<table>
<thead>
<tr>
<th>Title</th>
<th>A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations (Asymptotic Analysis and Microlocal Analysis of PDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lope, Jose Ernie C.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1211: 96-104</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41127</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

Jose Ernie C. LOPE

Abstract

This paper considers the equation $Pu = f$, where u and f are continuous with respect to t and holomorphic with respect to z, and P is the linear Fuchsian partial differential operator

$$P = (tD_t)^m + \sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} a_{j,\alpha}(t, z)(\mu(t)D_z)^\alpha(tD_t)^j.$$

We will give a sharp form of unique solvability in the following sense: we can find a domain Ω such that if f is defined on Ω, then we can find a unique solution u also defined on Ω.

1 Introduction and Result

Denote by \mathbb{N} the set of nonnegative integers, and let $(t, z) = (t, z_1, \ldots, z_n) \in \mathbb{R} \times \mathbb{C}^n$. Let $R > 0$ be sufficiently small, and for $\rho \in (0, R]$, let B_ρ be the polydisk $\{z \in \mathbb{C}^n; |z_i| < \rho \text{ for } i = 1, 2, \ldots, n\}$.

Given any bounded, open subset D of \mathbb{C}^n, we define by $A(D)$ the Banach space of all functions $g(z)$ holomorphic in D and continuous up to \overline{D}; the norm in this space is given by $||g||_D = \max_{z \in \overline{D}} |g(z)|$. Let $T > 0$. Then we denote by $C^0([0, T], A(D))$ the set of functions continuous on the interval $[0, T]$ and valued in the space $A(D)$.

We say that a continuous, positive-valued function $\mu(t)$ on the interval $(0, T)$ is a weight function if $\mu(t)$ is increasing and the function

$$\varphi(t) = \int_0^t \frac{\mu(s)}{s} \, ds$$

(1.1)

is well-defined on $(0, T)$, i.e., the integral on the right is finite. (See Tahara [7].)

Consider now the linear partial differential operator

$$P = (tD_t)^m + \sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} a_{j,\alpha}(t, z)(\mu(t)D_z)^\alpha(tD_t)^j.$$

(1.2)

Here, $D_t = \partial/\partial t$ and $D_z = (\partial/\partial z_1, \ldots, \partial/\partial z_n)$; $\mu(t)$ is a weight function; and the coefficients $a_{j,\alpha}(t, z)$ belong in the space $C^0([0, T], A(B_R))$, i.e., for any
$s \in [0, T]$, each of the functions \(a_{j, \alpha}(s, z)\), when viewed as a function of \(z\), is holomorphic in \(B_R\) and continuous up to \(\overline{B_R}\). We associate a polynomial with this operator, called the \textit{characteristic polynomial} of \(\mathcal{P}\), and we define it by

\[
\mathcal{C}(\lambda, z) = \lambda^m + a_{m-1,0}(0, z)\lambda^{m-1} + \cdots + a_{0,0}(0, z).
\]
(1.3)

Its roots \(\lambda_1(z), \ldots, \lambda_m(z)\) will be referred to as \textit{characteristic exponents}. In what follows, we will assume that there exists a positive number \(L\) such that

\[
\Re \lambda_j(z) \leq -L < 0 \quad \text{for all } z \in B_R \text{ and } 1 \leq j \leq m.
\]
(1.4)

Baouendi and Goulaouic [1] studied the above operator in the case when \(\mu(t) = t^a\) \((a > 0)\). They called such operator a Fuchsian partial differential operator, which for them is the "natural" generalization of a Fuchsian ordinary differential operator. In their paper, they gave some generalizations of the classical Cauchy-Kowalewski and Holmgren theorems for this type of operators. Their method has been applied and extended to various cases as can be seen, for example, in Tahara [6], Mandai [5] and Yamane [8].

