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ON AN ABSTRACT RADIATION CONDITION

Ingrid Beltita
Institute of Mathematics of the Romanian Academy

INTRODUCTION

We shall present an abstract radiation condition in terms of the Mourre theory of conjugate operator
method. :

Let # be a Hilbert space and A be a self-adjoint operator in #. For s > 0 consider the Hilbert
space A* = D((A)*) with the graph norm, and if s < 0, A’ = (A~°)*. Then, ifs >0, A*CHC A~*
continuously and densely, and the scalar product of # extends to a natural duality (-, ), -5 : A*xA™* —
C for all s € R. We denote by P; the spectral projectors of A associated to the half-lines [0, +0c0) and
(00, 0], respectively.

We recall now some (Besov) spaces of operators (see [ABG]). Let S be a bounded operator on #.
We say that S € C*¥(A), k positive integer, if the application R 3 7 = W(7)[S] = ¢4 Se~i"4 € B(H)
is strongly C¥; in this case ad% S can be extended as a bounded operator on #. Consider 6 € (0,1},p e
[1,00]; we say that S € CP?(A) if (r = (W(7) = I)™[S]||/Ir|*+1/?) € LP((0,00)), where m =1 if 6 < 1,
and m =2if § = 1. (If p = oo, this condition should be read as sup,q ||(W(r) = I)™[S]||/|7]® < o0.)
For general 6 > 0, we say that S € C*?(A) if S € C*(A) and ad',S € C*~'?(A), where [ is the largest
integer I < 6.

Let L be a self-adjoint operator in . Then L € C*?(A) (or C*(A)) if (L — z)~* € C®P(A) (or
C*(A)) for some (and hence all) z € C \ o(L).

If L is a self-adjoint operator of class C?(A), then the commutator i[L, A] is defined as a continuous
form on the domain of L. Then one can define the strict Mourre set u4(L) of L with respect to A as
the set of A € R with the property that there exists J = (A —6,A +8) # @ and d > 0 such that

EL(J)ilL, A EL(J) > d E(J).

We recall that if L has a spectral gap and L € C!:}(A), then there exist Rr (A+i0) = lim¢_, (L —AFie)~?
uniformly in B(A*,.4~?), whenever s > 1/2.

The following theorem was given in [BGS1] (for the proof see [BGS2]; see also [J] for some earlier
results).

THEOREM 1. Let s > 1/2 be a real number and L be a self-adjoint operator with a spectral gap and of
class C*+1/21(A). Then we have Pz Ry () £i0).A° C A*~! for each A € p4(L).

It turns out that in some stronger hypotheses this condition characterizes Ry () £ i0). Namely, we
prove the following theorem, extending some results of [B2], [M].

THEOREM 2. Let1 > 6 > 1/2 be a real number, L > —M be a bounded from below self-adjoint operator
of class C1+4°(A) such that i[L, A] € B(G,G*), where G is the form domain of L, and A € pA(L).
Suppose u € A~?, s € (1/2,0) satisfies:

a) (u,(L = A)p)=ys,s =0 for all p € (L + M)~ 1 A°,

b) there ezists a < 0/2 such that (A)~*P_(A)u € H (or (A)~*Pr(A)u € H).
Then u = 0.



81

The proof follows Isozaki’s proof of some type of radiation conditions which are strongly related to
those presented here. (See [I1], [I2], [I3].) We only remark here that Theorem 2 provides some useful
results in the study of the layered media.

One of the tools needed here is the functional calculus using almost analytic extensions of symbols.
Let m € R. We denote by S™ the set of symbols f € C*(R) that satisfy

pr(f) = sup(z)™¥|f*¥)(z)] < oo.
z€ER

Then S™, endowed with the seminorms p is a Fréchet space. The following result can be found in
[B2], [M] (see also [DG] for the main idea).

PROPOSITION 3. Consider a bounded family of symbols {f.} C S™. Then there exists a family of
functions (the almost analytic extensions) {f.} C C=(C) such that:

i. |Imz| < (Rez) on suppf:,

ii. |0fe(z)] < Cn{(z)™ N=1Imz|N=! for all N > 0 and all z € C, where the constants Cy do not
depend on z and ¢.

