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ABSTRACT. We consider well-posedness of microhyperbolic Cauchy
problems in the category of microfunctions which are the singularity
spectrums of ultradistributions. To obtain a precise result, we define
the irregularities of microhyperbolic operators, and prove the relation
between irregularities and ultradistribution orders.

1. Introduction.

It is well-known that a microhyperbolic Cauchy problem is always
well-posed in the category of microfunctions (See [2]). Let us consider
its well-posedness in the category of microfunctions which are the sin-
gularity spectrums of ultradistributions. There is a fundamental result
of Kajitani and Wakabayashi for this problem. However, there are some
special but important cases for which their theory does not give a satis-
factory result. Therefore we want to ameliorate it.

Let (z,£) be the variables of v/—1T*R", and let z = (z;,2') =
(x1,--- ,Tpn). Let z* € /—1T*R™ (resp. z*' € v—I1T*R"!) be
the point defined by z = 0,¢ = (0,---,0,/—1) (resp. =’ = 0,¢' =
(0,---,0,4/—1)). We denote by B, C, £ ,O the sheaves of hyperfunc-
tions, microfunctions, microdifferential operators, and holomorphic func-
tions, respectively. For 1 < s < co we denote Gevrey functions with

Typeset by AMS-Tr



57
KEISUKE UCHIKOSHI

compact supports by gj;,} and gf:;{ :

G5} (w) ={f(z); f is an infinitely differentiable function with

cpt
compact support C w, and there exists some C such that

|D*f(z)| < Clet+at®y,
gL (w) ={f(z); f is an infinitely differentiable function with

cpt
compact support C w, and for any € > 0 there exists some

C. such that | D f(z)| < Ceel*lat®}

for an open subset w of R". Let

Ldt = imGLY (), 6% = imG{)’ (w)
Ocw Ocw

be the set of germs of ultradistributions at the origin.
Let sp : Brrngo — Crn g+ and sp’ : Brn-19 — Cgra-1,+ be the
canonical maps, and let

Cl) e = 5p(G8hn o), S L. = 50" (G s ) (1 < s < 00)
C e = 5P(G M o)y Cines gor = SP'(GShmmm1 o) (1 < 8 < 00),

which we call microlocal ultradistributions. For the sake of convenience

we denote by gjgt} ko the set of hyperfunctions, by g{°°}'Rn,0 and

cpt
gr(:g(t))an,o the set of distributions. Therefore Cétl,,}’z
microfunctions.
Let P(x, D) € E,« be written in the form

. is the usual set of

P(z,D) =D+ 3 Pj(z,D)Di,
(1) 0<i<m-1

ordP;<m-—j (0<j<m-1).
Here we define D = 8/8. We assume that

for 1 < j < m there exist Aj(z,€) =& — A\j(z, &)
(2) € Ogzn z+~which are homogeneous in £ of degree 1

vanishing at z*, and we have o,,(P) = [] Aj(z,§),
1<j<m
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where o,,(P) denotes the principal symbol of P. We finally assume that
P is microhyperbolic, i.e.,

(3) (z,&) e R® x /-1R"! — Ai(z,¢') € vV-1R

for 1<j<m. We do not assume any further conditions explicitly
among these characteristic roots.
Let us consider the following Cauchy problem:

(4) P(z,D)u(z) = f(z), D 'u(0,z') =v;(z') 1 <j<m).

Precisely speaking, in order to ascertain that D~ 'u(0, 2’) is well-defined,
we must assume that (0,4+/—1dz;) ¢ spu. For this purpose it suffices to
assume (0,++/—1dz;) ¢ sp f. However, we are considering in a neigh-
borhood of z*, and we may assume that f € Crn ,+ is extended as a
global section of Cr», whose support does not contain (0,4+v/—1dz;).
Since the solution u € Crn ;+ does not depend on such an extention,
this is well-defined, and we consider (4) in this sense.
We say that P is {s} well-posed if for any f € Cg,}

VU € an}_1,zu there exists u € Cf{{’,,},z. which satisfies (4) (The solution

is always unique). Similarly we define (s) well-posedness. Kajitani and
Wakabayashi [1] proved the following

Theorem 1. If 1 < s < m/(m — 1), then P is {s} well-posed. If
1<s<m/(m—1), then P is (s) well-posed.

- and vy, -,

To see that we cannot generally improve this result anymore, let us
consider the following
Ezample 1. Let P = DT — D™ 1 and let us consider

P(z,D)u(z) =0, DI 'u(0,z') = 6;1v(z') (1 < j < m).

It is easy to see that the microfunction solution is given by
1 2mv—1)
@)= T ew(ZE Do),

If we restrict ourselves to microlocal ultradistributions,

exp (ZLLapeim ) ] —c)..



59

KEISUKE UCHIKOSHI

is well-defined if, and only if, 1 < s < m/ (m—1), and Theorem 1 is the
best possible result in this sense.

However, this criterion is not satisfactory for the following cases:

Ezample 2 (regular involutive operators). Let n > 3 and let P =
D1(D1+D3)+aD,;, a € C. The above theorem means thatif 1 < s <2
(resp. 1 < s < 2), then it is {s} well-posed (resp. (s) well-posed).
However Okada [5] proved that it is {oo} well-posed.