In a previous paper [4], the author proved existence and uniqueness theorems similar to those given in [1], but for general \(\mu(t)\). Essentially, he proved the following unique solvability result.

Theorem 1. Let \(\mathcal{P}\) be as in (1.2). Then given any \(\rho \in (0, R)\), there exists an \(\epsilon \in (0, T]\) such that for any \(f(t, z) \in C^0([0, T], A(B_R))\), the equation \(\mathcal{P}u = f\) has a unique solution \(u(t, z) \in C^0([0, \epsilon], A(B_{\rho}))\) satisfying for \(1 \leq p \leq m\) the relation \((t D_t)^p u \in C^0([0, \epsilon], A(B_{\rho}))\).

We remark that although \(f(t, z)\), viewed as a function of \(z\), is defined on \(B_R\), the existence of the solution \(u(t, z)\) is only guaranteed up to \(B_{\rho}\), with \(\rho < R\). Moreover, any two solutions of \(\mathcal{P}u = f\) can only be shown to coincide in a neighborhood of the origin which is smaller than the neighborhood on which the two are defined.

In this paper, we shall present a formulation leading to an existence and uniqueness result sharper than the one given above. The result is sharper in the sense that the solution \(u(t, z)\) of the equation \(\mathcal{P}u = f\) will now have the same domain of definition as the inhomogeneous part \(f(t, z)\).

To proceed, we will need the following definitions.

Definition 1. Let \(\tau \in (0, T), \gamma > 0\) and \(\varphi(t)\) be the one in (1.1). We define

(i) \(\omega_{\tau}[\gamma] = \{z \in \mathbb{C}^n; |z_i| < R - \gamma \varphi(\tau) \text{ for } i = 1, 2, \ldots, n\}\), and

(ii) \(\Omega_T[\gamma] = \{(\tau, z) \in \mathbb{R} \times \mathbb{C}^n; 0 \leq \tau \leq T \text{ and } z \in \omega_{\tau}[\gamma]\}\).

Definition 2. Let \(p \in \mathbb{N}\) and \(\gamma > 0\).

(i) We say that \(f(t, z)\) belongs in \(K_0(\Omega_T[\gamma])\) if for each \(\tau \in [0, T]\), we have \(f(t) \in C^0([0, \tau], A(\omega_{\tau}[\gamma]))\).
(ii) We say that \(w(t, z) \) belongs in \(C^0_p([0, \tau], \mathcal{A}(\omega_\tau[\gamma])) \) if for all \(0 \leq j \leq p \), we have \((tD_t)^j w(t) \in C^0([0, \tau], \mathcal{A}(\omega_\tau[\gamma])) \).

(iii) We say that \(u(t, z) \) belongs in \(\mathcal{K}_p(\Omega_T[\gamma]) \) if for each \(\tau \in [0, T] \), we have \(u(t) \in C^0_p([0, \tau], \mathcal{A}(\omega_\tau[\gamma])) \).

Under the above assumptions, we now state the following main result.

Theorem 2. Let \(\mathcal{P} \) be the operator given in (1.2). Then there exist constants \(T_0 > 0 \) and \(\gamma_0 > 0 \) depending on \(\mathcal{P} \) such that for any \(f(t, z) \in \mathcal{K}_0(\Omega_{T_0}[\gamma_0]) \), the equation
\[
\mathcal{P}u = f \quad \text{in} \quad \Omega_{T_0}[\gamma_0]
\]
has a unique solution \(u(t, z) \) in \(\mathcal{K}_m(\Omega_{T_0}[\gamma_0]) \).

Moreover, the solution satisfies the a priori estimate
\[
\sum_{p=0}^{m} \max_{\Delta} |(tD_t)^p u| \leq C \max_{\Delta} |f|,
\]
where \(\Delta \) is the closure of \(\Omega_{T_0}[\gamma_0] \) and \(C > 0 \) is some constant dependent on the above equation and on the domain \(\Omega_{T_0}[\gamma_0] \).