This construction provides an useful representation for the functional calculus of a self-adjoint
operator, due to Helffer- Sjéstrand ([HS]): Let A be a self-adjoint operator on # and f € 58,8 >0.
Then

£(4) = 7 [ 3Fa)A - deay,
C

where z = ¢ + iy and f is an almost analytic extension of f. If B is a bounded operator with ad4n is
a bounded form on the domain of A, and ad4kf*)(A) (respectively f®)(A)adpsk) k=1,...,n—1, are
bounded operators, then

n—1
B, 7) = Y 0t (B)1)(4) + B3 (4, B)

n—1 __1)k+1
=Y T f(A)ady(B) + Ri (4, B),
k=1 )
where .
R.(4,B) = -~ /5~(z)(A — 2)"Yad} (B)(A — 2)~" dzx dy,
c
R.(A,B) =

(=1 / 3F(2)(A — z)~"ad’, (B)(A — 2)™" dz dy.
C

For a proof, see for instance [M].
1. COMMUTATORS

LEMMA 1.1. Let B € C®*®(A), 0 < 6 < 1, be a bounded operator and o, ay positive numbers such
that 0 < a; + as < 0. Then

(1.1) [1(A4)%[B, (4 — )7 (A)*|| < C(|Imz|~*=" + |Imz|™" + (2)|Imz| 2 + (2)?|Imz|~°)
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whenever [Imz| # 0.

Proof. Consider 0 < o < 8. We consider first the operator (A)*[B, (A — z)~!). Suppose Imz > 0; the
case Imz < 0 is similar.

(i) We have (weakly)

0
[B,(A-2)"Y= / e’ e [B, e 1] dt,

- 00

where z = A + ip. Using that B € C%®(A), we get

0 0
B, (A=) < [ eprarsow [enpa
-® -00
hence
(1.2 LB, (A - )=l < Cu=*-1.

(ii) Denote »(A) = (A)*. Helffer-Sjéstrand formula gives (first as bounded operators between .A* and
A=)

(13) (B, (4)%) = 1 [35(2)(B, (A~ )" dady.
C

The norm of the integrand in (3) can be bounded by
185(2)[B, (A = )7l < C(z)*~ 1N |Imz|N=0-1.
If one takes N = 6 + 1 to avoid the singularities, we get
185(2)(B, (A - 2)~*]|l < C(z)*~2~,

which is integrable if o < 8. Hence
[B,(4)%] € B(H).

(iii) We can write then
(1.4) (A)°[B, (A - 2)7"] = [B,{4)*(A - )] - [(4)*, B)(A — 2)~~.

The norm of the second hand in the rhs of (4) is bounded by C|Imz|~1.
(iv) We estimate now the first term in the rhs of (4). Let g be a smooth function on R, g(t) = 1 if
[t| > 1 and g(t) = 0if [t| < 1/2. Then

(1.5) [B,(A)*(A - 2)7"] = [B, g(A)A)*(A ~ 2) 7] + [B, (1 - g(A)(A)*(4 - 2)7"].
The second term of the rhs of (1.5) equals

[B,(A)*)(A~2)! +[B, (A - 2)7'](1 - g(4)){4)",



and has the norm less then (using (2))
(1.6) C(|[Imz|~! + |Imz|®+1).

We denote g,()) = g(A)(AY*(A—z)~1. We shall use the following form of the Helffer-Sjostrand formn
(see [BGS2], section 4):

(1) [Bg:() = 7 [ ((0:() = A2, ImRa (2 +iX)] - 9nOgs ()[B, ImiRa A +iN)]) dp
Y |

A
1 @ .
]

The norm of the integrand in the first term of (1.7) can be estimated by (using (2) and on suppg)

<A)a (/\)a+1 —-6-1 —-0-1 -1 2MImz -2
C(IA-ZI+|A—z|2)<'\> < O~ (|~ + (2)Ima|2).

Hence the first integral in (7) can be bounded as follows

(1.8) H/(yz(A) ~Ag;(A) + 2(i + 1)710r(Ag: (V))[B, Ra(A + iX)] d)\lly < C([Imz|™! + (2)|Imz|~?).
R .

To estimate the second integral we note first that

A
(19) I [ 9PN, Ra(r+ islhdisdA| < COV=*
0

on suppg. Then

A

(L) [ oD )E, R+ imlduar] s o= (g + LI
0

L)

Xz
< CY T (| Imz |~ 4 (2)|Imz|~2 + (2)2|Imz| %)

Summing up:
1B, g: (Al < C((2)*[Tmz|~3) + (2)|Imz| =2 + X) 71+~ Imz| 7).

