = foi’l’o(r, 0), (85)
tflyo(r, 0) = f’fl,o(r, 0) + niC’flr cos 9, (86)
ufy o(r,0) = iy o(r, 6). (87)

From (15), (64), and (84), we claim that the function vy, which is a solution of (IN); ¢ satisfying
(P1)1,0-(P4)1,0, has the asymptotic expansion:

oo
1)2,0(5) ~ E hzlt,l,()(pv 0) + mli,l,O(pv 0) logp as p— 0o, iE? > 01
1=0

where hfz,o(‘, 0), and m:lt,l,o(” 0) are homogeneous polynomials of degree 3 — 2. Besides we get

hzlt,0,0(f” 0) = illi,0,0(pv 0)1 (88)
hfm(/’, ) = hfLo(P, ) + ninlpcos 0, (89)
mi10(p,0) = M1 1,0(p,0)- (90)

From (67), (87), and (90), we have
u:II:,I,O('vo) = mf1,o("0)' (91)

It follows from (63) and (85) that
t(%,m(', 9) = h(ﬁ,o(‘v 0). (92)

From (65), (66), (86), (88), and (89), we get

t10(+0) = hio(~0) for 0<ILL (93)

Note that (M .2)0%0,0 holds by the assumption. Combining this with (91), (92), and (93), we claim that
(M.1)F, ; holds and (M.2)F, , holds for 0 < s < 1, 0 <! < 1. Besides (P1)1,0~(P7)1,0 hold. Let us show
that there exist k™ and s~ satisfying (C)3,0. Notice that (C)a is equivalent to

3 o 3 g _ _ o -
*§7T(CI1) 1Co,2,2,ocz+,2+577(01,1) 100,2,2,002,2,:(Cit1) 1/\1,0(<Pt07‘/’;r)0++(c1,1) 1)‘1,0(901,0,901 Ja_,

and the left side of the above equality is independent of k¥ and x~. The right side of the above equality
is equal to Alyo((Ctl)_lmjL +(C11)"'k-). Because A; o > 0, there exist x* and ™~ satisfying (C)z,0. O
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