Note that \(f(t, z) \) and \(u(t, z) \) both have \(\Omega_{T_0}[\gamma_0] \) as their domain of definition. This fact allows us to restate our theorem in the following manner: for any \(T, \gamma > 0 \), let \(X_{T, \gamma} \) and \(Y_{T, \gamma} \) be the spaces \(\mathcal{K}_m(\Omega_T[\gamma]) \) and \(\mathcal{K}_0(\Omega_T[\gamma]) \), respectively. Let \(\mathcal{W}_{T, \gamma} \) be the subspace of \(X_{T, \gamma} \) consisting of functions \(u \in X_{T, \gamma} \) such that \(\mathcal{P}u \) belongs in \(Y_{T, \gamma} \). Define a linear operator \(\Psi \) from \(X_{T, \gamma} \) to \(Y_{T, \gamma} \) with domain \(\mathcal{W}_{T, \gamma} \) by \(\Psi u = \mathcal{P}u \). Let \(\| \cdot \|_{T, \gamma} \) denote the maximum norm in the closure of \(\Omega_T[\gamma] \). Then \(X_{T, \gamma} \) and \(Y_{T, \gamma} \) are Banach spaces; given \(u \in X_{T, \gamma} \) and \(f \in Y_{T, \gamma} \), we define their norms by \(\sum_{p=0}^{m} \| (tD_t)^p u \|_{T, \gamma} \) and \(\| f \|_{T, \gamma} \), respectively. Note further that the operator \(\Psi \) is a closed linear operator from \(X_{T, \gamma} \) to \(Y_{T, \gamma} \). The above theorem can now be stated as

Theorem 2'. There exist \(T_0, \gamma_0 > 0 \) depending on \(\mathcal{P} \) such that the operator \(\Psi \) is a one-one, closed linear operator from \(X_{T_0, \gamma_0} \) onto \(Y_{T_0, \gamma_0} \).

Since \(\Psi \) is an injection, \(\Psi^{-1} \) exists and is also closed. The Closed Graph Theorem further implies that \(\Psi^{-1} \) is continuous. The estimate given in (1.6) is just a consequence of the continuity of \(\Psi^{-1} \).

2 Preliminary Discussion

We can rewrite the operator \(\mathcal{P} \) as
\[
\mathcal{P} = Q + \sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} c_{j, \alpha}(t, z)(\mu(t)D_z)^\alpha(tD_t)^j,
\]
where the operator Q is defined by
\[Q = (tD_t)^m + a_{m-1,0}(0,z)(tD_t)^{m-1} + \cdots + a_{0,0}(0,z) \] (2.1)
and
\[c_{j,\alpha}(t,z) = \begin{cases} \alpha_{j,\alpha}(t,z) & \text{if } |\alpha| \neq 0, \\ \alpha_{j,\alpha}(t,z) - \alpha_{j,\alpha}(0,z) & \text{if } |\alpha| = 0. \end{cases} \]

Note that the coefficients of Q are holomorphic functions of z in B_R. Note further that the characteristic exponents of Q are the same as that of P, and hence satisfy (1.4).

Lemma 1. Fix $\tau > 0$ and let $g(t) \in C^0([0, \tau], A(\omega_{\tau}[\gamma]))$. Then the equation $Qu = g$ has a unique solution $u(t) \in C^0_m([0, \tau], A(\omega_{\tau}[\gamma]))$ given by
\[u(t) = \sum_{\sigma \in S_m} \frac{1}{m!} \int_0^t \int_0^{s_{m-1}} \ldots \int_0^{s_1} g(s_{m}) \frac{d\theta}{\theta} \frac{ds_{m}}{s_{m}} \ldots \frac{ds_{1}}{s_{1}}. \] (2.2)

Here, S_m is the group of permutations of $\{1, 2, \ldots, m\}$.