Then one gets

(111)  [KA)*[B, (A = 2)7' Il < C((2)?[Imz|™2) + (2)|Imz|~2 4 A)~*+=0 | Imz| ™" + |Imz|~*~1).
In the same way

(112)  |I[B, (A= 2)" ANl < C((2)?[Imz|"®) + (2)|Imz|~2 + )"0 | Imz| ™" + |Im2|~%71).

The general result follows by interpolation. 1
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LEMMA 1.2. Let {x:} € S, a < 1 be a bounded family of symbols, and B € C'*%>(A) a bounded
operator. Then

i[B, x:(A)] = i[B, Alx;(4) + Ry s,

iLB, x+(A)] = X4(A)B, 4]+ Ray,

where
(A)™ Ry (A € B(H) and [[(A)Y Ry(4)] < C

(A Ry, (A € B(H) and [(A)**Rae(A)4]| < C,
whenever oy +as+a <140, a1 +az < 1+6, a; < 8. Here C stands for constants not depending on
t.
Proof. We have i[B, x:(A)] = i[B, A]x:(A) + Ry, where

Rie=7 [, (A= 97)A - 9" dedy,
C

with D = i[B, A] € C**(A), bounded.
We take § = @ — a; — € with e sufficiently small such that a; —d <1 and a+ a2 — 6 < 1. (This is
possible by hypothesis.) Then, by Lemma 1,

18%:(A)**4[D, (A = 2)' KA)* (A - )"} (4)*~’|
< COn () N iImz N (Imz| ™! + |[Imz| =07 )(2)* | Ime| !

on suppdiy:. We take N = 6 + 2 and thus obtain that
10%e(A)*4[D, (A — 2)')(A — 2)"(4)*?|| < C(z)*~3+>?

which is integrable and C does not depend on t. Hence (A)** R; ;(A)*? extends to a bounded operator
and the estimate in the statement holds. One proceed similarly to get the second assertion. &

LEMMA 1.3. Let B be a bounded operator of class C**(A), 0 < 8 < 1 and a;, ay positive numbers
such that oy + a3 < 8. Then (A)*[B,(A)*?] extends to a bounded operator on .
Proof. Recall that in the proof of Lemma 1 we proved that [B, (4)’] € B(#) whenever § = ay+as+¢ <
6. We denote 6; = a; /6, i = 1,2 and set A; = (A) this is a self-adjoint operator As; > 1. We have
than to control AJ*[B,h(As)], where h € S%, h(s) = 5% if s > 1/2 and h(s) = 0 if s < 1/4. We have
(first in form sense)

ASi[B,h(As)] = _L (z)A"l As — z)~Yi[B, As)(As — z) " dz dy.

T
C

On the support of Jh the norm of the integrand can be estimated as
|Oh(z) A% (A5 — 2)~Yi[B, As)(As — 2) 71| < C(z)rHP21-2,

The rhs is an integrable function, since 6; + 82 < 1. Therefore A'i[B, h(As)] extends to a bounded
operatoron H. 1 '
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LEMMA 1.4. Let B be a bounded operator of class C5*(A), 0 < 6 < 1 and oy, a2 positive numbers
such that a1 + az < 0, and {g:} C S%, a < 0, a bounded family of symbols. Then:

IKA)**i[B, g: (A)A)**|| < C,

where C does not depend on t.

Proof. (i) Consider first the case where a < 0. Then

. o _ 1[5~ ors - .
(A)™i(B, ge (A)(A)™ = / Bde(2)(A)*Hi[B, (A — 2)~ ) (A)** dz dy.
C
Using Lemma 1 the norm of the integrand can be majorized by C(z)*~2.
(ii) If @ = 0, let € > 0 be such that a; + a2 + € < § and write
(A< A)5i[B, g (A)(A)*? = (A +eil[(A) 7, BKA)*9e(A) + (A)¥ (B, 2 (A)(A) ™ HA)™.

We use the proof of the previous lemma to show that the first term is a bounded operator and its norm
can be bounded by a constant not depending on ¢. For the second term we use @. »

2. THE PROOF OF THEOREM 2

We can suppose, without restricting the generality, that in Theorem 2 we have M =1 and A = 0.

