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Microlocalization
of Topological Boundary Value Morphism
and Regular-Specializable Systems

Susumu YAMAZAKI (LLIIF &)*
Graduate School of Mathematical Sciences, the University of Tokyo,
8-1 Komaba 3-chome, Meguro-ku, Tokyo 153-8914, Japan

Introduction

In microlocal analysis, it is one of the main subjects to give an appropriate formulation
of the boundary value problems for hyperfunction or microfunction solutions to a system
of linear partial differential equations with analytic coefficients (that is, a coherent (left)
D-Module, here in this article, we shall write Module with a capital letter, instead of
sheaf of modules). If the system is regular-specializable, the nearby-cycle of the system
can be defined in the theory of D-Modules. After the results by Kashiwara and Os-
hima [K-O], Oshima [Os] and Schapira [Sc 2], [Sc 3], for any hyperfunction solutions to
regular-specializable system Monteiro Fernandes [MF 1] defined a boundary value mor-
phism which takes values in hyperfunction solutions to the nearby-cycle of the system
instead of the induced system. This morphism is injective (cf. [MF 2]) and a general-
ization of the non-characteristic boundary value morphism (for the non-characteristic
case, see Komatsu and Kawai [Ko-K], Schapira [Sc 1] and further Kataoka [Kat]). More-
over recently Laurent and Monteiro Fernandes [L-MF 2] reformulated this boundary value
morphism and discussed the solvability under a kind of hyperbolicity condition (the near-
hyperbolicity). However, since this morphism is defined only for hyperfunction solutions,
a microlocal boundary value problem is not considered. Therefore in this article, we
shall state a microlocalization of their result in the framework of Oaku [Oa2] and Oaku-
Yamazaki [O-Y].
The details of this article will be given in our forthcoming paper [Y).

*Research Fellow of The Japan Society for The Promotion of Science.
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1 Notation

We denote the set of integers, of real numbers and of complex numbers by Z, R and C
respectively as usual. Moreover we set N := {n € Z; n > 1} and N, := NU {0}.

All the manifolds are assumed to be paracompact. Let 7: E — Z a vector bundle
over a manifold Z. Then, set B := E \ Z and 7 the restriction of 7 to E. Let M be an
(n+1)-dimensional real analytic manifold and N a one-codimensional closed real analytic
submanifold of M. Let X and Y be complexifications of M and N respectively such that
Y is a closed submanifold of X and that Y N M = N. Moreover, we assume the existence
of a partial complexification of M in X; that is, there exists a (2n + 1)-dimensional real
analytic submanifold L of X containing both M and Y such that the triplet (N, M, L)
is locally isomorphic to (R® x {0}, R**!,C" x R) by a local coordinate system (z,7) =
(x ++v~Ty,t+v~1s) of X around each point of N. We say such a coordinate system
admissible. We shall mainly follow the notation in Kashiwara-Schapira [K-S]; we denote
the normal deformations of N and Y in M and L by M N and EY respectively and regard
M, ~ as a closed submanifold of EY . We have the following commutative diagram:

—~——

8 Im
TyM < M > My _ > 4
a -
i
Nc 5> M —HX — X
0 a
<+ . e i 4
Ty L Ly Ly +——= 2,
\ \ 2
A 4 i h 4 i
Y Y — L L — X,

and by admissible coordinates we have locally the following relation:
N=RI x {0} —— M =R} x R,
f I
Y=C'x {0} L=C'xR, L —¥X=CxC,.

With these coordinates, we often identify Ty, X and Ty L with X and L respectively.

The projection 7y : Ty L — Y and s, : Ty L — Ly induce natural mappings:

TRY — TyM x ThY =5 Tp Ty L < TyM x Ty Ly — Ty Ly,

v N wl s, i, MyTV s, T Ma

and by these mappings, we identify Tr. 5Ty L with Ty M x T{Y and TyM x T Zy.
N M N

N
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TyL \ TyY has two components with respect to its fiber. We denote one of them by
Ty L™ and represent (at least locally) by fixing an admissible coordinate system

Moreover set TyM* := Ty, Lt N TyM. Set an open embedding f: T\, Lt — T}, L and
fy = flTNM+: TyM* — TyM . We regard TyM* x TNY as an open set of T7, Ty L.