A result in symmetric entire functions asserts that $u(t,z)$ is holomorphic with respect to z. The fact that it belongs in $C^0_m([0, \gamma], A(\omega_{\tau}[\gamma]))$ is seen in the integral expression, but may actually be obtained a priori. (See [1].)

To facilitate computation, we define for $\lambda = (\lambda_1, \ldots, \lambda_m)$ the function
\[G^t_\theta(\lambda) = \frac{1}{m!} \sum_{\sigma \in S_m} \left(\frac{s_{m}}{t} \right)^{-\lambda_{\sigma(m)}} \left(\frac{s_{m-1}}{s_{m}} \right)^{-\lambda_{\sigma(m-1)}} \ldots \left(\frac{\theta}{s_{2}} \right)^{-\lambda_{\sigma(1)}}, \] (2.3)
for some dummy variables s_2, \ldots, s_m. Define, too, the integral operator
\[\int_{[t;\theta]}^{(m)} g = \frac{1}{m!} \sum_{\sigma \in S_m} \left(\frac{s_{m}}{t} \right)^{-\lambda_{\sigma(m)}} \left(\frac{s_{m-1}}{s_{m}} \right)^{-\lambda_{\sigma(m-1)}} \ldots \left(\frac{\theta}{s_{2}} \right)^{-\lambda_{\sigma(1)}} \] (2.4)

Using the above, we can now write the solution $u(t)$ of the equation $Qu = g$ as
\[u(t) = \int_{[t;\theta]}^{(m)} G^t_\theta(\lambda) g. \]

In our proof of the main theorem, it will be necessary to consider the action of the differential operator $(tD_t)^p$ on integral expressions similar to the one in (2.2). One can easily verify the following

Lemma 2. Let $u(t)$ be the solution of $Qu = g$. Then for a natural number p less than m, we have
\[(tD_t)^p u = \sum_{i=m-p}^m \int_{[t;s_i]}^{(i)} \left\{ \frac{1}{m!} \sum_{\sigma \in S_m} h_i(\sigma, \lambda) \left(\frac{s_{i}}{t} \right)^{-\lambda_{\sigma(i)}} \times \left(\frac{s_{i-1}}{s_{i}} \right)^{-\lambda_{\sigma(i-1)}} \ldots \left(\frac{s_{1}}{s_{2}} \right)^{-\lambda_{\sigma(1)}} \right\}, \] (2.5)
where the functions $h_i(\sigma, \lambda)$ are suitable polynomial functions of the characteristic exponents $\lambda_1(z), \ldots, \lambda_m(z)$.

For brevity, let us set, for a natural number k,

$$H^t_\sigma(k, \lambda) = \frac{1}{m!} \sum_{\sigma \in S_m} h_k(\sigma, \lambda) \left(\frac{s_k}{t} \right)^{-\lambda_{\sigma(k)}} \left(\frac{s_{k-1}}{s_k} \right)^{-\lambda_{\sigma(k-1)}} \ldots \left(\frac{s_2}{s_1} \right)^{-\lambda_1}. \quad (2.6)$$

By symmetry, the functions $H^t_\sigma(k, \lambda)$ are holomorphic with respect to z and thus belong in $A(B_R)$.

The next lemma is useful in evaluating some integral expressions in the proof.

Lemma 3. Let k be natural number. Then the following equalities hold:

(a) $$\int_0^s \int_0^{s_1} \int_0^{s_k-1} \int_0^{s_k-2} \ldots \frac{ds_0}{s_0} \frac{ds_1}{s_1} \ldots \frac{ds_{k-1}}{s_{k-1}} = \frac{1}{L^k}$$

(b) $$\int_0^t \int_0^{s_k} \int_0^{s_1} \int_0^{s_k-1} \frac{\mu(s_k)}{s_k} \frac{\mu(s_{k-1})}{s_{k-1}} \ldots \frac{\mu(s_1)}{s_1} \times \left(\frac{s_0}{t} \right)^L \frac{s_0^{-1}}{[\varphi(t) - \varphi(s_0)]^k} ds_0 \ldots ds_k = \frac{1}{Lk!}$$

The first equality is obvious. The second can be proved by reversing the order of integration and recalling that $t \varphi'(t) = \mu(t)$.