LEMMA 2.1. If ® € C°(R) is a real function, ® =1 on a neighborhood of 0, then

(2.1) (4, B(L)p)=s,s = (¥,9)=s,s, forall peA.

Proof. We have, for ¢ € A%,

(2:2) (w, (1 = (L)) -s,s = (u, LE(L)p)—s,6
where U (t) = (1-®(t))t~!. Therefore, to have (2) for ¢ € A! it suffices to prove that ¥(L) = (L+1)~?

with ¢; € A'. We can write (L + 1)¥(L) = (1 — ®(L)) + ¥(L). Thus, since (18(L))¢ € A', it remains
to show that ¥(L)p € A! if ¢ € A'. We have

i[¥(L), Al = /3\111, L—2)"! Aldz dy
= _% /5\1’(L —2)" YL + D)Y2(L 4+ 1)~ YAHL, AL+ 1)"YHL + 1)Y3(L — 2) " de dy
C
The norm of the integrand can be bounded by C(z)~2~2|Imz[*(z)|Imz|~? = C(z)~3. We get that

i[¥(L), A] is a bounded operator and we obtain easily that ¥(L)y € Al if ¢ € A'. Thus equation (1)
holds for ¢ € A'; the general result follows by density using the fact that ®(L) € B(A®). 8
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Remark. In fact the previous Lemma says that ®(L)u = uforall € C3°(R), ® = 1 on a neighborhood
of 0; this fact can be easily seen using that ®(L) € B(A’) N B(A~*) and it is symmetric with respect
to the duality (.,.),,—s.

LEMMA 2.2. Let x € C3°(R) such that 0 < x(s) < 1, x(s) = 1 for |s| < 1, x(s) = 0 for |s| > 2. We
consider the C3° (R) function

xt(y) = /s'zﬂxz(s/t) ds,
{v)
where f > max(a,s/2), B < 0/2. Then

(2.3) (L™ (L)xe(A)u, u)s,~s = 0.

Proof. The Lemma follows by hypothesis as ®%(L)x¢(A)u € (L +1)"1A4°. &

We shall set T for different bounded operators with norm independent on ¢.
Remark. We have
2Rei((Le*(L)xt(A)u,u), -, = 0.

We shall give to this relation the form and the meaning
i([L®*(L), x¢(A)]u,u),,—, = 0.
Set Ly = ®*(L)L. Then L, is a bounded operator of class C*+!:*(A) (Thm. 6.2.5 [ABG]).
LEMMA 2.3. We have
i[Ly, xe(A)] = i[L1, AJA(A) 2P~ 2 ((A)/t) + (A)~°T(A)~".

Proof. One applies Lemma 1.2 for Rit, a1 =az=8,a=1-28. (Here oy +az+a=25+1-28 < 0+1
since 8> 6/2,and s <6.) 8

As a direct consequence we get the next Lemma.
LEMMA 2.3’. sup;>, |(i[L1, AJA(A)~2P=1x2((A)/t)u, u), —,| < .
LEMMA 24. Ifd € CP(R), =1 on a small enough neighborhood of 0, then

(2.4) sup |((L)(L, AJB(L)A(4)~% = x* ((A)/t)u, )y, | < co.

Proof. We know that ®(L)u = u. We have
AP (A B(L) = B(L)ACA) 1) ((A)/2) + [B(L), A(A) "2 ~1x3((A)/1)].

Set g:(A) = A(A)~?P-1x2((A)/t). Here {g:} € S_2p is a bounded family of symbols. One applies
Lemma 1.2 to get
[(L), g¢(A)] = [®(L), Alg:(A) + Ry
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(In this case a; = a; = s, a = —f.) Thus, since 26+1>s+1> 2s,
(2.5) AP I ((A) ) B(L) = (L)A(A) 271 X2 ((A) /1) + (A) " T(A)~*.
Hence

(26)  GIL1, AJA(A) =X ((A) /1)@ (L)u, B(L)u)s,—s
= (i[L1, A]B(L) A(A) 2P 1 ((A) /1)y, R(L)w)s, s + (i[L1, AKA) ™ T(A) " u.ts)s s