Ezample 3 (non-involutive operators). Let P = Dy(D; + z{D,,) +
az?™'D,. Tt is well-known that P is {s} well-posed (resp. (s) well-
posed) for any s (Among many papers, we refer to [6] ).

Ezxample / (constant multiple operators). Assume that A = --- =
Am = 0 in (1). Komatsu [3] defined the irregularity ¢ for this case by

_ m-—J
v = max{l, 0<§Iéa#f—1{m J —ord P; 1

In this case it follows that P is {s} well-posed (resp. (s) well-posed) if
1<s<tf(t—1) (resp. 1 < s <¢/(¢t —1)). We have « < m, and this is
a stronger result than the above theorem. Since our theory is strongly
influenced by [3|, we briefly sketch the discussions there:

(i) A hyperbolic partial differential operator P with constant mul-
tiplicity can be written in a special form, which he called De
Paris decomposition.
(ii) Rewriting P in such a form, we can define its irregularity ¢
similarly as above.
(iii) P is {s} well-posed if 1 < s <¢/(¢ —1).
As we shall see in the next section, we can extend this theory to the
general case.

Our aim is to give a criterion which improves Theorem 1, and also
contains all these examples. The main result is the following

Theorem 2. If P satisfies (1)-(3), then we can define Irr P, which is
a rational number satisfying 1 < Irr P < m. Furthermore, if 1 < s <
Irr P/(Ier P — 1), then P is {s} well-posed, and if1 < s < Irr P/(Irr P —
1), then P s (s) well-posed. |
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Remark. If Irr P = 1, then we define Irr P/(Irr P — 1) = oo. Since
1 <Irr P <m, Theorem 2 is always stronger than (or equivalent to)

Theorem 1.
In the above examples, it will turn out that

IrrP=m in Example 1,
IrrP=1 in Examples 2,3,
Irr P = (= the above number) in Example 4,

which coincides with the well-known results.

2. Lascar decomposition.

We first want to express P in a special form similarly to [3]. If
0 < g < m we define S,,,, to be the set of all g-tuples
B = (/"17 M2, - - nu'q) such that p1, p2,- - Mg € {11 2, 7m} are mutu-
ally distinctive. Here we distinguish different arrangements of the same
numbers. Although S,,o does not make sense, we assume that it consists

of only one element, which we denote by @. We define S = | S,
0<g<m

and S’= |J Smq- If 4 € Spq, then we define || = q, and
0<g<m-1

A (z,D)=A,, (z,D)--- Ay, (z, D).

Here Aj(z, D) denotes the microdifferential operator whose complete
symbol is A;(z,£). We also define A? = 1. We define &,+(j) = {P €
Ez+; [P,z1] =0, ord P < j}. By a Lascar decomposition we mean an
expression of the following form:

(5) + 3 (27" Ma, (2, D) + bu(z, D)) A¥(z, D),
HeS'’

au(z,D’) € Ex+(0), bu(z,D’) € Eps(m — || — 1).

Here we consider a negative power of z; formally. It is easy to see that
an arbitrary operator has an infinitely many Lascar decompositions.
Ezample 2 Y5, Let n > 3 and let

(6) P= D1 (D]_ + D2) + aDg.
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Here Ay = D; + Dy, Ay = D,, and by a Lascar decomposition we mean
an expression of the following form:

P = AyA; + (z71ay + by) Ay + (z71ag + b2) Az + (27 2ag + by),
orda, <0, ordb; <0 (j =1,2), ordbg < 1.

Note that (6) is a Lascar decomposition as it stands. In fact we may
take by = aD,, and all the other coefficient operators to be 0. We also
have another expression:

(7) P = A2A1 + aA1 — aAg.

This means b; = —by = a, and all the other coefficient operators are 0.
We have still other expressions, but they are not important. We shall
see that some expressions are heavy, and some expressions are light.

Ezample 3 5. Let
(8) P = Dy(D; +z?D,) + az? ' D,.

Here Ay = Dy + z{D,,, A2 = D;. Again this is a Lascar decomposition
as it stands. We also have another expression:

(9) P = A2A1 + xi’laAl - l‘i—laAz.

In (5), P is decomposed into three parts. Firstly, A,,---A; denotes
the principal part. The lower order terms are formally written in a form
like an element of some &,--module generated by A*, u € S’. For the
sake of convenience, let us call A* the generator part, and a:l_m+|" Ia#—l—b,,
the coeflicient part. Roughly speaking we have

P(x, D) = principal part + lower order part

= principal part + (coefficient part x generator part).

If we calculate the amount of the lower order part (= coefficient part x
generator part), we can prove Theorem 1. To the contrary, if we cal-
culate the amount of the coefficient part alone, we can prove Theorem
2. Of course less amount gives a better result, so the latter calculation
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is preferable. However, this amount depends on Lascar decompositions,

and we determine the best one as follows.
For each Lascar decomposition (5) we define

m— |u|
= 1 .
= max{l, Lnea.é')g{m—|u|—ordb,, 1

We have 1 < k < m. This number depends on the expression and we
define irr P as the minimum value of x among all the Lascar decomposi-
tions. Although there are infinitely many decompositions, the minimum
value is well-defined.

