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ASYMPTOTIC ALGEBRAS

INGO WITT

ABSTRACT. The concept of asymptotic type that primarily appears in singular
and asymptotic analysis is developed. Especially, asymptotic algebras are intro-
duced.

1. INTRODUCTION

Let 9t be a unital algebra and let py: 9t — L(F) be a faithful representation of 90t
on some linear space, §. Henceforth, we shall (often) identify (via py) elements of 9t
with operators on §, i.e., we shall write P instead of po(P). We intend to assign to
the elements of § certain “asymptotics” with respect to (the represenfation po of) 9.
First of all, there is a distinguished linear subspace, §, — the subspace of all “flat”
elements of §. (In this abstract setting, “flatness” means nothing but belonging to
the subspace §o.) The subspace Fp, however, is in general no left invariant under
the action of operators in 901; thus leading to the concept of asymptotic type. In
a sense, asymptotic types measure the “deviation” of PFy, P € 91, from the flat

subspace §p.

Thus an asymptotic type is a linear subspace of the quotient space §/Fo. The set
of all asymptotic types, J, should be a sublattice of the complete lattice Lin(F/3o)

of all linear subspaces of §/&o. Furthermore, it is required:

e O € J (where O = Fo/Fo is the empty asymptotic type);

e for each P € 9M and all J € J, there is a K € J such that J¥ C K (where
JP = (Pgo + Fo)/To is the push-forward of J € Lin(F/Fo) under the action
of P € M),

® N.ez J. € J for each non-empty family {J.}.ez C J.
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The subset J C Lin(F/Fo) is called a lattice of asymptotic types (abbreviated l.a.t.)
and (M, po, F, Fo, J) is called an asymptotic algebra. Further, u € § is said to have
asymptotics of type J if and only if u € §; = 7~1(J), where 7: § — §/Fo is the
canonical projection. In particular, the flat subspace § = Fo is the space of all

elements having no asymptotics. Given the la.t. J, we get the ideal

Gy = {S € M; S(F) C §, for some J € J}
of residual operators and the multiplicatively closed set

€5 = {P € M, there is a Q € M such that PQ — 1, QP — 1 € G;}

of elliptic operators. Note that €;/&; is the group of invertible elements in the
algebra 9t/&;. For operators P € € elliptic regularity holds: For each K € 3,
there is a J € J (depending on P, K) such that u € § and Pu € §k implies u € §.
In fact, let Q € € be a parametrix to P, i.e., we have PQ — 1, QP —1 € G;3. Then
u = Q(Pu) — (QP — 1)u, hence the claim.

Remark. The third property implies that every non-empty subset S C J possesses
a meet (= greatest lower bound) AS = (,cs J and every bounded subset 7 C J
possesses a join (= least upper bound) V7 = A{K; K2 JforallJ€T}. In
particular, J topped with §/F, i.e., JU {§/§}, is a complete lattice. Note further
that Ay S = ALin(g/0)S> While, in general, we only have V3T 2 Viing/s T

For a quadruple (9M, po, §, o), the basic question concerns the appropriate choice of
the l.a.t., J. Here the answer will, of course, strongly depend on the given context.
The most obvious answer, namely to take for J the least subset of Lin(F/Fo) that
contains O and that is closed under push-forwards by elements of 9t as well as under
forming non-empty intersections and finite sums, yields, in general, a l.a.t. that is
too large (and, therefore, inadequate). Instead, one wishes (with the help of the
asymptotic types) to reflect a certain “internal” structure. In this paper, we shall
consider a situation in which it is possible to overcome the difficulty of introducing

an appropriate l.a.t. by reducing to a so-called symbol algebra.

A key observation in that respect is that, when defining concepts like the push-
forward J® for P € M, J € Lin(F/Fo), it is sufficient to know the action of P on §
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“only modulo §p in the image”, i.e., it is sufficient to know the composed map

§ 29 5 T 5/5.

