<table>
<thead>
<tr>
<th>Title</th>
<th>Microlocalization of Topological Boundary Value Morphism and Regular-Specializable Systems (Asymptotic Analysis and Microlocal Analysis of PDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamazaki, Susumu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1211: 86-95</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41126</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Microlocalization
of Topological Boundary Value Morphism
and Regular-Specializable Systems

Susumu YAMAZAKI (山崎 晋)*
Graduate School of Mathematical Sciences, the University of Tokyo,
8-1 Komaba 3-chome, Meguro-ku, Tokyo 153-8914, Japan

Introduction

In microlocal analysis, it is one of the main subjects to give an appropriate formulation
of the boundary value problems for hyperfunction or microfunction solutions to a system
of linear partial differential equations with analytic coefficients (that is, a coherent (left)
\mathcal{D}-Module, here in this article, we shall write Module with a capital letter, instead of
sheaf of modules). If the system is regular-specializable, the nearby-cycle of the system
can be defined in the theory of \mathcal{D}-Modules. After the results by Kashiwara and Oshima [K-O], Oshima [Os] and Schapira [Sc 2], [Sc 3], for any hyperfunction solutions to
regular-specializable system Monteiro Fernandes [MF 1] defined a boundary value morphism which takes values in hyperfunction solutions to the nearby-cycle of the system
instead of the induced system. This morphism is injective (cf. [MF 2]) and a generalization
of the non-characteristic boundary value morphism (for the non-characteristic case, see Komatsu and Kawai [Ko-K], Schapira [Sc 1] and further Kataoka [Kat]). Moreover recently Laurent and Monteiro Fernandes [L-MF 2] reformulated this boundary value morphism and discussed the solvability under a kind of hyperbolicity condition (the near-
hyperbolicity). However, since this morphism is defined only for hyperfunction solutions,
a microlocal boundary value problem is not considered. Therefore in this article, we
shall state a microlocalization of their result in the framework of Oaku [Oa 2] and Oaku-
Yamazaki [O-Y].

The details of this article will be given in our forthcoming paper [Y].

*Research Fellow of The Japan Society for The Promotion of Science.
1 Notation

We denote the set of integers, of real numbers and of complex numbers by \(\mathbb{Z} \), \(\mathbb{R} \) and \(\mathbb{C} \) respectively as usual. Moreover we set \(\mathbb{N} := \{ n \in \mathbb{Z}; n \geq 1 \} \) and \(\mathbb{N}_0 := \mathbb{N} \cup \{ 0 \} \).

All the manifolds are assumed to be paracompact. Let \(\tau: E \to Z \) a vector bundle over a manifold \(Z \). Then, set \(\dot{E} := E \setminus Z \) and \(\dot{\tau} \) the restriction of \(\tau \) to \(\dot{E} \). Let \(M \) be an \((n+1) \)-dimensional real analytic manifold and \(N \) a one-codimensional closed real analytic submanifold of \(M \). Let \(X \) and \(Y \) be complexifications of \(M \) and \(N \) respectively such that \(Y \) is a closed submanifold of \(X \) and that \(Y \cap M = N \). Moreover, we assume the existence of a partial complexification of \(M \) in \(X \); that is, there exists a \((2n+1) \)-dimensional real analytic submanifold \(L \) of \(X \) containing both \(M \) and \(Y \) such that the triplet \((N, M, L) \) is locally isomorphic to \((\mathbb{R}^n \times \{0\}, \mathbb{R}^{n+1}, \mathbb{C}^n \times \mathbb{R}) \) by a local coordinate system \((z, \tau) = (x + \sqrt{-1} y, t + \sqrt{-1} s)\) of \(X \) around each point of \(N \). We say such a coordinate system admissible. We shall mainly follow the notation in Kashiwara-Schapira [K-S]; we denote the normal deformations of \(N \) and \(Y \) in \(M \) and \(L \) by \(\overline{M}_N \) and \(\tilde{L}_Y \) respectively and regard \(\overline{M}_N \) as a closed submanifold of \(\tilde{L}_Y \). We have the following commutative diagram:

![Diagram](https://example.com/diagram.png)

and by admissible coordinates we have locally the following relation:

\[
\begin{align*}
\mathbb{R}^n_x \times \{0\} &\to M = \mathbb{R}^n_x \times \mathbb{R}_t \\
\mathbb{C}^n_z \times \{0\} &\to L = \mathbb{C}^n_z \times \mathbb{R}_t \\
X &\to \mathbb{C}^n_z \times \mathbb{C}_\tau
\end{align*}
\]

With these coordinates, we often identify \(T_Y X \) and \(T_Y L \) with \(X \) and \(L \) respectively.