Ezample 2 5. In (6) we have m = 2, and ordby = 1, |@| = 0.
Therefore we have

x =max{1,(2—-0)/2-0-1)} =2

for this decomposition. On the other hand, in (7) we have ordb; =
ordby =0, |1| =|2| = 1. Therefore we have

k= max{l, (2—1)/(2-1-0)} =1

for this decomposition. This means that (7) is a better expression than
(6). We obtain irr P = 1.

We can similarly prove irr P = m,1,:. for Examples 1,3,4, respec-
tively.

Remark. Although we have infinitely many Lascar decompositions,
to construct the fundamental solution we can choose the best decom-
position, and forget all the other expressions. This means that we only
use the minimum value of k, and we may neglect all the other values.
Therefore we define irr P = min{x; Lascar decompositions}.

We next consider permutations in the principal part. Let o € Sy,
and let us consider the following expression:
P(z, D) = A°(z, D)

(10) + 3 (@™ol (2, D) + (2, D)) A (@, D),
7

a,(x,D') € £ (0), Y,(x,D') € Egu(m— || - 1).
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We call (10) a Lascar decomposition subordinate to o. We have infinitely
many expressions again, and for each expression we define

| m— |p|
I = 1 .
K = max{l, L%agf{m—ml—ordb;‘ H

We define
irr, P = min{x’; Lascar decompositions subordinate to o}.
Finally we define the irregularity Irr P of P by
Irr P = max{irr, P; 0 € S;um}-

In all the above examples we have irr P = irr, P = Irr P.

Remark. R. Lascar considered an expression of the form (5) in [4].
In his paper he assumed that the characteristic variety of P is regu-
larly involutive, and he assumed that a, = 0, ord b, < 0. Under these
assumptions he proved that the wave front set of the distribution solu-
tion of Pu = 0 propagates along the integral manifold defined by the
characteristic variety.

3. irr P and Irr P.

In the previous section we defined the irregularity in three steps. We
first calculate k, next irr P, and finally Irr P. One may think this un-
comfortable, and it may be preferable if we can omit the last step. This
is possible in two special cases. The first case is the following

Lemma 1. Assume that
(11) {Ai(z,8), Aj(z,8)} € 27 Ai(x,€)Opr + 27 A (2, £) O,
for each @ and 3. Then we have
irr, P=1irr, P=Irr P

for each 0,7 € Spm-

Here {A;(z,€), Aj(z, &)} denotes the Poisson bracket. Regularly invo-
lutive operators and non-involutive operators satisfy (11). In such cases
we only need to calculate irr P instead of Irr P. We want to emphasize
that the former number is more easy to calculate than the latter one.
The second case is the following
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Lemma 2. If 0,7 € S;um, then we have
irr, P < max(2,irr, P), Irr P < max(2, irr, P).

This result is very interesting. Sometimes we are interested in mi-
crolocal ultradistributions of some special order s;. Theorem 2 means
that P is {so} well-posed if

(12) Irr P(< max(2, irr P)) < so/(so — 1).

Assume that 1 < sg < 2. (12) is equivalent to irr P < sg/(sg — 1), which
means that we can use irr P instead of Irr P, and otherwise we must
calculate Irr P. The author thinks that it coincides with historical expe-
rience: The well-posedness is an easy problem in hyperfunction theory
(where s = 1), and is a difficult problem in distribution theory (where
s = 00). Even in the case 2 < sg < o0, the situation is not so bad if
either we can use Lemma 1 or m is not large. In distribution theory it
is usual to assume such an assumption. Otherwise we need to calculate
irr, for o € S;pm, Which contains m! elements. Then the criterion may
be very complicated.

At the end we consider the case of m = 2 as an example. In this case
Irr P € {1,2}, and we have

ImrP=1<imrg P=imrp) P=1
P € AaA; + 27 €4+ (0)A + 271E, (0) Az + 272E,+(0),
{ P € AjAg + 271 €+ (0)A + 7 €2+ (0)Az + 272E,-(0)
P € A2y + 27 €+ (0)A; + 271 €, (0) Az + 27 2£,+(0),
{ [A1, Ag] € 277 E2+ (0)A1 + 27 €z (0)Ag + 27 2E,4(0).

This is equivalent to
(13) P € AAy + 2716 (0)Ag + 271 €2+ (0)Ag + 27 2€,+(0),
and

(14) A; and Aj satisfy (11).
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If (13) and (14) are true, then Irr P =1 and P is {s} well-posed for any
s. Otherwise Irr P = 2 and P is {s} well-posed for 1 < s < 2. In other
words, according to our result we must assume (13) and (14) for the case
2 < s < 00. (13) means that the lower order terms must vanish according
to some rule, and is not surprising. However as far as our theory applies,

we must also assume condition (14) for the principal symbol.
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