To estimate the derivatives with respect to z, we have the following lemma. (For a proof, see Hörmander [3], Lemma 5.1.3.)

Lemma 4. Let the function $v(z)$ be holomorphic in B_R, and suppose there are positive constants K and c such that

$$\|v\|_{\rho} \leq \frac{K}{(R-\rho)^c} \quad \text{for every } \rho \in (0,R). \quad (2.7)$$

Then we have

$$\|D_z^\alpha v\|_\rho \leq \frac{Ke^{\tau \alpha}(c+1)^{\alpha}}{(R-\rho)^{c+\alpha}} \quad \text{for every } \rho \in (0,R). \quad (2.8)$$

In the above, we define $(c)_p = (c)(c+1) \ldots (c+p-1)$.

3 Proof of Main Theorem

Let f be any element of $K_0(\Omega_{T_0}[\gamma_0])$. Here, the constants $T_0 > 0$ and $\gamma_0 > 0$ satisfy some conditions which will later be specified. For convenience, we will drop the subscript in both and instead use T and γ; we will again use the subscript upon stating the conditions that these constants need to satisfy.
We will use the method of successive approximations to solve the equation \(Pu = f \). Define the approximate solutions as follows:

\[
 u_0(t) = \int_{[t:s]}^{(m)} G^t_s(\lambda) f
\]

and for \(k \geq 1 \),

\[
 u_k(t) = \int_{[t:s]}^{(m)} G^t_s(\lambda) \left[f - S(s)u_{k-1} \right].
\]

Here, \(t \in [0, T] \), and for brevity, we have set \(S(t) = \sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} c_{j,\alpha}(t, z) \). Note that for all \(k \), the approximate solutions \(u_k(t, z) \) are defined on \(\Omega_{T_0}[\gamma_0] \). Furthermore, they are continuous with respect to \(t \) and holomorphic with respect to \(z \) on this region.

For each \(k \), we also define the sequence of functions \(v_k(t) = u_k(t) - u_{k-1}(t) \), with \(u_{-1} \equiv 0 \). Then the \(v_k(t, z) \)'s are also defined on the same region as the \(u_k(t, z) \)'s, and are also continuous with respect to \(t \) and holomorphic with respect to \(z \). Using the expression for \(u_k(t) \), we have

\[
 v_0(t) = \int_{[t:s]}^{(m)} G^t_s(\lambda) f
\]

and for \(k \geq 1 \),

\[
 v_k(t) = -\int_{[t:s]}^{(m)} G^t_s(\lambda) S(s)v_{k-1}.
\]

To prove that the approximate solutions converge to the real solution, we will henceforth fix one \(t \in [0, T] \), and estimate the functions \(v_k(t) \). Let \(C \) be the bound on \([0, T] \times \overline{B}_R \) of all \(c_{j,\alpha}(t, z) \), and \(K \) be the bound in \(\overline{\Omega_T[\gamma]} \) of \(f(t, z) \). As \(G^t_s(\lambda) \) and \(H^t_s(k, \lambda) \), we have for \(1 \leq k \leq m \) and for some \(D > 0 \):

\[
 \sup_{z \in \overline{B}_R} |G^t_s(\lambda)| \leq \left(\frac{s}{t} \right)^L \quad \text{and} \quad \sup_{z \in \overline{B}_R} |H^t_s(k, \lambda)| \leq D \left(\frac{s}{t} \right)^L.
\]