The projection \(\tau_Y: T_Y L \to Y \) and \(s_L: T_Y L \to \tilde{L}_Y \) induce natural mappings:

\[
T^*_N Y \leftarrow T_N M \times T^*_N Y \xrightarrow{i_Y^*} T^*_N M \times T^*_M \tilde{L}_Y \xrightarrow{i_M^*} T^*_M \tilde{L}_Y
\]

and by these mappings, we identify \(T^*_N M T_Y L \) with \(T_N M \times T^*_N Y \) and \(T_N M \times T^*_M \tilde{L}_Y \).
$T_{Y}L \setminus T_{Y}Y$ has two components with respect to its fiber. We denote one of them by $T_{Y}L^{+}$ and represent (at least locally) by fixing an admissible coordinate system

$$T_{Y}L^{+} = \{(z, t) \in T_{Y}L; \, t > 0\}.$$ Moreover set $T_{N}M^{+} := T_{Y}L^{+} \cap T_{N}M$. Set an open embedding $f : T_{Y}L^{+} \hookrightarrow T_{Y}L$ and $f_{N} := f|_{T_{N}M^{+}} : T_{N}M^{+} \hookrightarrow T_{N}M$. We regard $T_{N}M^{+} \times T_{N}Y$ as an open set of $T_{T_{N}M}^{*}T_{Y}L$. Moreover f induces mappings:

$$T_{T_{N}M}^{*}T_{Y}L^{+} \hookrightarrow \cup \rightarrow T_{N}M^{+} \times T_{T_{N}M}^{*}T_{Y}L.$$ Hence we identify $T_{T_{N}M}^{*}T_{Y}L^{+}$ with $T_{N}M^{+} \times T_{N}^{*}Y$ and f_{N} with $f_{N} \times \text{id}$.

Let $\pi_{N,M} : T_{\frac{*}{M}N}L_{\mathrm{Y}} \rightarrow \overline{M}_{N}$ and $\pi_{N|M} : T_{T_{N}M}^{*}T_{Y}L \rightarrow T_{N}M$, be the natural projections. We denote as usual by ν and μ the Sato specialization and microlocalization functors respectively.

General Boundary Values

By using an admissible coordinate system we define a continuous section $\sigma : Y \rightarrow \dot{T}_{Y}X$ by $z \mapsto (z, 1)$. Similarly we define $\tau : Y \rightarrow \dot{T}_{Y}X$ by $z \mapsto (z, 1)$. In general, let Z be a complex manifold, $\tau : E \rightarrow Z$ a complex vector bundle. Then, denote by $D^{b}_{C^{\times}}(E)$ the subcategory of $D^{b}(E)$ consisting of C^{\times}-conic objects.

2.1 Theorem. For any object \mathcal{F} of $D^{b}(X)$ such that $\nu_{Y}(\mathcal{F}) \in \text{Ob}(D^{b}_{C^{\times}}(T_{Y}X))$, there exists the following natural isomorphism:

$$f_{\pi}^{-1} \mu_{T_{N}M}(\nu_{Y}(i_{i'}^{L}\mathcal{F})) \Rightarrow f_{\pi}^{-1} \tau_{\pi}^{-1} \mu_{N}(\nu_{Y}(\mathcal{F})) \otimes \omega_{L/X}.$$

2.2 Definition. For any object \mathcal{F} of $D^{b}(X)$ such that $\nu_{Y}(\mathcal{F}) \in \text{Ob}(D^{b}_{C^{\times}}(T_{Y}X))$, we define by virtue of Kashiwara-Schapira [K-S] and Theorem 2.1:

$$\beta : f_{\pi}^{-1} s_{L^{*}}^{-1} \mu_{M}(Rj_{L*} \overline{f}_{L}^{-1} i_{L}^{*}\mathcal{F}) \rightarrow f_{\pi}^{-1} \mu_{T_{N}M}(\nu_{Y}(i_{i'}^{L}\mathcal{F})) \Rightarrow f_{\pi}^{-1} \tau_{\pi}^{-1} \mu_{N}(\nu_{Y}(\mathcal{F})) \otimes \omega_{L/X}.$$