Since i[L1, A] € B(H)NC%* (A) (Prop. 5.2.2 [ABG]), i[L1, A] is a bounded operator on A*, s < § (Thm
5.3.3, Lemma 5.3.2 [ABG]). Therefore the second term in (2.6) is bounded by a constant independent
on . But, in form sense,

&(L)i[L1, A)B(L) = B(L)B(L)i[L, A|®(L)S(L) + LE(L)i[A, 1 - ®(L)]B(L) + B(L)i[A,1 - S(L)]LE(L).
We take supp® to be in the set where ® = 1; then
&®(L)i[A,1 - &(L)]®(L) =0 on A x AL

Therefore the bounded operator given by this form on # (L € C'(A)) is zero. Similarly we get that
&(L)i[A,1 — ®(L))L®(L) = 0. Summing up

&(L)i[Ly, A)®(L) = ®(L)i[L, A]®(L).
The lemma follows by (2.6), (2.5) and the previous relation. 1§

We can denote & also by ®.
LEMMA 2.5. sup,5, [(®(L)ilL, AIB(L)AA) =P x((A)/t)u, (A)Px((A) /t)u)| < oo.
Proof. Set B = ®(L)i[L, A]®(L). Then B is a bounded operator of class C®(A). Denote fi(z) =
(z)~Px((z)/t), € R. We take fo < B, but still By > s/2, By < 8/2. We write
(AY'[B, fo(AAY P = (A)*~P(A)°(B, fe(AN(A) " :
= (A)*~P°[B, f.(A)(A)P)(A)*~F — (A)*~P°[B,(A)P Ay~ x((A) 1)
But 25 — 28y < 25 — 8 < 8, so the first term is a bounded operator and its norm does not depend on

t (Lemma 1.4). The second term is bounded since s — 23 < 0 and (A)*—Po[B,(A)P] is bounded by
Lemma 1.3. Now the lemma follows easily. 1

LEMMA 2.6. For all 8 > o we have (A)"Pu e H.

Proof. (i) Consider first 8 > max(e,s/2), 8 < 6/2. Let F be a smooth bounded real function, Fy =1
on [1,00), Fy =0 on (—o0,1/2]. We shall show first that

(2.7) sup (@(L)ILL, AJ®(L)A(A) P~ Fi (A)x((A)/1))u, (AP Fi (A)x((A)/t)u)| < oo.

We use again the notation B = ®(L)i[L, A]®(L). If F_ =1 — F, then

(BACA) P~ x((A) /1) (A)u, ()~ x((4)/t)w)
=(BA(A) P~ x((A)/t)(Fy + F-)(A)u,(A) P (Fy + F-)(A)x(A)/t)u)-
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Here (A)~Pu € H. Moreover, by Thm 3.10 [BGS2], the fact that B is of class C*2 for all s < f ensure
that Fy(A)BF_(A) € B(A?~*, A°~*). Hence (A)’F,(A)BF-(A)(A)® =T € B(#), and this gives

(BA(A)™P~'x((4)/t)Fi(A)u, (A)~Px((4)/t) F-(4))
=(T(A)P~*(4) P~ x((A4) /) Au, (A)~ 2P x({A) /t) F- (A)u).

Therefore

(28) sup |(BA(A)™~ x((A)/)F+(A)u, ()P X(A) ) F(A))| < oo,
Similarly one gets

(2.9) sup |(BA(A)™x(AV/OF- (A)u, (A) P X{(A) /) Fy (4)] < oo.

Now (2.7) follows by (2.8), (2.9) and the previous lemma.
We can write A(A)~!F,(A) = g%(A)F4+(A) with g € S°. But (4)*~#[B, g(A))(A)*~* is bounded
by Lemma 1.4 (25 — 28 < 28 — 6 < 260 — 6 = 6). Hence

sup |(B¢A)"x((A)/t)g(A)F1(A)u,(A) P x((A)/t)g(A) F+(A))] < 0.
Using now the Mourre estimate we get
sup IB(L)(A) " x((A)/t)9(A) F4(A)ul| < oo.

As [®(L),{A)~Px((A)/t)g(A)F4(A)|{A)* is a bounded operator with norm independent on ¢ (by Lemma
1.4) it follows

up [(4) " x(4)/1)9(A)Fi (A)s] < oo.
This provide, using Beppo-Levi Theorem,
(2.10) (A)~Pg(A)Fy(A)u € H.

