NONSTANDARD UNIVERSE

MASAHIKO MURAKAMI DEPARTMENT OF MATHEMATICS HOSEI UNIVERSITY

ABSTRACT. The nonstandard universes are frameworks of nonstandard analysis. We find sheaf representation for a nonstandard universe. in Theorem 3.7.

1. Nonstandard Universe

Definitions 1.1 (superstructure, base set). Given a set X, we define the iterated power set $V_n(X)$ over X recursively by

$$V_0(X) = X$$
, and $V_{n+1}(X) = V_n(X) \cup \mathcal{P}(V_n(X))$.

The superstructure V(X) is the union $\bigcup_{n<\omega} V_n(X)$. The set X is said to be a base set if $\emptyset \notin X$ and each element of X is disjoint from V(X).

Definition 1.2 (nonstandard universe). A nonstandard universe is a triple $\langle V(X), V(Y), \star \rangle$ such that:

- (1) X and Y are infinite base sets.
- (2) (Transfer Principle) The symbol \star is a map from V(X) into V(Y) such that

$$V(X) \models \varphi(a_1, \ldots, a_n)$$
 if and only if $V(Y) \models \varphi({}^{\star}a_1, \ldots, {}^{\star}a_n)$

holds for any bounded formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots,a_n\in V(X)$.

- (3) ${}^{\star}X = Y$.
- (4) For every infinite subset of A of X, $\{ *a \mid a \in A \}$ is a proper subset of *A.

Definitions 1.3 (standard, internal). For $a \in V({}^*X)$, we call a standard if there is an $x \in V(X)$ such that $a = {}^*x$.

For $a \in V({}^*X)$, we call a internal if there is an $x \in V(X)$ such that $a \in {}^*x$. We denote by ${}^*V(X)$ the set of all internal elements in $V({}^*X)$.

From now on, we denote a nonstandard universe by single ${}^*\!V(X)$.

Definitions 1.4 (norm, radius). The norm (of standardness) of an internal element a is a cardinal defined by

$$nos(a) = \min\{|x| \mid a \in {}^\star\!x\}.$$

The radius of ${}^{\star}V(X)$ is a cardinal defined by

$$\operatorname{rad}({}^{\star}\!V(X)) = \min\big\{\kappa \; \big| \; \forall y \in {}^{\star}\!V(X) \; \operatorname{nos}(y) < \kappa\big\}.$$

Date: November 14, 2000.

Definition 1.5 (covering number). Let a be an internal element. The *local ultra-power* at a is defined by

$$V(X)[a] = \{ ({}^{\star}w)(a) \mid w \in V(X) \text{ and } a \in {}^{\star}(\text{dom}(w)) \}.$$

For a subset $E \subseteq {}^{\star}V(X)$, we denote

$$V(X)[E] = \bigcup \{V(X)[s] \mid s \text{ is a finite subset of } E\}.$$

The covering number of ${}^*V(X)$ is defined by

$$cov({}^{\star}V(X)) = \min \big\{ |E| \mid E \subseteq {}^{\star}V(X) \text{ and } V(X)[E] = {}^{\star}V(X) \big\}.$$

2. LOCALLY ATOMIC COMPLETE ALGEBRA

Definition 2.1 (regular complete subalgebra). Let $\langle \mathcal{B}, \wedge, \vee, \neg, \mathbf{0}_{\mathcal{B}}, \mathbf{1}_{\mathcal{B}} \rangle$ be a Boolean algebra. A subset $C \subseteq \mathcal{B}$ is said be a regular complete subalgebra of \mathcal{B} if C is a complete subalgebra of \mathcal{B} and the inclusion map is also complete.

Notation. Let \mathcal{B} be a Boolean algebra. For a subset $S \subseteq \mathcal{P}(\mathcal{B})$, we denote

$$\mathbb{S}^{\diamondsuit} = \{ C \in \mathbb{S} \mid C \text{ is a regular complete subalgebra of } \mathbb{B} \}.$$

Definition 2.2 (LCA). A locally complete algebra (LCA) is a set Λ of subsets of a Boolean algebra \mathcal{B} satisfying the conditions below.

