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Abstract. The norm convergence of the Trotter-Kato product formula with error
bound is shown for the semigroup generated by that operator sum of two nonnegative
selfadjoint operators $A$ and $B$ which is selfadjoint.

1. Introduction and Result

It is well-known ([23], [15]; [19]) that the Trotter-Kato product formula for the
selfadjoint semigroup holds in strong operator topology. Namely, when $A$ and $B$ are
nonnegative selfadjoint operators in aHilbert space $\mathcal{H}$ with domains $D[A]$ and $D[B]$ ,
then

$\mathrm{s}-\lim_{\mathrm{n}arrow\infty}(e^{-tB/2n}e^{-tA/n}e^{-tB/2n})^{n}=\mathrm{s}-\lim_{r\iotaarrow\infty}(e^{-tA/n}e^{-tB/n})^{n}=e^{-tC}$ , (1.1)

if $C$ is the form sum $A\dotplus B$ which is selfadjoint, or, in particular, if the operator sum
$A+B$ is essentially selfadjoint on $D[A]\cap D[B]$ with $C$ its closure. The convergence is
uniform on each compact $t$-interval in the closed half line $[0, \infty)$ .

The aim of this note is to briefly announce our recent results on its operator-norm
convergence with error bound. In [12] we have shown

Theorem 1.1. If $A$ and $B$ are nonnegative selfadjoint operators in $\prime H$ with domains
$D[A]$ and $D[B]$ and if their operator sum $C:=A+B$ is selfadjoint on $D[C]=D[A]\cap$

$D[B]$ , then the prvxiuct formula in operator norm holds with error bound:

$||(e^{-tB/2n}e^{-tA/n}e^{-tB/2n})^{n}-e^{-tC}||=O(n^{-1/2})$ ,
(1.1)

$||(e^{-tA/n}e^{-tB/n})^{n}-e^{-tC}||=O(n^{-1/2})$ , $narrow\infty$ .
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The convergence is unifom on each compact $t$-interval in the open half line $(0, \infty)$ , and
further, if $C$ is strictly positive, unifom on the closed half line $[T, \infty)$ for every $\hslash ed$

$T>0$ .
One of the typical examples of such aselfadjoint operator $C=A+B$ is the

Schr\"odinger operator

$H=- \frac{1}{2}\Delta+P|x|^{-1}+D|x|^{2}+E|x|^{2000}$

in $L^{2}(\mathrm{R}^{3})$ , where $P$, $D$ and $E$ are nonnegative constants.

Remark 1.1 The first result of such anorm convergence of the Trotter-Kato product
formula (1.1) was proved by Rogava [20] in the abstract case under an additional con-
dition that $B$ is $A$-bounded, with error bound $O(n^{-1/2}\log n)$ . The next was by Helffer
[5] for the Schr\"odinger operators $H=H0+V \equiv-\frac{1}{2}\Delta+V(x)$ with $C^{\infty}$ nonnegative
potentials $V(x)$ , roughly speaking, growing at most of order $O(|x|^{2})$ for large $|x|$ with
error bound $O(n^{-1})$ . Each of these two results is independent of the other.

Then under some stronger or more general conditions, several further results are
obtained. As for the abstract case, abetter error bound $O(n^{-1}\log n)$ than Rogava’s
is obtained by Ichinose-Tamura [11] (cf. [9]) when $B$ is $A^{\alpha}$-bounded for some $0<$
$\alpha<1$ , even though the $B=B(t)$ may be $t$-dependent, and by Neidhardt-Zagrebnov
[16], [17] (cf. [18]) when $B$ is $A$-bounded with relative bound less than 1. As for
the Schr\"odinger operators, adifferent proof to Helffer’s result was obtained by Dia-
Schatzman [2]. Further, more general results were proved for continuous nonnegative
potentials $V(x)$ , roughly speaking, growing of order $O(|x|^{\rho})$ for large $|x|$ with $\rho>0$ ,
together with error bounds dependent on the power $\rho$ (for instance, of order $O(n^{-2/\rho})$ ,
if $\rho\geq 2$), by Ichinose-Takanobu [6] (cf. [7]), Doumeki-Ichinose-Tamura [3], Ichinose-
Tamura [10], Decombes-Dia [1] and others, although the primary purpose of most of
these papers was to prove rather anorm estimate between the Kac transfer operator
and its corresponding Schr\"odinger semigroup. The Schr\"odinger operators treated in
[6] and [3] may even involve bounded magnetic fields $\nabla\cross A(x)$ : $H=H_{0}(A)+V\equiv$

$\frac{1}{2}(-i\nabla-A(x))^{2}+V(x)$ . In [7] and [8] the relativistic Schr\"odinger operator was also
dealt with.

