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A reaction—diffusion system approximation
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1 Introduction

The theory of reaction—diffusion systems has been developed in the last two decades.
Especially, a singular limit analysis reveals various behavior of solutions to us. It has
mainly been used for purpose of studying the dynamics of the specific reaction—diffusion
system.

In this paper, the following type of equations is called a reaction—diffusion system:

u; = DAu + f(u), (1.1)

inz € Q c R", t > 0 with the Neumann homogeneous boundary condition and initial
condition where

u=t(u1,---,UM), f(u)zt(fl(u)7"';fM(u))7

and D is a diagonal matrix whose elements are positive (or non-negative). A reaction—
diffusion system consists of two parts: one is a kinetic term f; the other is a diffusion one
DA. One might think that the diffusion term makes the solution spatially homogenize.
After discovering Turing’s instability, it turns out that one’s intuition might not apply
all the reaction—diffusion system (cf. [14, 8, 12]).

We encounter the questions: How wide is a class of reaction—diffusion systems?, or
How rich are the dynamics of reaction—diffusion systems? Thus we study the relation-
ship between reaction—diffusion systems and the following two systems:

(i) the two-phase Stefan problem,
(ii) the cross-diffusion system.

Obviously, these systems do not belong to a class of reaction—diffusion systems. In this
paper, new types of reaction—diffusion systems with a small parameter are proposed,
which converge to the above two system (i) and (ii) respectively. That is, by the singular
limit analysis, it is shown that any solution of these systems converges to that of (i) or
(ii) respectively. In other word, the above two system (i) and (ii) can be embedded in
the class of reaction—diffusion systems.



2 Main Results

2.1 A reaction—diffusion approximation to the two—phase Ste-

fan problem

We consider the two—phase Stefan problem with reaction terms:

[ uy = dy Au+ f(u) in Q,(t),
v = d2 v + g(v) in Qu(t),
_ diOu  dy v
} AV, 5 0n " 3,0m on I'(¢), 2.1)
u=v=0 on I'(2),
Ou Ov
| E/— = % =0 on ON.

for t € (0,T) where d;,s; (¢ = 1,2) and )\ are positive constants and v is the outward
normal vector to O2. The region 2 is divided into two subregion €,(t) and Q,(t). In
Q(t), u > 0and v =0 and in Q,(t), v > 0 and u = 0. The boundary between €, (t)
and €, (t) are denoted by I'(t), which is called an interface. Namely,

Q = Qu(t) UNW(t) UT(t).

The unit normal vector on I'(t) oriented from Q,(t) to £,(t) is denoted by n and the
normal velocity of the interface I'(t) is by V,,. The assumptions of reaction terms f and
g are specified later. If we choose s; = s, = 1,f = g = 0 and regard u — v as the
temperature, the system (2.1) is called the classical two—phase Stefan problem.

To approximate the system (2.1), Hilhorst, lida, Ninomiya and Mimura have pro-
posed the following reaction—diffusion system in [7):

' —
u = dyAu+ f(u) — 81:“’ - ’\3‘(16 wu zEQ, t>0,

{ v =d2Av+ g(v) — 32:“) - )\szewv’ zeN t>0, (2.2)
'wt-:'('l'_Tsz—%, :z:GQ,t'>0,

with the Neumann boundary condition and the initial condition
Ou Ov

5% =3, =0 onoax(T) (2:3)
u(x,0) = uo(z), v(z,0)=w9(z), w(z,0)=we(z) in . (2.4)
Since w(z, t) behaves like an indicator of (), it is natural to assume that
vw(z) =0, we(z)=1, if up(z) > 0,
up(z) =0, wp(x) =0, if vo(z) > 0.



By introducing the new variable p = 1 — w, (2.1) is replaced by

( A
u =dAu+ f(u) — slzw - s:pu’ zeN t>0,
A
v = doAv + g(v) — 5249 _ 32wv, zeN, t>0,
€ €
3 — (2.5)
Wy = — — —, €N, t>0,
€ €
pt=_p_’u+92’ zeN, t>0.
\ € €

This system can be regard as the model one of the following chemical reaction:

U+P—W+ 27,
U+V—)Z3,

where U, V, W, P represent the chemical substances whose densities are u, v, w, p respec-
tively and Z; (i = 1,2, 3) means that expect for U,V,W and P.

To state our main result, we impose the assumptions on f, g and the initial datum
(uo, Vo, 'LU()).

Al (Assumption on f and g)
There exist C'-functions f(u) and g(u) and positive constants K; and K, such
that

fuw) = fu)u, g(uw)=gu)u,
f(u) <0foru> Ky, §(u) <0 for u> K.

A2 (Assumption on the initial datum)
(ug, vo, wp) € C(Q) x C(R) x L=(R2),
0<wup(z)<a, 0<w(E)<P, 0Lw(r)<l ing,
UgVg = (1 - ’UJQ)UO = WYy = 0 in Q,
for some positive constants a and 3.
Set

To := {z € Q| uo(z) = vo(z) = 0},
Qr == x [0,T].

THEOREM 2.1. Let Q be a bounded domain in RN (N > 1) with C?-boundary 0.
Assume Al and A2. Let (uf,v¢,w®) be the solution of (2.2) in Qr with (2.3)-(2.4).



