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SINGULARITIES OF THE BERGMAN KERNEL
AND NEWTON POLYHEDRA

JOE KAMIMOTO

(tE L)

1. INTRODUCTION

In this note, we announce a result about the singularity of the Bergman kernel
for pseudoconvex domains of finite type. In the case of some class of pseudoconvex
domains, we show that the growth order of the Bergman kernel at the boundary is
determined by the shape of the Newton polyhedron of the defining function of the
domain and that the boundary limit of the Bergman kernel takes the same value as
that in the case of local model.

2. BACKGROUND AND OUR RESULTS

2.1. Background. Let 2 be a domain in C" and H?(2) the set of the L2-holomorphic
functions on . The Bergman kernel B(z) of  (on the diagonal) is defined by

B(z) = I¢a(2)l,

where {¢o} is a complete orthonomal basis of H2(Q2).

There are many studies about the singularity of the Bergman kernel at the bound-
ary of pseudoconvex domains. Let us recall important results which are deeply
connected with our study. -

'2.1.1. Strictly pseudoconvex case. Assume that ) is a C*°-smoothly bounded strictly
pseudoconvex domain in C*. Hormander [9] and Diederich [3],[4] computed the
boundary limit of the Bergman kernel as follows.

!
(2.1) lim B(2) - d(z — p)"*! = 411? x (Levi determinant at p),
z—p

where d means the distance. Later C. Fefferman [7] obtained the following strong
result of the asymptotic expansion of the Bergman kernel:

(22) B(2) = 22 + v og (),

where p € C°(f2) is the defining function (i.e. Q = {2;p(z) > 0} and |dp| > 0 on
99) and ¢(z) and ¥(2z) are C*°-smooth on Q and ¢(z) is positive on the boundary.
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2.1.2. Semiregular (h-extendible) case. In the weakly pseudoconvex and of finite
type case, although there is not so strong result like asymptotic expansion (2.2),
many precise results have been obtained. In particular the following result due to
Boas-Straube-Yu [2] (see also Diederich-Herbort [6]) is very important. Assume
that € is a bounded pseudoconvex domain in C**! and p € 99 is a boundary point
of semiregular (h-extendible) with the multi-type (1,2my, ... ,2m,) (see [5],{12] for
precise definition). In [2],[6],

(23) i B(2) - d(z ~ 9T V7 = By(),

z€
where A is a nontangential cone, By is the Bergman kernel of local model of  at p
and w is some point in .

Recently the author [10] computed an asymptotic expansion of the Bergman kernel
in the case of tube domains of finite type. Let f be a convex C°-smooth function on
R" such that f(0) = df(0) = 0 and wy the set in R™*! defined by yo+ f(v1,... ,yn) =
Yo+ f(¥') < 0. Let Q¢ be a tube domain defined by 2y = R**!+w;. Assume that the
origin is a point of finite type. This assumption implies that f(y’) has an expression
near the origin: f(y') = P(¥')[1 + h(y')] where P(y’) is a convex polynomial such
that P(t/2my,, ... 1Y%y ) = tP(y1,... ,¥s) (m; € N) and |A(y')| < Co(r)"

where o(7) = 37, 4°™ and C > 0, v € (0, 1] are some numbers. Here we set
j=19j

Ap = {T € R*P(1) < 1},

Ts = {(r,p"™) € Ap x [0,8); P(7)[1 + Cp"o(r)"] < 1}.
Let 0 : wy — Ap x (0, 00) be a mapping defined by o (%0, y1,--- ,¥2) = (11, ... , T, p)
where 7; = —y; - yo 12m5 and p = —yp.

Theorem 2.1 ([10]). The Bergmankernel B(z) of Qs has the form in some small
neighborhood of the origin: '

_ QO(T) p-l/m) 1/m
(2.4) B(z) = TR mgts +%(7,p/™) log p,
with (7, pt/™) € C*(T'5) and ¢(7, p*™) € C®(&p x [0,4)), where § > 0 is a small
number, m is the least common multiple of {m,,... ,mp} and p(7,0) = (1) > 0.

The aymptotic expansions (2.2) and (2.4) have very similar forms and the essential
difference between these asymptotic formulas only appears in the expansion variable,
i.e. (2.2) takes the Taylor type while (2.4) takes the Puiseux type. But Herbort’s
example, below, asserts that an analogous asymptotic formula does not always hold
in general case of finite type.

2.1.3. Herbort’s counterezample. Herbort [8] showed the Bergman kernel of the do-
main:

Qup = {z € C’;R(20) + [21]° + |21]*|22]* + |22]° < 0}
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satisfies the inequalities near the origin on a nontangential cone:

P log(1/p) Blz) < p3log(1/p)’

where ci,cy are positive constants. Note that Qyg is not convex at the origin.
Although Qg is a pseudoconvex domain of finie type, the above inequarities imply
that the logarithmic function appears in the first term of the asymptotic expansion
of its Bergman kernel. From Herbort’s exapmle, it seems difficult to imagin what
kind of pattern of the singularity of the Bergman kernel for general domains of finite

type.

2.2. The Newton polyhedron. Let Ny = NU {0} and R} = [0,00). First let
us recall the definition of the Newton polyhedron of functions on the real space.
Let f : R® — R be a C*°-smooth function in the neighborhood of the origin with
f(0) = 0. Then f(z) has the asymptotic expansion at the origin:

f(:l?) ~ Z Caxa,
aeNg

where z® = 27* ... 22, The Newton polyhedron T (f) is the convex hull of the
union of {a + R%} for a such that ¢, # 0. The Newton diagram I'(f) is the union
of the compact faces of the Newton polyhedron I'y (f). The pricipal part fo(z) of
f(z) is defined by

We generalize these concepts to the case of the function on the complex space.
Let F': C* — R be a C*°-smooth function in the neighborhood of the origin with
F(0) = 0. Then F has the asymptotic expansion at the origin:

F(z) ~ Z Cop2®Z®,

o,BeENg

where z& = 281... 220 38 = 781 ... 3P The Newton polyhedron T, (F) is the convex
hull of the union of {a + 8+ R%} for «, § such that C, g # 0. The Newton diagram

['(F) is the union of the compact faces of the Newton polyhedron T’ +(F). The
principal part Fy(z) of F(z) is defined by

Fo(z) = Z Cop2®7”.
a+Bel(F)
The Newton distance dp is defined by
dp = min{d > 0;(d, ... ,d) € T (F)}.

Set P = {(dr,... ,dr)} € I'(F). Let Ip be the number of the (n — 1)-dimensional
faces on I'(F') containing P. Then define I = min{lr,n}.
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2.3. Boundary limit of the Bergman kernel. Let F be a C*®-smooth plurisub-
harmonic function on C" satisfying that F/(0) = |0VF(0)] = 0. We consider the
domain:
Qr = {(20,2) € C x C*; p = ¥(20) — F(21,...,2,) > 0}.
We assume that 0 € 0Qr is a point of finite type and that
F(e®z,...,e%2,) = F(z,..., )
for 8; € R.

Theorem 2.2. There is some positive constant C(F) such that the Bergman kernel
B of the domain QF satisfies

(2.5) oim Bz, 2) - p**/3r (log(1/p))'r ! = C(F),
(z0,2)EA

where A is a nontangential cone. Moreover if let Fy be a princepal part of F, then
C(F) = C(Fy).
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