2.3 Definition (Laurent-Monteiro Fernandes [L-MF 2]). We say an object \mathcal{F} of $D^{b}(X)$ is near-hyperbolic at $x_{0} \in N$ (in dt-codirection) if there exist positive constants C and ϵ_{1} such that

$$\text{SS}(\mathcal{F}) \cap \{(z, \tau; z^{*}, \tau^{*}) \in T^{*}X; |z - x_{0}|, |\tau| < \epsilon_{1}, 0 < \text{Re} \tau\}$$

$$\subset \{(z, \tau; z^{*}, \tau^{*}) \in T^{*}X; |\text{Re} \tau^{*}| < C(|\text{Im} z^{*}|(|\text{Im} z| + |\text{Im} \tau|) + |\text{Re} z^{*}|)\}$$ holds by an admissible coordinate system. Here $\text{SS}(\mathcal{F})$ denotes the microsupport of \mathcal{F}.

88
2.4 Theorem. Let \(F \) be a object of \(\mathcal{D}^b(X) \). Assume that \(\nu_Y(F) \in \text{Ob}(\mathcal{D}^b_{\mathbb{C}^\times}(T_Y X)) \) and \(F \) is near-hyperbolic at \(x_0 \in N \). Then, for any \(p^* \in T^*_{T_N M^+} T_Y L^+ \)

\[
\beta: s_{L^+}^{-1} \mu_{M_N}^{\mathcal{D}_{X}}(Rj_{L^*} \tilde{p}^{-1}_L i_L^* \mathcal{F})_{p^*} \to \mu_N(\sigma^{-1} \nu_Y(F))_{\tau_{Y\pi}(p^*)} \otimes \omega_{L/X}
\]

is an isomorphism.

3 Regular-Specializable Systems

In this section, we shall recall the basic results concerning the regular-specializable \(\mathcal{D} \)-Module and its nearby-cycle.

As usual, we denote by \(\mathcal{D}_X \) the sheaf on \(X \) of holomorphic differential operators, and by \(\{\mathcal{D}^{(m)}_X\}_{m \in \mathbb{N}_0} \) the usual order filtration on \(\mathcal{D}_X \).

3.1 Definition. Denote by \(\mathcal{I}_Y \) the defining Ideal of \(Y \) in \(\mathcal{O}_X \) with a convention that \(\mathcal{I}^j_Y = \mathcal{O}_X \) for \(j \leq 0 \). The \(V \)-filtration \(\{V^k_Y(\mathcal{D}_X)\}_{k \in \mathbb{Z}} \) (along \(Y \)) is a filtration on \(\mathcal{D}_X|_Y \) defined by

\[
V^k_Y(\mathcal{D}_X) := \bigcap_{j \in \mathbb{Z}} \{P \in \mathcal{D}_X|_Y; P \mathcal{I}^j_Y \subset \mathcal{I}^{j-k}_Y\}.
\]

Let us denote by \(\theta \) the Euler operator. Note that \(\theta \in V^0_Y(\mathcal{D}_X) \setminus V^1_Y(\mathcal{D}_X) \) and that \(\theta \) can be represented by \(\tau \partial_r \) by admissible coordinates.

3.2 Definition. A coherent \(\mathcal{D}_X|_Y \)-Module \(M \) is said to be regular-specializable (along \(Y \)) if there exist locally a coherent \(\mathcal{O}_X \)-sub-Module \(M_0 \) of \(M \) and a non-zero polynomial \(b(\alpha) \in \mathbb{C}[\alpha] \) such that the following conditions are satisfied:

1. \(M_0 \) generates \(M \) over \(\mathcal{D}_X \); that is, \(M = \mathcal{D}_X M_0 \);
2. \(b(\theta) M_0 \subset (\mathcal{D}^{(m)}_X \cap V^{k-1}_Y(\mathcal{D}_X)) M_0 \), where \(m \) is the degree of \(b(\alpha) \).

In what follows, we shall omit the phrase "along \(Y \)" since \(Y \) is fixed.

3.3 Remark. (1) Let \(M \) be a coherent \(\mathcal{D}_X|_Y \)-Module for which \(Y \) is non-characteristic. Then, it is easy to see that \(M \) is regular-specializable.

(2) Kashiwara-Kawai [K-K] proved that every regular-holonomic \(\mathcal{D}_X|_Y \)-Module is regular-specializable.