It should be noted (see [4], [21]) that in all these cases of the Schr\"odinger operators
the sum $H=H_{0}+V$ (resp. $H=H_{0}(A)+V$) is selfadjoint on the domain $D[H]=$
$D[H_{0}]\cap D[V]$ (resp. $D[H]=D[H_{0}(A)]\cap D[V]$ ).

Thus the present theorem not only extends Rogava’s result, but also can extend and
contain all the results mentioned above, inclusive better error bounds in some cases.

Remark 1.2. Unless the sum $A+B$ is selfadjoint on $D[A]\cap D[B]$ , the norm convergence
of the rather-Kato product formula does not always hold, even though the sum is
essentially selfadjoint there and $B$ is A-form-bounded with relative bound less than 1.
Acounterexample is due to Hiroshi Tamura [22].

The theorem also holds with the exponential function $e^{-s}$ replaced by real-valued,
Borel measurable functions $f$ and $g$ on $[0, \infty)$ satisfying that

$0\leq f(s)\leq 1$ , $f(0)=1$ , $f’(0)=-1$ , (1.1)
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that for every small $\epsilon$ $>0$ there exists apositive constant $\delta$ $=\delta(\epsilon)<1$ such that

$f(s)\leq 1-\delta(\epsilon)$ , s $\geq\epsilon$ , (1.4)

and that, foT some fixed constant $\kappa$ with $1<\kappa$ $\leq 2$ ,

$[f]_{\kappa}:= \sup_{s>0}s^{-\kappa}|f(s)-1+s|<\infty$ , (1.5)

and the same for g. Of course, the functions $f(s)=e^{-s}$ and $f(s)=(1+k^{-1}s)^{-k}$ with
k $>0$ are examples of functions having these properties.

Theorem 1.2. If $3/2\leq\kappa$ $\leq 2$ , it holds in operator nor$m$ that

$||[g(tB/2n)f(tA/n)g(tB/2n)]^{n}-e^{-tC}||=O(n^{-1/2})$ ,
(1.4)

$||[f(tA/n)g(tB/n)]^{n}-e^{-tC}||=O(n^{-1/2})$ , $narrow\infty$ .

2. Outline of Proof

To proving the theorem, it is crucial to show the following operator-norm version of
Chernoff’s theorem with error bounds. The case without error bounds was noted by
Neidhardt-Zagrebnov [18].

Lemma. Let $C$ be a nonnegative selfadjoint operator in a Hilbert space 7{ and let
$\{F(t)\}_{t}>0$ be a family of selfadjoint operators with $0\leq F(t)\leq 1$ . Define $S_{t}=t^{-1}(1-$

$F(t))$ . $\overline{\mathrm{f}}\mathrm{f}\mathrm{l}$en in the following teuo assertions, for $0<\alpha\leq 1$ , (a) implies (b).
(a)

$||(1+St)^{-1}-(1+C)^{-1}||=O(t^{\alpha})$ , $t\downarrow \mathrm{O}$ . (2.1)

(b) For any $\delta>0$ with $0<\delta\leq 1$ ,

$||F(t/n)^{n}-e^{-tC}||=\delta^{-2}t^{-1+\alpha}e^{\delta t}O(n^{-}’)$ , n $arrow\infty$ , (2.2)

for all $t>0$ .
Therefore, for $0<\alpha<1$ (resp. $\alpha=1$), the convergence in (2.2) is unifom on each

compact $t$ -interval in the open half line $(0, \infty)$ (resp. in the closed half line [0, $\infty$ ) $)$ .
Moreover, if $C$ is strictly positive, $i.e$ . $C\geq\eta$ for sorne constant $\eta>0$ , the error

bound on the right-hand side of (2.2) can also be replaced by $(1+2/\eta)^{2}t^{-1+\alpha}O(n^{-\alpha})$ ,
so that, for $0<\alpha<1$ (resp. $\alpha=1$), the convergence in (2.2) is unifom on the closed
half line $[T, \infty)$ for every fied $T>0$ (resp. on the whole closed half line [0, $\infty$ ) $)$ .