We can easily see that \(||v_0(t)||_{\omega_t} \) is bounded by \(KL^{-m} \) for any \(0 \leq t \leq T \). Here, we have written for convenience \(||\cdot||_{\omega_t} \) in place of \(||\cdot||_{\omega_t[\gamma]} \). For general \(k \), we note that \(u_k(t) \) is given by the iterated integral

\[
 v_k(t) = (-1)^k \int_{[t:s_k]}^{(m)} G^t_{s_k}(\lambda) S(s_k) \int_{[s_k:s_{k-1}]}^{(m)} G^t_{s_{k-1}}(\lambda) S(s_{k-1}) \cdots \int_{[s_2:s_1]}^{(m)} G^t_{s_1}(\lambda) S(s_1) \int_{[s_1:s_0]}^{(m)} G^t_{s_0}(\lambda) f(s_0).
\]

The expression above can be expanded using Lemma 2, and thus obtain a finite sum whose number of terms is less than \((mJ)^k \), where \(J \) is the cardinality of the set \(\{(j, \alpha); 0 \leq j \leq m - 1 \text{ and } |\alpha| \leq m - j\} \). Each term of the finite sum...
has the form

\[
I = (-1)^k \int_{[t;s_k]}^{(m)} G_{s_k}^t (\lambda) c_{j_k,\alpha_k} (\mu D_z)_{\alpha_k} \int_{[s_k;\alpha_k^{-1}]}^{(i_k)} H_{s_k-1}^{s_k} (i_k, \lambda) c_{j_k-1,\alpha_k-1} (\mu D_z)_{\alpha_k-1} \\
\cdots \int_{[s_2;s_1]}^{(i_2)} H_{s_1}^{s_2} (i_2, \lambda) c_{j_1,\alpha_1} (\mu D_z)_{\alpha_1} \int_{[s_1;\epsilon_0]}^{(i_1)} H_{\epsilon_0}^{s_1} (i_1, \lambda) f(s_0),
\]

where for each \(p \), the relations \(m - j_p \leq i_p \leq m \) and \(|\alpha_p| \leq m - j_p \) hold. (Here, \(\alpha_p \) is a multi-index and should not be confused with the \(p \)th component of \(\alpha \).)

The above is further equal to

\[
I = (-1)^k \int_{[t;s_k]}^{(m)} \cdots \int_{[s_1;\epsilon_0]}^{(i_1)} G_{s_k}^t c_{j_k,\alpha_k} (\mu(s_k) D_z)_{\alpha_k} \\
\times H_{s_k-1}^{s_k} c_{j_k-1,\alpha_k-1} (s_k-1) (\mu(s_k-1) D_z)_{\alpha_k-1} \cdots \\
\times H_{\epsilon_0}^{s_1} c_{j_1,\alpha_1} (s_1) (\mu(s_1) D_z)_{\alpha_1} H_{\epsilon_0}^{s_1} f(s_0).
\]

Let \(F_k(s) \) denote the integrand of the above integral. Let \(R_{s_0} = R - \gamma \varphi(s_0) \). Then all the functions above, when viewed as a function of \(z \), belong in \(\mathcal{A}(\omega_{s_0}[\gamma]) \).

We can therefore apply Lemma 4 repeatedly, starting from the rightmost expression, to obtain the following estimate: for any \(\rho \in (0, R_{s_0}) \), we have

\[
\|F_k(s)\|_{B_\rho} \leq K(CD)^k (\mu(s_1)^{|\alpha_1|} \cdots \mu(s_k)^{|\alpha_k|} \left(\frac{s_0}{t} \right)^L \times \\
\left(\frac{e}{R_{s_0} - \rho} \right)^{|\alpha_1 + \cdots + \alpha_k|} |\alpha_1 + \cdots + \alpha_k|!.
\]