Moreover f induces mappings:

* —~— * fx *
N
l O l

faxid

TyM* X TRY —5 TyM x T}Y.

Hence we identify T7. u+ Ty Lt with Ty M+ X T}Y, and f, with fy x id.

Let my pr: Tit‘iNEY — MN and Ty, T'f'NMTyL — TM, be the natural projections.
We denote as usual by v and p the Sato specialization and microlocalization functors
respectively.

2 General Boundary Values

By using an admissible coordinate system we define a continuous section o: Y — TYX
by z — (z,1). Similarly we define 'o: Y — T3 X by z — (z,1). In general, let Z be
a complex manifold, 7: E — Z a complex vector bundle. Then, denote by D’, (E) the
subcategory of D®(E) consisting of C*-conic objects.

2.1 Theorem. For any object F of D*(X) such that vy (F) € Ob(DLi(Ty X)), there
exists the following natural isomorphism:
fn—lﬂTNM(Vy(i£ F) S fo Tyr (0T vy (F)) @ wpx -

2.2 Definition. For any object F of D?(X) such that vy, (F) € Ob(D« (Ty X)), we define
by virtue of Kashiwara-Schapira [K-S] and Theorem 2.1:

B: filsiy #;,'N(RJ'L.ﬁfl i, F) = F b m vy (L F))

> f e un(o Ty () ® Wr/x -
2.3 Definition (Laurent-Monteiro Fernandes [L-MF 2]). We say an object F of
D*(X) is near-hyperbolic at z, € N (in dt-codirection) if there exist positive constants C
and ¢, such that
SS(F) N {(z,7;2*,7*) € T*X; |2 — z¢}, |7| < €1, 0 < ReT}
c{(z,7;2*,7*) € T*X; |Ret*| < C(|Imz*|(|Im z| + | Im 7|) + | Re 2*|) }

holds by an admissible coordinate system. Here SS(F) denotes the microsupport of F.
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2.4 Theorem. Let F be a object of D*(X). Assume that vy (F) € Ob(D2 (Ty X)) and
F is near-hyperbolic at zy € N. Then, for any p* € T}N Ty LT

ﬂ: SL_1r1 ﬂMN(RjL* 5L—1 lIi g:)p‘ - uN(U ! VY(E))TY”(pt) ® wL/X

1S an isomorphism.

3 Regular-Specializable Systems

In this section, we shall recall the basic results concerning the regular-specializable D-
Module and its nearby-cycle.

~ As usual, we denote by D the sheaf on X of holomorphic differential operators, and
by {"D()?l)}meN‘J the usual order filtration on Dy .

3.1 Definition. Denote by J,, the defining Ideal of Y in Oy with a convention that
3 = Oy for j < 0. The V-filtration {VE(Dx)}rez (along Y) is a filtration on Dy |y
defined by
VE(Dx) = N {P € Dxly; PIJ C Ii7F}.
JEL
Let us denote by 9 the Euler operator. Note that ¥ € V2(Dy) \ V5 '(Dx) and that 9
can be represented by 7 0, by admissible coordinates.

3.2 Definition. A coherent CDXIY-Module M is said to be regular-specializable (along
Y) if there exist locally a coherent O y-sub-Module M, of M and a non-zero polynomial
b(a) € C|a] such that the following conditions are satisfied:

(1) M, generates M over Dy ; that is, M = Dy M;

(2) B(9) M, C (D) N Vi (Dy)) M, , where m is the degree of b(a).

In what follows, we shall omit the phrase “along Y” since Y is fixed.

3.3 Remark. (1) Let M be a coherent ‘DX|Y-Module for which Y is non-characteristic.
Then, it is easy to see that M is regular-specializable.

(2) Kashiwara-Kawai [K-K] proved that every regular-holonomic Dy|y-Module is
regular-specializable.

3.4 Proposition. If M is a regular-specializable Dy |y, -Module, RHomp (M, py(Ox))
and R%omgx(M, vy(Ox)) are objects of Dl (T3 X) and DL (Ty X) respectively.