3.4 Proposition. If \(M \) is a regular-specializable \(\mathcal{D}_X|_Y \)-Module, \(R\text{Hom}_{\mathcal{D}_X}(M, \nu_Y(\mathcal{O}_X)) \) and \(R\text{Hom}_{\mathcal{D}_X}(M, \nu_Y(\mathcal{O}_X)) \) are objects of \(\mathcal{D}^b_{\mathbb{C}^\times}(T_Y X) \) and \(\mathcal{D}^b_{\mathbb{C}^\times}(T_Y X) \) respectively.

Let \(\iota: Y \to X \) be the natural inclusion. Then the induced system, or the inverse image in the sense of \(\mathcal{D} \)-Modules is defined by \(D\iota^* M := \mathcal{O}_Y \otimes_{\iota^{-1} \mathcal{O}_X} \mathcal{O}_X \).

For any regular-specializable \(\mathcal{D}_X \)-Module \(M \), the nearby-cycle \(\Psi_Y(M) \) of \(M \) and the vanishing-cycle \(\Phi_Y(M) \) of \(M \) in the theory of \(\mathcal{D} \)-Modules can be defined. For the definitions of \(\Psi_Y(M) \) and \(\Phi_Y(M) \), we refer to Laurent [L], Mebkhout [Me]. We shall recall the following two results:
3.5 Proposition (Laurent [L], Mebkhout [Me]). Let \mathcal{M} be a regular-specializable $\mathcal{D}_X|_Y$-Module. Then, $\Psi_Y(\mathcal{M})$, $\Phi_Y(\mathcal{M})$ and each cohomology of $\mathcal{D}_Y^* \mathcal{M}$ are coherent \mathcal{D}_Y-Modules. Moreover, there exists the following distinguished triangle:

$$\Phi_Y(\mathcal{M}) \rightarrow \Psi_Y(\mathcal{M}) \rightarrow \mathcal{D}_Y^* \mathcal{M} \rightarrow +1.$$

Here, $\text{Var} := \varphi(\partial)\tau$ with $\varphi(\zeta) := (e^{2\pi \sqrt{-1} \zeta} - 1)/\zeta$.

3.6 Theorem (Laurent [L]). Let $\mathcal{E}_{Y|X}^\mathbb{R}$ be the sheaf of real holomorphic microfunctions on $T_Y^* X$ as usual. Let \mathcal{M} be a regular-specializable $\mathcal{D}_X|_Y$-Module. Then, there exists the following isomorphism of distinguished triangles:

$$\mathbf{R}\mathcal{H}\text{om}_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X)|_Y \rightarrow \mathbf{R}\mathcal{H}\text{om}_{\mathcal{D}_Y}(\Phi_Y(\mathcal{M}), \mathcal{O}_Y) \rightarrow \mathbf{R}\mathcal{H}\text{om}_{\mathcal{D}_Y}(\Psi_Y(\mathcal{M}), \mathcal{O}_Y) \rightarrow +1.$$

3.7 Remark. (1) The isomorphism (the Cauchy-Kovalevskaja type theorem)

$$\mathbf{R}\mathcal{H}\text{om}_{\mathcal{D}_Y}(\mathcal{D}_Y^* \mathcal{M}, \mathcal{O}_Y) \simeq \mathbf{R}\mathcal{H}\text{om}_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X)|_Y$$

holds for Fuchsian systems in the sense of Laurent-Monteiro Fernandes [L-MF 1].

(2) Recently Mandai [Man] extended the definition of boundary values to a general Fuchsian differential equation in the complex domain.

4 Boundary Values for Regular-Specializable System

We denote by \mathcal{O}_X, \mathcal{B}_M and \mathcal{C}_M the sheaf of holomorphic functions on X, of hyperfunctions on M and of microfunctions on $T^*_M X$ respectively.

4.1 Definition (Oaku [Oa 2], Oaku-Yamazaki [O-Y]). We set:

$$\mathcal{C}_{N|M} := s_{L*}^{-1} \mu_{\overline{M}_N}(Rj_L^* \nu_{Y}\mathcal{O}_X) \otimes \mathcal{O}_{M/X}[n + 1].$$

We can regard $\mathcal{C}_{N|M}$ as a microlocalization of $\nu_N(\mathcal{B}_M)$.