Hence instead of a linear representation pg: 9t — L(F) we shall consider a linear
map p: I — L(F, §/To) such that, for all P, Q € M, the diagram

5 LiCZeN §/So

(1.1) o) | |

§/30 3 (8/80)/QFo

commutes. (Especially, it is possible to choose p(P) = mpo(P) for a linear rep-
resentation py.) Here p(Q) in the second horizontal line is the map induced by

p(Q): § — /B0, and the second vertical line is the canonical quotient map.

The plan of the paper is as follows: In Section 2, we study quasi-invertible operators
which are, in particular, elliptic operators for which explicit calculations on asymp-
totic types are possible (upon an appropriate choice of J), see Proposition 2.2. In
Section 3, we then deal with “linear maps” from § to the affine subspaces of F/o.
(Sending the flat subspace § to linear subspace of F/Fo corresponds to the “produc-
tion of asymptotics” by the elements of 91.) This is preparatory for the introduction
of asymptotic algebras followed in Section 4. Then, in Section 5, we describe the re-
duction of the the quadruple (9, p, &, To) to a symbol algebra, see Propositions 5.4,
5.5. Finally, in Section 6, we show that wave front sets arise as asymptotic types,

and also discuss cone algebras. Further examples will be provided elsewhere.

2. QUASI-INVERTIBLE OPERATORS

For P € L(§,%/%0), J € Lin(§/o), the push-forward J¥ of J under P is defined
to be the space J¥ = PF,. In particular, OF = Pg, characterizes the amount of
asymptotics “produced” by P. Furthermore, let Lp for P € L(F,5/3To) the largest
subspace of §/Fo such that (Lp)? = OF, ie., Lp = (P7}(O) + Fo)/To. Thus Lp

characterizes the amount of asymptotics “annihilated” by P.

For operators P, Q € L(F,3/30), we define the composition @ o P € L(F, §/Joe)

in a manner predicted by (1.1), i.e.,

QoP:§ -5 3/50 -5 §/Foe = (3/30)/ 0%,
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where, again, the second arrow is induced by Q: § — §/o.

Definition 2.1. An operator P € L(F, §/3o) is called quasi-invertible if there is an
operator @ € L(F, /o) such that

(2.1) PoQ=1in L(§,3§/For), QoP =11in L(F,§/Foe).

Q is called a quasi-inverse to P. (Q is then also quasi-invertible, and P is a quasi-
inverse to Q.)

Remark. Under the mere conditions (1.1) and p(1) = 1, invertible operators in 9

are mapped (by p) to quasi-invertible ones.

It is readily seen that the set of all quasi-inverses to P is the affine space

(2.2) Q + {S € L(3,3/30); S(3) € 09}.

Hence we can regard a quasi-invertible operator P € L(§, §/Jo) as being determined
only modulo operators sending § to OF. Even with this freedom of choice, the push-

forward J? for J € Lin(F/o) is uniquely determined.

Proposition 2.2. Let P € L(F,§/50) be quasi-invertible with quasi-inverse Q.
Then:

(a) Lp = O9 and Lo = OF;

(b) The mapping J — (JFP)? on the complete lattice {J € Lin(F/To); J 2 Lp} is
order-preserving. Furthermore, J 2 (JF)? D Lp for all J € Lin(F/Jo) satisfying
J D Lp, and (JP)? = J if and only if J/Lp = J9°F (where J2°F = (Q o P)3o);

(c) The mapping

(2.3) {J € Lin(§/Fo); J 2 Lp, J/Lp = J¥F}
— {K € Lin(§/80); K 2 Lg, K/Lqg = K??}, J— JF,

is an order-isomorphism with inverse K — K©.

Proof. First we show (a). Since P, Q are quasi-inverse to each other, it suffices to
prove that Lp = O9. Let u € § such that Pu = ©. Then u = Qo Pu = O in
F/oe, ie., u € Foe and Lp C OF. Conversely, for v € Fo, we have v = PoQv = O
in §/For, i.e., Qv e Lp and Lp D OF.
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Further, by Lemma 2.3 below, we have (JF)? = J9P v O9 for any J € Lin(F/Fo),
where QP € L(F,§/3o) is a lifting of @ o P € L(F,F/Foe). On the one hand, we
get JeP v 09 C JV O9, since QP = 1 + R, where R(§) C O9, by the quasi-
invertibility of P. Hence (JF)? C JV Lp by (a). On the other hand, J¥ D O.
Therefore, (J¥)? O O9 = Lp, again by (a).