Let t: Y — X be the natural inclusion. Then the induced system, or the inverse image
L
in the sense of D-Modules is defined by Di* M := Oy ® ¢~ M.

110,
For any regular-specializable D,-Module M, the nearby-cycle ¥, (M) of M and the
vanishing-cycle (M) of M in the theory of D-Modules can be defined. For the defini-
tions of ¥y, (M) and &, (M), we refer to Laurent [L], Mebkhout [Me]. We shall recall the

following two results:
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3.5 Proposition (Laurent [L], Mebkhout [Me]). Let M be a regular-specializable
Dy |y-Module. Then, ¥y, (M), (M) and each cohomology of Di* M are coherent Dy -
Modules. Moreover, there exists the following distinguished triangle:

&, (M) 25 o, (M) » DM S

Here, Var := p(9)7 with p(¢) := (e*™=T¢ - 1)/¢.

3.6 Theorem (Laurent [L]). Let eYI x be the sheaf of real holomorphic microfunctions
on Ty X as usual. Let M be a regular-specializable D X|Y-Module. Then, there exists the
following isomorphism of distinguished triangles:

1

RHomg, (M, Ox)|y — RHomgp (M,07'1y(0x)) — RHomp (M, 571 CF x) —
! r r
RHomy, (Du* M, 0y) — R¥omy, (¥y(M), 0y) —— RHomy, (y(M),0y) — .
3.7 Remark. (1) The isomorphism (the Cauchy-Kovalevskaja type theorem)

R}omy (Di*M,0y) ~ RHomp, (M,Ox)|y

holds for Fuchsian systems in the sense of Laurent-Monteiro Fernandes [L-MF 1].
(2) Recently Mandai [Man] extended the definition of boundary values to a general
Fuchsian differential equation in the complex domain.

4 Boundary Values for Regular-Specializable System

We denote by Oy, B,, and C,, the sheaf of holomorphic functions on X, of hyperfunctions
on M and of microfunctions on Ty, X respectively.

4.1 Definition (Oaku [Oa 2], Oaku-Yamazaki [O-Y]). We set:
Cyim = Sin N;,,'N(Rjt,.f"fl i Ox) ® oryyx(n +1].
We can regard Cy,,, as a microlocalization of vy(B,,):

4.2 Proposition. (1) C N|m 15 concentrated in degree zero; that is, ¢ 2% is regarded as a
sheaf on Ty, Ty L. Further €N|M|T u = Un(By) holds.
(2) There exists the following ezact sequence on Ty M:

0— VY(BOL)lTNM = Un(Bar) = Tvyms Cve — 0

Here BO, := H}(Ox)®or, /x 18 the sheaf of hyperfunctions with holomorphic parameters
on L. Note that v, (BO,) is concentrated in degree zero.
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4.3 Definition. Let M be a regular-specializable Q)XIY‘-Module. By Proposition 3.4,
RfHome(M, O4) satisfies the assumption of Theorem 2.1. Thus, by Definition 2.2 and
Theorem 3.6, we define: '

B: f,r_lRﬂ'Com,Dx (M, Cyipr) — £ 'ry_"lRﬂ{om,)Y (¥y (M), Cy).
4.4 Theorem. (1) The morphism (3 gives a monomorphism |
B ft i}{omgx(M, Crninm) — e Homyp, (¥y (M), En).

(2) The restriction of B° to the zero-section TyM™ coincides with the boundary value

morphism in the sense of Monteiro Fernandes [MF 1].

4.5 Definition. Let M be a coherent D X|Y—Module. Then we say M is near-hyperbolic
at , € N (in dt-codirection) if Ri}fom@x(M, Oy) is near-hyperbolic in the sense of
Definition 2.3. Here, we remark that SS(Rf}ComDX (M, Ox)) = char(M).

The following theorem is a direct consequence of Theorem 2.4:

4.6 Theorem. Let M be a regular-specializable D X|Y—Module. Assume that M is near-
hyperbolic at z, € N. Then, for any p* € T}N w+ Ty Lt

,61 Rf}'fom.Dx (M, CNlM)p. —d R:}(OTHADY (Wy(M), eN)Ty,,(P*)
18 an isomorphism.