4.2 Proposition. (1) $\mathcal{C}_{N|M}$ is concentrated in degree zero; that is, $\mathcal{C}_{N|M}$ is regarded as a sheaf on $T^*_N M \otimes L$. Further $\mathcal{C}_{N|M}|_{T^*_N M} = \nu_N(\mathcal{B}_M)$ holds.

(2) There exists the following exact sequence on $T^*_N M$:

$$0 \rightarrow \nu_Y(\mathcal{O}_L)|_{T^*_N M} \rightarrow \nu_N(\mathcal{B}_M) \rightarrow \hat{\pi}_{N|M*} \mathcal{C}_{N|M} \rightarrow 0.$$

Here $\mathcal{B}_L := \mathcal{O}_{L/X} \otimes \mathcal{O}_{L/X}$ is the sheaf of hyperfunctions with holomorphic parameters on L. Note that $\nu_Y(\mathcal{B}_L)$ is concentrated in degree zero.
4.3 Definition. Let M be a regular-specializable $D_X|_Y$-Module. By Proposition 3.4, $\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_X}\left(M, \mathcal{O}_X\right)$ satisfies the assumption of Theorem 2.1. Thus, by Definition 2.2 and Theorem 3.6, we define:

$$\beta: f_\pi^{-1}\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_X}(M, C_{N|M}) \to f_\pi^{-1}\tau_{Y\pi}^{-1}\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_Y}(\Psi_Y(M), C_N).$$

4.4 Theorem. (1) The morphism β gives a monomorphism

$$\beta^0: f_\pi^{-1}\mathcal{H}om_{D_X}(M, C_{N|M}) \to f_\pi^{-1}\tau_{Y\pi}^{-1}\mathcal{H}om_{D_Y}(\Psi_Y(M), C_N).$$

(2) The restriction of β^0 to the zero-section $T_N M^+$ coincides with the boundary value morphism in the sense of Monteiro Fernandes [MF1].

4.5 Definition. Let M be a coherent $D_X|_Y$-Module. Then we say M is near-hyperbolic at $x_0 \in N$ (in dt-codirection) if $\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_X}(M, \mathcal{O}_X)$ is near-hyperbolic in the sense of Definition 2.3. Here, we remark that $SS(\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_X}(M, \mathcal{O}_X)) = \text{char}(M)$.

The following theorem is a direct consequence of Theorem 2.4:

4.6 Theorem. Let M be a regular-specializable $D_X|_Y$-Module. Assume that M is near-hyperbolic at $x_0 \in N$. Then, for any $p^* \in T^*_T M^+T_Y L^+$

$$\beta: \mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_X}(M, C_{N|M})_{p^*} \to \mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_Y}(\Psi_Y(M), C_N)_{\tau_{Y\pi}(p^*)}$$

is an isomorphism.

4.7 Remark. Let $C^F_{N|M}$ be the sheaf of F-mild microfunctions on $T^*_T M^+T_Y L$, and set $\mathcal{C}^A_{N|M} := \mathcal{H}^n(\mu_N(\mathcal{O}_X|_Y)) \otimes \mathcal{O}_{N/Y}$ (see Oaku [Oa1], [Oa2], and Oaku-Yamazaki [O-Y]). Let M be a regular-specializable $D_X|_Y$-Module. Set $M_Y := \mathcal{H}^0(D\iota^*M) = \mathcal{O}_Y \otimes \iota^{-1}M$.

By the argument in Oaku-Yamazaki [O-Y] we have the following commutative diagram:

$$
\begin{align*}
\mathcal{H}om_{D_X}(M, \mathcal{C}^F_{N|M}) & \to \mathcal{H}om_{D_X}(M, \mathcal{C}^A_{N|M}) & \to \mathcal{H}om_{D_Y}(M_Y, C_N) \\
\mathcal{H}om_{D_X}(M, \mathcal{C}^A_{N|M}) & \to \mathcal{H}om_{D_Y}(M_Y, C_N)
\end{align*}
$$

that is, the boundary value morphism

$$\gamma^F: f_\pi^{-1}\mathcal{H}om_{D_X}(M, C^F_{N|M}) \to f_\pi^{-1}\tau_{Y\pi}^{-1}\mathcal{H}om_{D_Y}(\Psi_Y(M), C_N)$$

and β^0 are compatible. In particular, if Y is non-characteristic for M, then it is known that $\Psi_Y(M) \cong D\iota^*M \cong M_Y$ and by Oaku [Oa2] (cf. Oaku-Yamazaki [O-Y]) we have:

$$\gamma_{N|M}:\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_X}(M, \mathcal{C}^A_{N|M}) \to \tau_{Y\pi}^{-1}\mathcal{R}\mathcal{H}\mathcal{O}\mathcal{M}_{D_Y}(M_Y, C_N).$$
In this case we see that β^0 is equivalent to the non-characteristic boundary value morphism (see Kataoka [Kat] and Oaku [Oa 2]). In particular, the restriction of β^0 to the zero-section $T_N^* M^+$ is equivalent to Komatsu-Kawai [Ko-K] and Schapira [Sc 1]. Further, if Y is non-characteristic for M and $\pm dt \in T_Y^* M$ is hyperbolic for M, then the nearly-hyperbolic condition is satisfied and β is an isomorphism.

4.8 Example. Assume that $X = \mathbb{C}^{n+1}$ and so on by an admissible coordinate system.

(1) Let $b(\alpha)$ be a non-zero polynomial with degree m, and $Q \in \mathcal{D}_X^{(m)} \cap \mathcal{V}_Y^{-1} (\mathcal{D}_X)$. Set $M := \mathcal{D}_X / \mathcal{D}_X (b(\theta) + Q)$. Then M is regular-specializable. Assume that $b(\alpha) = \prod_{j=1}^{\mu} (\alpha - \alpha_j)^{\nu_j}$ $(\alpha_i - \alpha_j \notin \mathbb{Z}$ for $1 \leq i \neq j \leq \mu$, note that $\sum_{j=1}^{\mu} \nu_j = m)$. Then a direct calculation shows that $\Psi_Y (M) \simeq \mathcal{D}_Y^{\oplus m}$, and β^0 is equivalent to γ in Oaku [Oa 2]: Let $p^* = (x_0, f_0; \sqrt{-1} \langle \xi_0, dx \rangle)$ be a point of $T_{N,M}^* \mathcal{T}_Y^* L^+$, and $f(x,t)$ a germ of $\mathcal{H}om_{\mathcal{D}_X} (\mathcal{M}, \mathcal{C}_{N|M})$ at p^*. Then, we can see that $f(x,t)$ has a defining function

$$F(z, \tau) = \sum_{j=1}^{\mu} \sum_{k=1}^{\nu_j} F_{jk}(z, \tau) \tau^{\alpha_j} (\log \tau)^{k-1}.$$

Here each $F_{jk}(z, \tau)$ is holomorphic on a neighborhood of $\{(z, 0) \in X; |x_0 - z| < \epsilon, \text{Im } z \in \Gamma \}$ with a positive constant ϵ and an open convex cone Γ such that $\xi_0 \in \text{Int}(\Gamma^\circ)$ (the interior of the dual cone Γ° of Γ). Then, $\beta^0(f)$ is equivalent to $\{ \text{sp}_N (F_{jk}(x + \sqrt{-1} \Gamma 0,0)); 1 \leq k \leq \nu_j, 1 \leq j \leq \mu \}$. Moreover, if the principal symbol of $b(\theta) + Q$ is written as $\tau^m P(z, \tau; z^*, \tau^*)$ for a hyperbolic polynomial P at dt-codirection, the nearly-hyperbolic condition is satisfied. Note that this operator is a special case of Fuchsian hyperbolic operators due to Tahara [T].

(2) Take an operator $A(z; \partial_z) \in \mathcal{D}_Y^{(1)}$ at the origin and set $A^0 := \text{id}$ and $A^{(j)} := \frac{1}{j!} A \circ A^{(j-1)} \in \mathcal{D}_Y^{(j)}$ for $j \geq 1$. Let $p^* = (0,1; \sqrt{-1} \langle \xi, dx \rangle)$ be a point of $T_{N,M}^* \mathcal{T}_Y^* L^+$ and set $p_0 := (0; \sqrt{-1} \langle \xi, dx \rangle) \in T_{N,Y}^*$. Set $P := (\theta - \alpha_1)(\theta - \alpha_2) - \tau A(z; \partial_z) \theta \in \mathcal{D}_X|_Y$, where $(\alpha_1, \alpha_2) \in \mathbb{C}^{\oplus 2}$. Consider $M := \mathcal{D}_X / \mathcal{D}_X P = \mathcal{D}_X u$, where $u := 1 \mod P$. Let $f(x,t)$ be a germ of $\mathcal{H}om_{\mathcal{D}_X} (\mathcal{M}, \mathcal{C}_{N|M})$ at p^*. Then:

(i) If $(\alpha_1, \alpha_2) = (-1,0)$, then

$$\Phi_Y (M) = \frac{V_Y^0 (\mathcal{D}_X) u + V_Y^1 (\mathcal{D}_X) (\theta + 1) u}{V_Y^{-1}(\mathcal{D}_X) u + V_Y^0 (\mathcal{D}_X) (\theta + 1) u} = \mathcal{D}_Y [u] + \mathcal{D}_Y [\partial_x (\theta + 1) u] \simeq \mathcal{D}_Y^{\oplus 2},$$

$$\Psi_Y (M) = \frac{V_Y^{-1}(\mathcal{D}_X) u + V_Y^0 (\mathcal{D}_X) (\theta + 1) u}{V_Y^{-2}(\mathcal{D}_X) u + V_Y^{-1}(\mathcal{D}_X) (\theta + 1) u} = \mathcal{D}_Y [\tau u] + \mathcal{D}_Y [\tau (\theta + 1) u] \simeq \mathcal{D}_Y^{\oplus 2},$$

and $\text{Var}: ([u], [\partial_x (\theta - 1) u]) \mapsto ([\tau u], 0)$. Hence $M_Y \simeq \mathcal{D}_Y [\tau (\theta + 1) u] \simeq \mathcal{D}_Y$. In this case $f(x,t)$ has the following defining function:

$$F(z, \tau) = U_0(z) + \frac{U_{-1}(z)}{\tau} - \sum_{j=1}^{\infty} \frac{A^{(j)} U_{-1}(z)}{j-1} \tau^{j-1} - AU_{-1}(z) \log \tau.$$
and $\beta^{0}(f(x, t))$ is given by $\{\text{sp}_{N}(U_{i})(x)\}_{i=-1,0}$ at p_{0}. If $f(x, t)$ is F-mild at p_{0}, then $U_{-1}(z) = 0$ and $\gamma^{F}(f(x, t)) = \{f(x, +0)\} = \{\text{sp}_{N}(U_{0})(x)\}$.

(ii) If $(\alpha_{1}, \alpha_{2}) = (0, 1)$, then:

$$
\Phi_{Y}(M) = \frac{V_{Y}^{1}(D_{X}u) + V_{Y}^{2}(D_{X})u}{V_{Y}^{0}(D_{X})u + V_{Y}^{1}(D_{X})u} \rho_{\tau} A_{\tau} \rho_{\tau} - 1 d_{\tau} u \simeq D_{Y}^{\oplus 2},
$$

$$
\Psi_{Y}(M) = \frac{V_{Y}^{0}(D_{X})u + V_{Y}^{1}(D_{X})u}{V_{Y}^{1}(D_{X})u + V_{Y}^{2}(D_{X})u} \rho_{\tau} A_{\tau} \rho_{\tau} - 1 d_{\tau} u \simeq D_{Y}^{\oplus 2},
$$

and $\text{Var} [\partial_{\tau} u] = \text{Var} [\partial_{\tau}^{2} u] = 0$. Hence $M_{Y} \simeq D_{Y} [\partial_{\tau} u] + D_{Y} [\partial_{\tau}^{2} u] \simeq D_{Y}^{\oplus 2}$. In this case $f(x, t)$ has the following defining function:

$$
F(z, \tau) = U_{0}(z) + \sum_{j=0}^{\infty} A^{(j)} U_{1}(z) \tau^{j+1},
$$

and $f(x, t)$ is always F-mild. Hence $\beta^{0}(f(x, t))$ at p_{0} coincides with $\gamma^{F}(f(x, t)) = \{\partial_{\tau}^{2} f(x, +0)\}_{i=0, 1} = \{\text{sp}_{N}(U_{i})(x)\}_{i=0, 1}$ (if $\tau \not= 0$, M is isomorphic to $D_{X}/D_{X}(\partial_{\tau}^{2} A(z; \partial_{z}) \partial_{\tau})$ for which Y is non-characteristic).