To complete the proof of (b), (c), it now suffices (by symmetry) to show that, for each
J € Lin(§/%0), we have JP = ((JF)?)F. We already know that J¥ D ((J¥)?)F.
So let u € §, mu € JP. Then mu = Pv for some v € §;. Now PQ = 1+ S with
S(F) € OF, where PQ € L(§F,§/%o) is a lifting of Po Q € L(§,§/Jor). We get
that (PQ) o Pv — Pv € OF and (PQ)o P = (PoQ)o P = Po(Qo P) in view
of the quasi-invertibility of P. Hence 7u = Pv € ((J¥)?)P, which concludes the

proof. O

The following result is easy.

Lemma 2.3. For P, Q € L(§,§/3%0), J € Lin(F/Fo), we have
(2.4) (JP)? = J9F v 09,

where QP € L(F,§/To) is any map that covers Qo P € L(F,F/Toe), i.e., QoPu=
QPu + O9 holds for all u € §. (In particular, if p: M — L(F,F/Fo) is a linear
map for which (1.1) is fulfilled, then one can take p(QP) for p(Q)p(P).)

3. LINEAR MAPS WITH VALUES IN AFFINE SPACES

The following section is a technical one. Let Aff(F) denote the space of all affine
subspaces of §. Further let

(3.1) AfE(F, o) = (T x Lin(F/Fo))/ ~,

where the equivalence relation (v, L) ~ (v, L") for (v, L), (v', L") € § x Lin(F/3o) is
defined by L = L' and v — v' € §;. The subspace Lin(F, o) C Afi(F, o) is given
by pairs (v, L) satisfying v € Fr. Upon sending the pair (v, L) to 7v + L, the spaces
AfF(F, o) and Lin(F, Fo), respectively, are identified with Aff(F/Fo) and Lin(F/Fo)-
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On Aff(§, 8o), we define an “addition” and a multiplication by scalars by

(v,L)+ (W, L") :== v+, L+ L,
A(v,L) :== (M, L), A eC.

A “linear map” P: § — Aff(3, o) is given by a pair (P, K) € L(F) x Lin(F/Fo)
with respect to the equivalence relation (P,K) ~ (P',K’) for (P,K), (P',K') €
L(%) x Lin(F/Fo) when K = K’ and (P — P')(§) C Fx. (Thus a “linear map”
P: §F — Aff(F, Fo) can likewise be given by a pair (P, K) € L(F,§/Fo) x Lin(§/Fo)
with respect to the same equivalence relation: (P, K) ~ (P', K') when K = K’ and
(P - P')(8) € K.) To the pair (P, K) we then assign the map § — Aff(F, T),
v+ (Pv, OF + K). The space of all these mappings is denoted by L(F, Aff(F, 5o)).
Lemma 3.1. The space L(§, Afi(F,To)) consists of all mappings P: § — Aff(F, Fo)
satisfying P(u + v) = P(u) + P(v) and P(Mu) = AP (u) foru,v € §, A € C. In
that case, we have P = (P, K) for some P € L(§), where K = P(0) € Lin(g/Jo).

Furthermore, P induces a “linear map”
(3.2) P: Afi(F) — AfE($,%0), (u,L) — (Pu,LF +K)
such that P(Lin(F)) C Lin(F, Fo)-

Eventually, for P € Aff(3, ), J € Lin(F/Fo), we define the push-forward J? of
J under the action of P by J” = Pg;. Furthermore, for linear operators P, Q €
L(§, Aff(F, Fo)), where P = (P, K), @ = (Q, L), we define the composition by

QoP = (QP,K°+ L) € L(F, A(F, 3o)).