Then there erists (u,v,w) € L?(0,T; H(R)) x L%(0,T; H(RQ)) x L*(Qr) such that

U —u, v°—v in L*(Qr),
wt—w weakly in L*(Qr)

as € = +0, and
Q,NQ, =0,
_J 1 inQ,,
w—{O in Q,

where

Q= {(z,t) € Qr| u(z,t) >0} = {(z,t) € Qr| z € U(t),0 <t < T},
Q= {(z,t) € Qr| v(z,t) > 0} = {(z,t) € Qr| z € (t), 0 <t < T}

Moreover, if

[=Qr\(QWU)={(z,t) €Qr|z€T(t), 0<t<T}

is @ smooth hypersurface satisfying I'(t) CC Q for0 <t < T and if u (resp. v) is smooth
on Q, (resp. ), then (T',u,v) is the unique solution of the free boundary problem (2.1)
and the initial conditions

I'(0) =T,
(u(z,0),v(z,0)) = (uo(z), vo(z)) in Q.

This theorem implies that we can derive the classical two—phase Stefan problem
from the reaction—diffusion system (2.2) in the absence of the reaction terms f and g,
taking the limit ¢ tends to zero. The parameter A in (2.1) corresponds to the latent
heat in the Stefan problem. For sufficiently small ¢, one can expect that u and v exhibit
corner layers on the interface I'(t), while w has a sharp transition layer. Along the
same line, the one-phase Stefan problem can be discussed. We refer to the papers by
Hilhorst, van der Hout and Peletier [4, 5, 6] and by Eymard, Hilhorst, van der Hout
and Peletier [3].

2.2 A reaction—diffusion approximation to the cross—diffusion
system

The following cross—diffusion system is considered in this subsection:

{ uf = diAu* + Aay(u*) + by (u*, v*), - zeNt>0

v} = daAv* + Aay(u*,v*) + bo(u*,v*), z€Q,t>0, (26)



with the boundary condition

Ou* ov*
= = . 2.7
0, 0 forzed,t>0 2.7
and the initial condition
u*(z,0) = uo(z), v*(z,0) =ve(z) forz €, (2.8)

where d; and d; are positive constants. Next, we consider the auxiliary parabolic
system:

([ w = diAu+ Aw + by (u,v), reNt>0,
v = daAv + Az + by(u,v), zeNt>0,

{ w, = 2d,Aw + %(&l(u) —w), TENt>O, (2.9)

z = 2dy Az + %(&g(u, v)—2z), zT€t>O0,

with the boundary condition

ou ov ow 0z
B ,%—0,%—0,5&—0 for £ € 0, t > 0, (2.10)

and the initial condition

’U,(IL', 0) = Uo((I)), ’U(LL‘, 0) = 1)0(_'1;)
{ ’U)(m, 0) = &1("1'0(117)), Z(.’L‘,O) = 5'2(“'0(-'17),7)0(33)) for z € Q. (211)

It is easy to expect that the solutions of (2.9) converge to those of (2.6) as € | 0, if
d; = a; and b; = b; (¢ = 1,2). By the technical reason, however, a; and b; (i = 1,2)
should be modified outside of the large rectangle in the u-v plane.

THEOREM 2.2. Assume

0 0 .
%al(r) >0, %ag(r, s) >0, in(r,s)€[0,Ry] x [0, Ry) (2.12)

for some positive constants R; and Ry. Let (u*,v*) = (u*(z,t),v*(x,t)) be a smooth
solution of (2.6)—(2.8) satisfying

0<u*(z,t) <R, 0<v*(z,t)<Ry
int € [0,T) for some positive T and

lu*llco@xpomy + IV ll co@xpo,ry + 1Vl co@xpo,my + IVV* llco@xioryy < o0



Then there ezist functions @ (u), G2(u,v), b, (u,v) and by(u,v) such that the solution
(us, v, we, 2¢) = (us(z,t), v¢(z, t), wé(z,t), 25(z, t)) to (2.9)-(2.11) satisfies

llu® — u*{leogo,m;L2(a)) < Ce,
||v¢ = v*||eoqo,Ty;2(0)) < Ce.

See the details in [9)].

REMARK 2.3. The functions &; and b; (i = 1, 2) are the modified ones of a; and b;
satisfying

= a@; in (U,’U) € [0, R1] X [0, Rg],
= b in (u,v)€[0,R] x [0, Ry].

S

By applying the linear transformation

i=u-—, G=v-—, B=w, Z=z
d’ dy’ T
ie.,
u—ﬁ+; 'v—17+—2- w=w, 2z=2
= dl’ - d2, - ) — 4y
(2.9) is replaced by the following reaction—diffusion system
’ 1, . W,
iy = dlAu+b1(u+d ’”+d,)‘d—1e(“1(“+ 7)),
- . T e b | D 3 .
vt=daAv+bz(u+3—,v+—)——(az(u+2,v+i)—z),
ﬁ 1 & b b (2.13)
By = 2di AW + - (a1u+ - ),
Zt 2dyAZ + ~ (ag(u+ v+d—2 —Z),

inz € Q, ¢t > 0. This implies that the dynamics of cross—diffusion system can be
embedded in that of reaction—diffusion system.
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