(iii) If $(\alpha_{1}, \alpha_{2}) = (1, 1)$, then

$$
\Phi_{Y}(M) = \frac{V_{Y}^{2}(D_{X})u + V_{Y}^{3}(D_{X})(\theta - 1)u}{V_{Y}^{1}(D_{X})u + V_{Y}^{2}(D_{X})(\theta - 1)u} \rho_{\tau} A_{\tau} \rho_{\tau} - 1 d_{\tau} u \simeq D_{Y}^{\oplus 2},
$$

$$
\Psi_{Y}(M) = \frac{V_{Y}^{1}(D_{X})u + V_{Y}^{2}(D_{X})(\theta - 1)u}{V_{Y}^{0}(D_{X})u + V_{Y}^{1}(D_{X})(\theta - 1)u} \rho_{\tau} A_{\tau} \rho_{\tau} - 1 d_{\tau} u \simeq D_{Y}^{\oplus 2},
$$

and $\text{Var} : ([\partial_{\tau}^{2} u], [\partial_{\tau}^{3} (\theta - 1)u]) \mapsto (2\pi \sqrt{-1} [\partial_{\tau} (\theta - 1)u], 0)$. Hence $M_{Y} \simeq D_{Y} [\partial_{\tau} u] \simeq D_{Y}$. In this case $f(x, t)$ has the following defining function:

$$
F(z, \tau) = \sum_{j=0}^{\infty} A^{(j)} U_{0}(z) \tau^{j+1} - \sum_{j=1}^{\infty} \sum_{k=1}^{j} A^{(j)} U_{1}(z) \tau^{j+1} + \sum_{j=0}^{\infty} A^{(j)} U_{1}(z) \tau^{j+1} \log \tau,
$$

and $\beta^{0}(f(x, t))$ is given by $\{\text{sp}_{N}(U_{i})(x)\}_{i=0, 1}$ at p_{0}. If $f(x, t)$ is F-mild at p_{0}, then $U_{0}(z) = 0$ and $\gamma^{F}(f(x, t)) = \{\partial_{\tau} f(x, +0)\} = \{\text{sp}_{N}(U_{1})(x)\}$.

(iv) If $(\alpha_{1}, \alpha_{2}) = (1, 2)$, then:

$$
\Phi_{Y}(M) = \frac{V_{Y}^{2}(D_{X})u + V_{Y}^{3}(D_{X})\partial_{\tau} u}{V_{Y}^{1}(D_{X})u + V_{Y}^{2}(D_{X})\partial_{\tau} u} \rho_{\tau} A_{\tau} \rho_{\tau} - 1 d_{\tau} u \simeq D_{Y}^{\oplus 2},
$$

$$
\Psi_{Y}(M) = \frac{V_{Y}^{1}(D_{X})u + V_{Y}^{2}(D_{X})\partial_{\tau} u}{V_{Y}^{0}(D_{X})u + V_{Y}^{1}(D_{X})\partial_{\tau} u} \rho_{\tau} A_{\tau} \rho_{\tau} - 1 d_{\tau} u \simeq D_{Y}^{\oplus 2},
$$

and $\text{Var} : ([\partial_{\tau}^{2} u], [\partial_{\tau}^{3} (\theta - 1)u]) \mapsto (0, 2A [\partial_{\tau} u])$. Hence

$$
M_{Y} \simeq \frac{D_{Y} [\partial_{\tau} u] + D_{Y} [\partial_{\tau}^{2} (\theta - 1)u]}{D_{Y} A [\partial_{\tau} u]}.
$$
In this case $f(x, t)$ has the following defining function:

$$F(z, \tau) = \sum_{j=0}^{\infty} A^{(j)} U_2(z) \tau^{j+2} + U_1(z) \tau - \sum_{j=2}^{\infty} \sum_{k=1}^{j-1} \frac{j A^{(j)} U_1(z)}{k} \tau^{j+1}$$

$$+ \left(\sum_{j=0}^{\infty} (j+1) A^{(j+1)} U_1(z) \tau^{j} \right) \tau^2 \log \tau,$$

and $\beta^0(f(x, t))$ is given by $\{ \text{sp}_N(U_1)(x) \}_{i=1,2}$ at p_0. $f(x, t)$ is F-mild under the condition that $AU_1(z) = 0$, and in this case $\gamma^F(f(x, t))$ at p_0 is given by $\gamma^F(f_3(x, t)) = \{ \partial_t f(x, +0) \}_{i=1,2} = \{ \text{sp}_N(U_1)(x), 2 \text{sp}_N(U_2)(x) \}$ with $A\partial_t f(x, +0) = A \text{sp}_N(U_1)(x) = 0$.

References