4. ASYMPTOTIC ALGEBRAS

Now we are in a position to introduce what we shall call an asymptotic algebra. To
do so, we start with pre-asymptotic algebras on which the notion of asymptotic type
makes sense.

Definition 4.1. A pre-asymptotic algebra is a quadruple (9, p, §, Fo), where I
is a unital algebra, § is a linear space, , is its linear subspace, and p: 9t —
L(%,8/80) is a linear map such that p, given by p(P) = (p(P), O) for P € M, is a

faithful “representation of 9t on § modulo F in the image.” The latter means that
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p: M — L(F, Aff(F, o)) is an injective “linear map” such that p(1) = (1, 0) and,
for all P, @ € 9, we have

(4.1) p(QP) =p(Q) o p(P) in L(F, F/Soq)-

Note that (4.1) means that, for all P, @ € 9, the diagram (1.1) commutes. For
P € oM, J € Lin(§/To), the push-forward JPF) = Jo(P) shall also be denoted by
JP. Similarly, we shall write Lp instead of L,p). An operator P € 9 is called
quasi-invertible, and Q € 9 is called a quasi-inverse to P, if p(P) € L(g, 3/30‘) is
quasi-invertible with quasi-inverse p(Q). This definition is meaningful due to (1.1).
Remark. The seemingly more general definition p(P) = (p(P), K) for P € 9 and
some linear map p: M — L(F, F/Fk), where K € Lin(F/Fo) (and p(1) = (1, K)) is

in fact not more general — this is seen upon replacing §o with Fx.

Definition 4.2. A lattice of asymptotic type (l.a.t.) on a pre-asymptotic algebra
(9N, p, &, o) is a sublattice of J of Lin(F/Fo) such that

e Vey;
. o for each P € 9 and all J € J, there is a K € J such that J© C K;
e (,cz J. € J for each non-empty family {J,}.ez C 3J.

For the implications of the third condition, see Remark in Section 1. For a given
pre-asymptotic algebra (9, p, §, Fo), there is an obvious choice of a l.a.t., namely the
least subset Jo C Lin(§/Fo) that contains O and that is closed under push-forwards
by operators in 90t as well as under forming non-empty intersections and finite sums.
For most applications, however, the l.a.t. Jo will be too large. Therefore, one always
has the problem of choosing the l.a.t. J (in general, J # Jo) in an appropriate way.
Definition 4.3. An asymptotic algebra (9, p, §, Fo, J) is a pre-asymptotic algebra
(M, p, §, o) equipped with a la.t. J.

For an asymptotic algebra (9, p, &, Fo, J), we have the ideal
Sy ={S € M; p(S)(F) C J for some J € J}

of residual operators and the multiplicatively closed set containing the group of all

invertible elements

€y = {P € 9M; there is a Q € M such that PQ — 1, QP — 1 € G4}
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of elliptic operators, see Section 1.

Remark. It is very likely that, in a final version of the definition of a l.a.t., the
condition that the join-irreducible elements are join-dense in J has also to be added.

This would provide “irreducible elements” as building blocks for asymptotic types.

5. REDUCTION TO SYMBOL ALGEBRAS

In pseudodifferential analysis, a symbol algebra (M, o, F, Fo,J) is characterized by
the property that each elliptic operator F' € €y j is invertible in 9. One possibility
in finding an appropriate l.a.t. J for the pre-asymptotic algebra (9, p, &, Fo) is to
reduce it to a symbol algebra (M, o, §, Fo, J) (if it exists).

Definition 5.1. An asymptotic algebra (9,0, §, Fo, J) is called reduced if G; = 0.

For a reduced asymptotic algebra (M, o, §, Fo,J), each elliptic element F € &; is
invertible (and its parametrix G is uniquely determined). In fact, FG—1 € &5 and
GF —1 € G5 implies FG=GF =1in N.