If \(|\alpha_1 + \cdots + \alpha_k| = 0 \), then for sufficiently small \(T = T_0 \), the bound for any \(c_{j_0}(t, z) = a_{j,0}(t, z) - a_{j,0}(0, z) \) is actually small, since \(a_{j,0}(t, z) \) is continuous with respect to \(t \). In other words, by choosing a small \(T = T_0 \), we could find a small constant \(\delta \) such that for any \(t \in [0, T_0] \) and \(0 \leq s \leq t \), the following holds:

\[
\|F_k(s)\|_{\omega_t} \leq K \delta^k \left(\frac{s_0}{t} \right)^L.
\]

Going back to the integral, we have

\[
\|I\|_{\omega_t} \leq \int_{[t;s_k]}^{(m)} \cdots \int_{[s_1;\epsilon_0]}^{(i_1)} K \delta^k \left(\frac{s_0}{t} \right)^L \\
= K \frac{\delta^k}{L^{m+i_1+\cdots+i_k}} \leq K \left(\frac{\delta}{L_0} \right)^k,
\]

for some constant \(L_0 \) dependent on \(L \). This is possible since \(i_p \leq m \) for all \(p \).
If $|\alpha_1 + \cdots + \alpha_k| \neq 0$, set the ρ in (3.8) to be equal to $R - \gamma \varphi(t)$. This gives

$$\|F_k(s)\|_{\omega_t} \leq (CD)^k \mu(s_1)^{\alpha_1} \cdots \mu(s_k)^{\alpha_k} \left(\frac{s_0}{t}\right)^L \times |\alpha_1 + \cdots + \alpha_k| ! \left(\frac{e}{\gamma [\varphi(t) - \varphi(s_0)]}\right)^{|\alpha_1 + \cdots + \alpha_k|}. \quad (3.11)$$

By renaming if necessary, assume that for $p = 1, \ldots, q$, we have $|\alpha_p| \neq 0$. Note that $q \geq 1$. We will again use the continuity of $a_{j,0}(t, z)$ to estimate those expressions which are not acted upon by D_z, i.e., the $k - q$ cases when $|\alpha_p| = 0$. Just like before, we can show that for small δ,

$$\|F_k(s)\|_{\omega_t} \leq (CD)^q \delta^{k-q} \mu(s_1)^{\alpha_1} \cdots \mu(s_q)^{\alpha_q} \left(\frac{s_0}{t}\right)^L \times |\alpha_1 + \cdots + \alpha_q| ! \left(\frac{e}{\gamma [\varphi(t) - \varphi(s_0)]}\right)^{|\alpha_1 + \cdots + \alpha_q|}. \quad (3.12)$$

Thus, the integral I can now be estimated as follows:

$$\|I\|_{\omega_t} \leq (CD)^q \delta^{k-q} \left(\frac{e}{\gamma}\right)^{|\alpha_1 + \cdots + \alpha_q|} |\alpha_1 + \cdots + \alpha_q| ! \times \int_{[t:s_1]}^{(m)} \int_{[s_1:s_0]}^{(i_1)} \cdots \int_{[s_k:s_{k-1}]}^{(i_k)} \frac{\mu(s_1)^{\alpha_1} \cdots \mu(s_k)^{\alpha_k}}{[\varphi(t) - \varphi(s_0)]^{\alpha_1 + \cdots + \alpha_k}} \left(\frac{s_0}{t}\right)^L \frac{1}{\xi_0^b} d\xi_0 \cdots d\xi_k \frac{d\xi_1}{\xi_1} \cdots \frac{d\xi_k}{\xi_k} \left(\frac{\xi_0}{t}\right)^L \frac{d\xi_0}{\xi_0} \cdots \frac{d\eta_1}{\eta_1} d\xi_0 \cdots d\xi_k \cdot \quad (3.13)$$