If we take Fy to be a smooth bounded real function on R, F; =1 on [2, ) and suppFy C [1,00), we
can write

Fy(A)XA)P = (Fy/gF:)(A)(9F4)(A)X4) 77,
and (F‘+/gF+)(A)(gF+)(A) is a bounded operator. Then (2.10) gives that F,(A)(A)~Pu € #. Thus
the lemma follows in this case since (1 — 4 (4)(A)~Pu € H by hypothesis (b) of Thm 2.

(i) Now we can repeat the argument with s replaced by 2a and see that (A)~Pu € H for all
$<6/2,>a & v ,

LEMMA 2.7. In the conditions of Thm. 2, u=0.

Proof. Denote ue = (¢A)~Pu. We shall show that |lu¢|| < C, where C does not depend on ¢. This
imlpies that u € #. Since u = ®(L)u, u is in the domain of L; and, as Lu = 0, it follows that either 0
is a eigenvalue of L, or u = 0. The first case is imposible due to the Mourre estimate.



Recall that L; = L$?%(L). We shall denote by T different bounded operators with norm independe
on t and €. We begin by computing

(¢[L1, Alue, ue) = tl_i’rg(i[Ll, A(A + it A)titlue, ue)
= Jim (L1 A(A + itA)~lit(eA) Pu,(cA)Pu)
- Jlim i((eA)"Pu, L1 A(A — it A)~tit(eA)~Pu)
= - lim i([(eA) P, L1]A(A + itA)~tit(eA)Pu,u)p,—p
— Jlim i(u, Ly A(A — itA)"lit(eA) " Pu)_p 4p
+ lim (L1 A(A+ itA)~it(eA)"%Pu,u)p —p
+ lim i(u, (eA)=P, L1]A(A — itA)~tit(eA) Pu)_p 45
= - lim i([(€A)™P, L1]A(A + itA) " tit(eA)u, u)p,—p
+ lim i(u, [(eA)™P, L1]A(A — itA) " tit(eA)u)—p,+p

We have
i[Ly,(€A)~P] = —Bi[Ly, Al Ae(eA)~P~2 4 (A)~PT(A) P!

(by Lemma 2.1, with 14+ 28 < 1+ 0; B <0, a=1) and also:
i[L1, €AY P) = — B2 AcA) P~ Yi[Ly, A] + (A)"P1T(A)~P.

It follows then

—i([(eA) P, L)t A(A + it A) "N (eA) Pu,u)p _p
=(—Bi[L1, Al A%it(A + it A)~tit(eA) =%~ 2u,u)p g + (T({A) P~ Lit A(A + it A) " ue, (A) Puc —
—(—Bi[Ly1, Al A% (e A"~ 2u, u)g g + (T(A) P ue, (A) Pu,

Similarly for the second commutator. We get thus
(i[L1, Alue, ue) = 2,3(62A2<€A>—2_ﬁ31u, ue) + (T(A)'ﬁu, (A)"ﬂu),
where B, = i[L, A]. We write e2A2(eA)~2"P = (eA)? — (¢A)~17P. Lemma 1.4 gives
(€AY By, ) = (Byte, ue) + (T(A4) P, (4) P )

and

((eA)™2Byu,uc) = (B1{eA) 1 u,, (eA) " tu,) + (T(A) Pu, (A)"ﬁu).

Hence

(1= 28)(Byue, uc) = —28(Bi{eA) 1 ue, (€A) ue) + (T(A) P u, (A) P u).

We use that u = ®(L)u as in Lemma 2.4 to get

(B1{€A) ™ uc, (eA) tu) = (®(L)i[L, A]B(L)(eA)  u, (€A) 1uc) + (T(A)~Pu,(A)"Pu).

89
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The Mourre inequality (suppose supp® small enough) provide
(1= 28)(Brue, ue) < (T(A) Pu,(A)u).

Again:
(Bitte, ue) = (R(L)[L, A]®(L)ue, ue) + (T(A) P u, (A)~Pu).

Then the Mourre inequality gives
12(L)u|| < C.

Commuting ®(L) and (¢A)~# (by Lemma 1.4), we get
I(ed)~Pull < C,

which gives u € H and thus finishes the proof. 1
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