Definition 5.2. An asymptotic algebra (N, o, §, Fo, Jo,m) is called a symbol algebra
for the pre-asymptotic algebra (9, p, §, §o) if (M, 0, F, Fo, Jom) is reduced and if

there is a surjective homomorphism ©: 97t — 0N of unital algebras such that
(5.1) (o(P) —a(6P))(3) C J

for all P € 9 and some J € Jom depending on P. Here Jom is the l.a.t. Jo formed in
the pre-asymptotic algebra (M, g, §, Fo), see the previous section immediately after
Definition 4.2.

Lemma 5.3. For (M, p,§,To), (N, 0,5, Fo,Jom) being as in Definition 5.2, the
ideal Gon 3, ,, is the kernel of the algebra homomorphism ©: I — .

Proof. Let S € 9, ©S = 0. Then p(S)(F) C K for some K € Jom, by (5.1), i.e.,
S € Gmjyon- Vice versa, if S € Gy, , then 0(65)(F) C J for some J € Jom,
again by (5.1). But this implies ©S = 0, since ©S € 9 and (N, 0,F, To, Jom) is
reduced. ' O

Proposition 5.4. If (M, 0, §,To, Jom) s a symbol algebra for the pre-asymptotic
algebra (M, p, §, o), then Jom is a lLa.t. on (M, p, F, Fo)-
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Proof. Let P € M, J € Jom- Then p(P) = 0(OP) + S, where S(F) C J' for some
J' € Jom, by (5.1). But then J¥ C J®P v J' € Jom. All the other properties are
obviously fulfilled. O

Proposition 5.5. Let (9, p, §, o, J) be an asymptotic algebra with symbol algebra
(N, 0,F,To,J) (with algebra homomorphism ©: IM — N), where J = Jom. Then:

(a) P € 9M is elliptic, i.e., P € €y, if and only if OP € N is invertible.

(b) Let P € 9M be elliptic, Q@ be a parametriz to P, and assume that (p(P) —
o(OP))(8) S OF, (p(Q) — 0(8Q))(F) € OF. Then:

(i) P € M is quasi-invertible with quasi-inverse Q) € IMN;
(i) Lp, Lo € 3;
(iii) J¥ € 3 for all J € J;
(iv) (JP)Q = J for all J € J satisfying J O Lp. Furthermore,

{(Je3J2Lp}»{KeJ K2Lg}, JJF,

is an order-isomorphism with inverse K — K9, see also (2.3).

Proof. (a) By Lemma (5.3), = M /Gan 3. Thus OCmy = Ea3/Gomy is the group
of invertible elements of M. Also €y = O (& ;).

(b) Now assume that P € 9 is elliptic, @ is a parametrix to P, and (p(P) —
a(OP))(F) C OF, (0(Q) — c(0Q))(F) C O%. Since OP, OQ € N are inverse to
each other, by (2.2) and (5.1), p(P), p(Q) € L(F,S/So) are quasi-inverse to each

other, i.e., P € M is quasi-invertible with quasi-inverse Q.

Then (iii) is implied by J¥ = J®F which holds for all J € Lin(§/Jo), see the
paragraph after (2.2). Then (ii) also follows, since Lp = O € J, similarly for
Lo =OP.

It remains to show that J = (JF)? for all J € Lin(§/$o), J 2 Lp. To this end, it
suffices to note that (JF)@ = (JOF)®Q = JOP)NOQ) y 092 = j1 v O? = J V Lp for
any J € Lin(F/$o)- O

Remark. To discuss the elliptic regularity for the equation Pu = f with right-hand
side f € K, where K € J, in (b) of the foregoing proposition it is not necessary to

assume that P possesses a quasi-inverse ) belonging to 90t. Instead, we obtain that
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all solutions u € § belong to the space Fxe, where K€ € J and K¢ D Lp. Here
G € M is the inverse to OP, i.e.,, (OP)G=G(OP)=1in N.