Let $d = m + i_1 + \cdots + i_k$ and $b = |\alpha_1 + \cdots + \alpha_q|$. Note that $b \geq q$. Since for each p, we have $|\alpha_p| \leq m - j_p \leq i_p$, and using the fact that both $\varphi(t)$ and $\mu(t)$ are increasing on $(0, T_0)$, we have

$$\|I\|_{\omega_t} \leq (CD)^q \delta^{k-q} \left(\frac{e}{\gamma}\right)^b b! \times \int_0^t \int_0^{\xi_0} \cdots \int_0^{\eta_d-b-2} \left(\frac{s_0}{\xi_0}\right)^L \frac{d\xi_0}{\xi_0} \cdots \frac{d\eta_1}{\eta_1} \frac{d\xi_1}{\xi_1} \cdots \frac{d\xi_k}{\xi_k} \left(\frac{\xi_0}{s_0}\right)^{L-2} \frac{1}{b!} d\xi_0 \cdots d\xi_k \cdot \quad (3.14)$$

By (a) of Lemma 3, the second integral is equal to L^{-d+b+1}. Thus, the above simplifies into

$$\|I\|_{\omega_t} \leq (CD)^q \delta^{k-q} \left(\frac{e}{\gamma}\right)^b L^{-d+b+1} b! \times \int_0^t \int_0^{\xi_0} \cdots \int_0^{\eta_d-b-2} \left(\frac{s_0}{\xi_0}\right)^L \frac{d\xi_0}{\xi_0} \cdots \frac{d\eta_1}{\eta_1} \frac{d\xi_1}{\xi_1} \cdots \frac{d\xi_k}{\xi_k}. \quad (3.15)$$

The last integral is equal to $(Lb!)^{-1}$, by (b) of Lemma 3. Meanwhile, since $d \leq m(k+1)$, we can find a constant L_1, depending on L, such that $L^{-d} \leq L_1^d$.

Substituting these results into the above equation, we get

\[||I||_{\omega_{t}} \leq K(CD)^{q} \delta^{k-q} \left(\frac{eL}{\gamma} \right)^{b} L_{t}^{k} = K \left(\frac{CD}{\delta} \right)^{q} \delta^{k-q} \left(\frac{eL}{\gamma} \right)^{b}. \]

(3.16)

By taking a sufficiently small \(T_{0} \), we can find a \(\delta \) small enough such that \(\delta L_{1} \) above and \(\delta L_{0}^{-1} \) in (3.10) are both less than \((mJ)^{-1} \). Now, since \(q \leq b \), we can make the remaining expression less than one by choosing a large \(\gamma = \gamma_{0} \).

To summarize, we have shown that if \(T_{0} \) is sufficiently small and \(\gamma_{0} \) is sufficiently large, some constants \(K > 0 \) and \(\delta_{0} < 1 \) exist such that for all \(k \), we have

\[||v_{k}(t)||_{\omega_{t}[\gamma_{0}]} \leq K\delta_{0}^{k} \quad \text{for any } t \in [0, T_{0}]. \]

(3.17)

It follows that the series \(\sum_{k=0}^{\infty} v_{k}(t, z) \) is majorized by a convergent geometric series, and hence is itself convergent in \(C^{0}([0, \tau], \mathcal{A}(\omega_{t}[\gamma_{0}])) \) for all \(\tau \in [0, T_{0}] \). This means that \(v_{k}(t) \) converges uniformly to \(u(t) \) on \(\Omega_{T_{0}}[\gamma_{0}] \).

By following the steps above, we can also show that for \(1 \leq p \leq m-1 \), the sequence \((tD_{t})^{p}u_{k}(t) \) converges uniformly to \((tD_{t})^{p}u(t) \) on \(\Omega_{T_{0}}[\gamma_{0}] \). Thus, it follows that on a compact subset of \(\Omega_{T_{0}}[\gamma_{0}] \), the sequence \(D_{z}^{\alpha}(tD_{t})^{p}u_{k}(t) \) converges to \(D_{z}^{\alpha}(tD_{t})^{p}u(t) \). This implies the convergence of the approximate solutions to the true solution \(u(t) \).

Uniqueness may be proved in a similar manner.

References