Sketch of Proof of Lemma.

Put
$F(t/n)^{n}-e^{-tC}=(F(t/n)^{n}-e^{-tS_{t/n}})+(e^{-tS_{t/n}}-e^{-tC})$ .

For the first term on the right we have by the spectral theorem

$||F(t/n)^{n}-e^{-t\mathrm{S}_{t/n}}||=||F(t/n)^{n}-e^{-n(1-F(t/n))}||\leq e^{-1}n^{-1}$ ,

130



$0\leq e^{-n(1-\lambda)}-\lambda^{n}\leq e^{-1}/n$, for $0\leq\lambda\leq 1$ .
For the second term, we use

$(1+S_{\epsilon})^{-1}[e^{-t(\delta+S_{e})}-e^{-t(\delta+C)}](1+C)^{-1}$

$= \int_{0}^{t}e^{-(t-s)(\delta+S_{e})}[(1+S_{\epsilon})^{-1}-(1+C)^{-1}]e^{-s(\delta+C)}ds$

$= \int_{0}^{t/2}+\int_{t/2}^{t}$

where $0<\delta\leq 1$ and $\epsilon>0$ , to bound these two integrals on the right by $(\delta^{2}t)^{-1}e^{\delta t}O(\epsilon^{\alpha})$ .
Taking $\epsilon$ $=t/n$, we have

$||e^{-tS_{t/n}}-e^{-tC}||\leq(\delta^{2}t)^{-1}e^{\delta t}O((t/n)^{\alpha})=\delta^{-2}t^{-1+\alpha}e^{\delta t}O(n^{-\alpha})$ .

Sketch of Proof of Theorems 1.1 and 1.2.

First note that since $C=A+B$ is itself selfadjoint and so aclosed operator, by the
closed graph theorem there exists aconstant $a$ such that

$||(1+A)u||+||(1+B)u||\leq a||(1+C)u||$ , $u\in D[C]=D[A]\cap D[B]$ .

The proof of the theorem is divided into two cases, (a) the symmetric product case

$F(t)=e^{-tB/2}e^{-tA}e^{-B/2}$ , (2.3)

and (b) the non-symmetric product case

$G(t)=e^{-tA}e^{-tB}$ . (2.4)

(a) In the symmetric case we put

$S_{t}=t^{-1}(1-F(t))=t^{-1}(1-e^{-tB/2}e^{-tA}e^{-tB/2})$

and use Lemma to show that

$||(1+S_{t})^{-1}-(1+C)^{-1}||=O(t^{1/2})$ , $t\downarrow \mathrm{O}$ .

Put

$A_{t}=t^{-1}(1-e^{-tA})$ , $B_{t}=t^{-1}(1-e^{-tB})$ , $C_{t}=t^{-1}(1-e^{-tC})$ .

We have

$1+S_{t}=1+A_{t}+B_{t/2}- \frac{t}{4}B_{t/2}^{2}+\frac{t^{2}}{4}B_{t/2}A_{t}B_{t/2}-\frac{t}{2}(A_{t}B_{t/2}+B_{t/2}A_{t})$

$=K_{t}^{1/2}(1+Q_{t})K_{t}^{1/2}$ ,
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Then we can show
$||(1+Q_{t})^{-1}||\leq 2/(3-\sqrt{5})$ , (2.5)

$||(1+S_{t})^{-1}K_{t}^{1/2}||=||K_{t}^{-1/2}(1+Q_{t})^{-1}||\leq 2/(3-\sqrt{5})$ . (2.6)