6. EXAMPLES

6.1. Wave front sets. Let X be a C*°-manifold. For a linear, sequentially contin-
uous operator A: CP(X) — D'(X), let WF'(A) denote the wave front relation of
A e,

WF'(A) = {(z,&y,n) € (T'X x T*Y)\ 0; (z,y,&, —n) € WF(K4)},

where (z,€) € T*X and (y,n) € T*Y, respectively, are generic points and (7*X x
T*Y)\0 = T*(X xY)\O0 are canonically identified; K 4(z,y) is the kernel of A. For
details, see [H71]. Further let

WF,(4) = {(z,£) € T*(X)\0; (z,§y,0) € WF'(A) for some y € X}
WF, (4) = {(y,n) € T*(X)\0; (z,0;y,m) € WF'(A) for some z € X}

Let m: X x X = X, (z,y) — z, be the projection onto the first component. Then

we consider

(6.1) M= {A: C°(X) — D'(X); A is linear, sequentially continuous,

WF, (A) =0, and the mapping 7: supp K4 — X is proper}.

9 is a unital algebra. Note that; for all A € 9M, in fact, A: D'(X) - D'(X) by
continuous extention. Thus we can choose § = D'(X), Fo = C*(X), and p: M —
L(D'(X)) is the canonical embedding. Then (9, p, D'(X), C*®(X)) becomes a pre-

asymptotic algebra.

Now, for A € 9, both of the subsets 7(WF'(A)) € T*X \ 0 and WF,(A) C T*X \0
are closed and conic. We obtain A(D'(X)) C D; w4y (X) and Foa = Dyypr 4 (X),
where Dy = {u € D'(X); WF(u) C T} for a closed, conic subset I' C T*X \ 0.

Therefore, the appropriate choice for the l.a.t. J is

(6.2) J={T CT*X\0; T conic, closed},
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where I' € J is identified with the linear subspace Di(X)/C®(X) C D'(X)/C>(X).
Obviously, J is order-isomorphic to the lattice of all closed subsets of the cosphere
bundle S*X.
Remark. In this example, &3 = M, as is always the case if F/F € J. Especially,

each A € M is elliptic, where every B € 9 serves as a parametrix to A.

6.2. Cone algebras. Let X be a manifold with conical singularity, zo. Hence
X \ {zo} is a C*°-manifold and there are a neighbourhood U > z¢ in X and a
homeomorphism x: U — ([0,1) x Y)/({0} x Y) for some closed C*°-manifold ¥
that restricts to a C*-diffeomorphism x]U\{xo}: U\ {zo} — (0,1) x Y. Close to zo,
x splits the coordinates U \ {zo} — (0,1) x Y, £ — (¢,¥), into a radial component
t € [0,1) and a point y € Y on the cone base. On X \ {zo}, we have Schulze’s
algebra C°(X, (4,6, (—00,0])) of cone pseudodifferential operators on X of order 0
with respect to some fixed conormal order § € R and asymptotic information carried

on the weight strip {z € C; Rez < dim X/2 — ¢}. For details, see [S98].

Let C2(X) be the space of all functions u € C®°(X \ {zo}) that possess a conormal

asymptotic expansion as £ — z of conormal order at least §. The latter means that

M m;

(6.3) u(z) ~ Z Zt"”f log™ ¥ tci(y) ast — +0,
j=1 k=1

where M € Ny U {00}, p; € C, Rep; < dimX/2 — J, Rep; = —oc0 as j — 00
when M = oo, m; € Ny, and cjx € C®(Y). Asymptotics are understood in an
increasing order of flatness. They are uniquely determined provided that they exist
(and ¢;,(y) # 0 holds for each j). The space C2*(X) only depends on the conormal
order &, but not on the chosen splitting of coordinates z — (t,y) close to zo. Recall

that
(6.4) A: C2(X) = C20(X)

for all A € C°(X, (6,8, (—00,0])). We further have the space CF(X) C CL*(X) of
all functions u € C®°(X \ {zo}) such that u(z) ~ 0 as ¢ — z, (i.e., M = 01in (6.3)).