4.7 Remark. Let Gﬁl u be the sheaf of F-mild microfunctions on Tr Ty L, and set

‘éﬁlM = H"(un(Ox|y)) ® ory,y (see Oaku [Oal], [Oa2], and Oaku-Yamazaki [O-Y]).

Let M be a regular-specializable iDX|Y-Module. Set My := HO(D* M) = Oy ® cTIML
10,

By the argument in Oaku-Yamazaki [O-Y] we have the following commutative diagram:

ft Homg, (M, Cxppg) > fr! Ty Homp (M, éﬁ]M) —— fr ' Ty Homp (My, Cy)
| © I ° |
fat Homp (M, Cpppp) >— ft Homy (M, éN[M) — [ 1y, Homg (¥y (M), Cy),
that is, the boundary value morphism
’YF: f1r—-1 g{om'Dx (M7 eIF\}|M) — f1r—1 ”-}’—‘rr1 ﬂomDy (MY’ eN)

and A° are compatible. In particular, if Y is non-characteristic for M, then it is known
that ¥, (M) ~ Du* M =~ My and by Oaku [Oa2] (cf. Oaku-Yamazaki [O-Y]) we have:

NI Rg{ome(M, éN|M) = TY:rle-com‘DY(MYv Cn)-
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In this case we see that 3° is equivalent to the non-characteristic boundary value morphism
(see Kataoka [Kat] and Oaku [Oa 2]). In particular, the restriction of 3° to the zero-section
TyM™ is equivalent to Komatsu-Kawai [Ko-K] and Schapira [Sc1]. Further, if Y is non-
characteristic for M and +dt € Ty M is hyperbolic for M, then the nearly-hyperbolic
condition is satisfied and 3 is an isomorphism.

4.8 Example. Assume that X = C"*! and so on by an admissible coordinate system.
(1) Let b(a) be a non-zero polynomial with degree m, and Q € ‘Dg(m) Ny H(Dy).

Set M := Dy /Dy (b(9) + Q). Then M is regular-specializable. Assume that b(a) =

p p

[T(e—0;) (; —a; ¢ Zfor 1 <i#j< p, note that v; = m). Then a direct

Jj=1 j=1

calculation shows that ¥, (M) ~ D™, and B° is equivalent to y in Oaku [0a2]: Let p* =

(%, to; vV=1(£, dz)) be a point of T7 m+TyL™, and f(z,t) a germ of Homp (M, Cy p)

at p*. Then, we can see that f(z,t) has a defining function

[
F(z,7) = ZZ F;(z,7) 7% (log T)*1.
i=1 k=1
Here each Fj,(z,7) is holomorphic on a neighborhood of {(z,0) € X; |z,—2| <&, Imz €
'} with a positive constant ¢ and an open convex cone I such that & € Int(T'°) (the inte-
rior of the dual cone I'° of I'). Then, 3°(f) is equivalent to {spy (Fj;(z+v=TT0,0));1 <
k < v;,1 < j < p}. Moreover, if the principal symbol of b(9) + Q is written as
T™P(2,T; 2*,7*) for a hyperbolic polynomial P at dt-codirection, the nearly-hyperbolic
condition is satisfied. Note that this operator is a special case of Fuchsian hyperbolic
operators due to Tahara [T].
(2) Take an operator A(z;8,) € D) at the origin and set A° := id and AV) :=
%A 0 AG-D € DY for j > 1. Let p* = (0, 1; V/=1(£,dz)) be a point of T; m+TyL* and

set py := (0; v=1({,dz)) € TRY. Set P:= (¢ — ) (9 — o) — TA(2;0,)9 € Dx|y » where
(o, ;) € C®2, Consider M := Dy / Dy P = Dx u, where u := 1 mod P. Let f(z,t) be
a germ of Homg, (M, Cypr) at p*. Then:
(i) If (a1, a3) = (-1,0), then
&, (M) = W(Dx)u+ V(D)W + 1)u
Vv {(Dy)u + V2(Dy)(d + 1u
&, (M) = Vy {(Dy)u+ V2(Dy) (9 + 1)u
Vi 2 (Dx)u + Vi (Dy ) (8 + u
and Var: ([u], [0,(9 — 1)u]) — ([ru],0). Hence My ~ Dy [(9 + 1)u] ~ Dy . In this case
f(z,t) has the following defining function:

= Dy [u] + Dy [0,(9 + 1)u] = D#?,

= Dy [Tu] + Dy [(9 + 1)u] ~ D22,

A(i)U_l(z) i

o1 1——AU_I(z) log T,

F(z,7) =Uy(z) + U+(z) - Z

j=1
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and B°(f(z,t)) is given by {spy(U;)()},=_10 at py. If f(z,t) is F-mild at py, then

U_,(z) =0and VF(f(fU’t)) = {f(:c,+0)} = {SpN(UO)(x)}'
(ii) If (a;, @,) = (0,1), then:

VA(Dy)u + VE(Dy)u _

(M) = X1 =X Yi—Xx = Dy [0,u] + Dy [0.*Fu] ~ D2,
V.9(D VXD, )9

2, (M) = LDt W De)OU gy 1)y (5 gu) = D2,

Vy Y(Dy)u + V2(Dy)du

and Var [0,u] = Var[0,29u] = 0. Hence My ~ Dy, [u] + Dy [0,9u] ~ DE?. In this case
f(z,t) has the following defining function:

N, (2
F(z,r) = U(,(z+§j“1 e

and f(z,t) is always F-mild. Hence 3°(f(z,t)) at p, coincides with ¥ (f(z,t)) =
{0, f(z,+0)}ico1 = {spn(U:)(2)}izo,1 (f T # 0, M is isomorphic to Dy/ Dx (8,2 —
A(2;0,)d,) for which Y is non-characteristic). |

(iii) If (aq, @) = (1,1), then

2,(0) = 7520 — D, [024] + D, 020 - V] = D,
Py, (M) = ‘z,gxgz = Dy [0,u] + Dy [0.(9 — 1)u] ~ DS2.

and Var: ([0,2u],[0,2(¢9 — 1)u]) — (2mv=1 [8,(¥ — 1)u],0). Hence My =~ Dy, [8,u] ~ Dy
In this case f(z,t) has the following defining function:

® I AU (2) . 20 .

F(z,7) = Z ADYy() 77 =} Y = : U( o + 3 AV, (2) T log
and 3°(f(z,t)) is given by {spy(U;)(z)}i—0 1 at py. If f(z,t) is F-mild at p,, then
Uy(2) = 0 and 7" (f(z,)) = {8, f(z,+0)} = {spx(U})(2)}.

(iv) If (e, ) = (1,2), then:

V#(Dx)u+ V¥ (Dx)(¥ — Du
P = KD )u WD 0= 1)
Vy (Dx)u + V¥ (Dx)(¥ — L)u

(D (

)

= DY [a‘r2 U] + DY [61'3(19 - 1)”’] = 9192 ’

._.

WY(M) = DY [a,.’lL] + DY [81'2(19 - l)u] = 91;02 ’

VW (Dy)u+ VHDy)(W —1)u
and Var: ([0,2u],[0,*(9 — 1)u]) — (0,24 [8,.u]). Hence

Dy [8,u] + Dy [8,2(9 — 1)u]
Dy A[0,u] '

My =
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In this case f(z,t) has the following defining function:

F(z,1) = Z A(])Uz(z) ARES Ul(z) T — Z ___JA kUl(z) Fitl
=0 =2 k=1

and B°(f(z,t)) is given by {spy(U;)(z)}i=1 » at py. f(x,t) is F-mild under the con-
dition that AU;(z) = 0, and in this case v¥(f(z,t)) at p, is given by vF(fs(z,t)) =
{3tif(za +0)}i=1,2 = {SPN(Ul)(x)azspN(Uz)(x)} with A6, f(z,+0) = Aspy(U;)(z) = 0.
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