Then we have

$(1+S_{t})^{-1}-(1+C)^{-1}$

$=(1+St)^{-1}[A+B-(At+ \mathrm{B}\mathrm{t}/3-\frac{t}{4}B_{t/2}(1-tA_{t})B_{t/2}$

$- \frac{t}{2}(A_{t}B_{t/2}+B_{t/2}A_{t}))](1+C)^{-1}$

(2.7)
$=(1+St)^{-1}(A-A_{t})(1+C)^{-1}+(1+S_{t})^{-1}(B-B_{t/2})(1+C)^{-1}$

$+(1+S_{t})^{-1}[ \frac{t}{4}B_{t/2}(1-tA_{t})B_{t/2}+\frac{t}{2}(A_{t}B_{t/2}+B_{t/2}A_{t})](1+C)^{-1}$

$\equiv R_{1}(t)+R_{2}(t)+R_{3}(t)$ .

We can show the bounds

$||R.(t)||\leq ct^{1/2}$ , $i=1,2,3$, (2.8)

with some constant $c>0$ . For instance, we can get the bound for $R_{1}(t)$ , via the
expression

$R_{1}(t)=[(1+S_{t})^{-1}K_{t}^{1/2}][K_{t}^{-1/2}(1+A_{t})^{1/2}]$

$\mathrm{x}[(1+A_{t})^{-1/2}-(1+A_{t})^{1/2}(1+A)^{-1}](1+A)(1+C)^{-1}$

by (2.6) and the spectral theorem

$||R_{1}(t)||\leq\overline{3}\nabla-5^{a||(1}2+A_{t})^{-1/2}-(1+A_{t})^{1/2}(1+A)^{-1}||\leq ct^{1/2}$ .

(b) The non-symmetric case $\mathrm{w}\mathrm{i}\mathrm{u}$ follow from the symmetric case. We use the commu-
tator argument to observe that

$||G(t/n)^{n}-F(t/n)^{n}||=||(e^{-tA/n}e^{-tB/n})^{n}-(e^{-tB/2n}e^{-tA/n}e^{-tB/2n})^{n}||$

$=O(1/n)$ .
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3. The Final Result

In arecent preprint [14], we have shown that if $\kappa=2$ , then Theorem 1.2 holds with
optimal error bound $O(n^{-1})$ . Further, the convergence is uniform on each compact
$\mathrm{t}$-interval in the closed half line $[0, \infty)$ , and further, if $C$ is strictly positive, uniform on
the whole closed half line $[0, \infty)$ .

The idea of proof is simply to iterate the resolvent equation of the first identity in
(2.5) with help of its adjoint form to get

$(1+S_{t})^{-1}-(1+C)^{-1}$

$=((1+C)^{-1}+[(1+S_{t})^{-1}-(1+C)^{-1}])(C-S_{t})(1+C)^{-1}$

$=(1+C)^{-1}(C-S_{t})(1+C)^{-1}+[(C-S_{t})(1+C)^{-1}]^{*}(1+S_{t})^{-1}(C-S_{t})(1+C)^{-1}$

$\equiv R_{1}’(t)+R_{2}’(t)$ .

Then by the same arguments together with (2.6) we can show the bounds

$||R_{i}’(t)||=O(t)$ , $i=1,2$ .

Therefore it turns out that the product formula (1.2) in Theorem 1.1 holds, now with
ultimate error bound $O(n^{-1})$ , properly extending and containing all the known previous
related results.

Finally, we comment about optimality of the error bound $O(n^{-1})$ . We know that
if both $A$ and $B$ are bounded operators, then we have, in the symmetric product case
(2.3), $||F(t/n)^{n}-e^{-tC}||=O(n^{-2})$ , while, in the non-symmetric product case (2.4),
$||G(t/n)^{n}-e^{-tC}||=O(n^{-1})$ . But also in the symmetric product case, we can give an
example of two unbounded selfadjoint operators $A$ and $B$ whose operator sum $C=A+B$

is selfadjoint on $D[A]\cap D[B]$ such that $||F(t/n)^{n}-e^{-tC}||\geq L(t)n^{-1}$ , with apositive
continuous function $L(t)$ of $t>0$ independent of $n$ .

Part of the present results also was briefly announced in [13].
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