Hence

(6.5) (C°(X, (4,6,(~0,0])), p, Cx*(X), CF (X)),
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where the embedding p: C°(X, (4,4, (—0,0])) = L(CL¥(X)) is supplied by (6.4),
is a pre-asymptotic algebra. Note that, in general, A(CF (X)) € CF(X) for A €
C°(X, (4,6, (—o0,0])).

There are different notions of asymptotic type associated with (6.5): weakly discrete,

discrete, and continuous ones; see again [S98].

Let us discuss the first two of these concepts. A weakly discrete asymptotic type
P € As’ is represented by a sequence {(p,-,mj)}j"i1 C C x Ny, where pj, m; are
as in (6.3), and two sequences {(p;, m;)}}Z;, {(gk, nx}i-, represent the same weakly
discrete asymptotic type P if, for each j, there is a k such that p; = gy, m; < ng and
if, for each k', there is a j' such that py = gy, mj > ng. A function u € CX¥(X) is
said to have asymptotics of type P (u € Cg(X) for short) if the singular exponents
p;j and their multiplicities m; in (6.3) are given by a sequence representing P (with
appropriate coefficients c;x € C*(Y)). Weakly discrete asymptotic types, P, when
identified with the linear spaces C(X)/C¥(X) C CX4(X)/CH(X), formala.t. on
(6.5), where the property that, for all A € C%(X, (6,6, (—0o0,0])), P € As’, there is
some @ € As® such that P4 C Q is part of the theory of cone pseudodifferential
operators, while all the other properties are obvious.

A discrete asymptotic type P € As’(Y) is a given by a sequence {(p;, m;, L)},

where {(pj,mj)}]-l‘i1 represents a weakly discrete asymptotic type in As’ and L;is
a chain Lj; C Lj; C -+ C Ljm, of finite-dimensional subspaces of C*(Y). For
u € C2%(X) to have asymptotics of type P, it is then additionally required that
Cjk € Ljx holdsfor all j, 1 < k < m;. (FordimY = 0, there is no distinction between
a weakly discrete asymptotic type and a discrete asymptotic type.) The rest of the
analysis is as for weakly discrete asymptotic types. In particular, the property that,
for all A € C°(X, (4,6, (—00,0))), P € As®(Y), there is some Q € As’(Y) such that
P4 C @ is again part of the theory of cone pseudodifferential operators.

Remark. In [S98], it has been required that Lj; = Ljs = ... = Ljm,. In this
case, a “l.a.t.” still arises. It is, however, not a sublattice of the complete lattice
Lin(C°(X)/C&(X)).

Weakly discrete asymptotic types P = {(p;, mj)}]-"i1 are invariant under coordinate
changes if one additionally requires that, for each j, there is a j' such that p;—1 = Dj’

and m; < mjr. Although the algebra C°(X, (4,6, (—o0,0])) is coordinate invariant,
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see [KSWO00], the notion of a discrete asymptotic type is not (it explicitly depends
on the chosen splitting of coordinates = > (¢,y) close to zo; when changing these

coordinates, the dimensions of the spaces L;; are, in general, getting larger.)

Finally, let us note that the pre-asymptotic algebra (65) can be reduced to a symbol
algebra 91, namely to the algebra of all complete conormal syvmbols {o;3(A)(2); j €
Ny} of operators A € C°(X, (4, 6, (—00,0])) under the Mellin tfanslation product:
07 (AB)(2) = Y 079 (A)(z= k)0 *(B)(2), 1=0,1,2,...
k=l

Here 07(A)(z) is, among others, a meromorphic function of z € C taking values in
the classical pseudodifferential operators of order 0 on Y. The resulting l.a.t. Jom
has been calculated in [LWO01]. The resulting refined notion of asymptotic type turns
out both to be coordinate invariant (in a well-defined sense) and to be well-adapted
to certain aspects of non-linear analysis.

Remark. In [LWO01], it has also been proposed to continue to call‘a weakly discrete as-
ymptotic type weakly discrete, while, henceforth, a discrete asymptotic type should
be instead called strongly discrete; to reserve the notion of a discrete asymptotic

type for the (new, refined) asymptotic types belonging to Jom.
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