- (1) $\bigcup \Lambda = \mathfrak{B}$.
- (2) If $S_1, S_2 \in \Lambda$ then $S_1 \cup S_2 \in \Lambda$.
- (3) If $S \in \Lambda$ and $T \subseteq S$ then $T \in \Lambda$.
- (4) For every $S \in \Lambda$, there is a $C \in \Lambda^{\Diamond}$ containing S.

For an LCA Λ , we denote by $\mathcal{B}(\Lambda)$ the Boolean algebra $\bigcup \Lambda$. We call the Boolean algebra $\mathcal{B}(\Lambda)$ the base Boolean algebra of Λ .

Definition 2.3 (LACA). An LCA Λ is a locally atomic complete algebra (LACA) if every $C \in \Lambda^{\Diamond}$ is atomic. We denote the set of atoms of $C \in \Lambda^{\Diamond}$ by Atom(C).

Definition 2.4 (homomorphism). We introduce notation $R^{"}S = \{R^{"}S \mid S \in S\}$. Let Λ and Ξ be LCAs. A Boolean homomorphism $f \colon \mathcal{B}(\Lambda) \to \mathcal{B}(\Xi)$ is a pseudo-homomorphism of LCAs if $f^{"}\Lambda \subseteq \Xi$. We denotes a pseudo-homomorphism by $f \colon \Lambda \to \Xi$. A pseudo-homomorphism $h \colon \Lambda \to \Xi$ of LCAs is a (complete) homomorphism if $\bigvee h^{"}S = h(\bigvee S)$ for all $S \in \Lambda$. An embedding or monomorphism $j \colon \Lambda \to \Xi$ is an injective homomorphism.

Definition 2.5 (subLCA). A subLCA of an LCA Λ is a nonempty subset of Λ which is itself an LCA and the inclusion map is an embedding.

Definition 2.6 (generator). Let Λ be an LCA. A subset $\mathcal{G} \subseteq \Lambda^{\Diamond}$ is a generator of Λ or \mathcal{G} generates Λ if Λ is the only subLCA of Λ containing \mathcal{G} .

Definitions 2.7 (radius, covering number, diameter). The radius of an LACA Λ is a cardinal defined by

$$rad(\Lambda) = min \{ \kappa \mid \forall C \in \Lambda^{\Diamond} \mid Atom(C) \mid < \kappa \}$$

The covering number of an LCA Λ is a cardinal defined by

$$cov(\Lambda) = min\{|\mathfrak{G}| \mid \mathfrak{G} \text{ is a generator of } \Lambda\}.$$

The diameter of an LACA Λ is a cardinal defined by

$$\operatorname{diam}(\Lambda) = \min \bigg\{ \sum_{C \in \mathfrak{I}} |\operatorname{Atom}(C)| \ \bigg| \ \mathfrak{I} \text{ is a generator of } \Lambda \bigg\}.$$

Definition 2.8 (direct product). Let I be an index set. The direct product $\Lambda^{[I]}$ of the LCA Λ is defined by:

$$\Lambda^{[I]} = \left\{ S \subseteq \mathcal{B}(\Lambda)^I \; \middle| \; \bigcup_{g \in S} \operatorname{rng} g \in \Lambda
ight\}$$

with the pointwise Boolean operations on $\mathcal{B}(\Lambda^{[I]}) = \bigcup \Lambda^{[I]} \subseteq \mathcal{B}(\Lambda)^I$. Then $\Lambda^{[I]}$ is an LCA. The LCA Λ is embedded into $\Lambda^{[I]}$ by the canonical embedding $b \mapsto I \times \{b\}$.

Definitions 2.9 (embedding system, direct limit). The embedding system of LCAs is a family of embeddings

$$\mathcal{E} = \{j_d^{d'} :: \Lambda_d \to \Lambda_{d'}\}_{d \le d', d, d' \in D}$$

satisfying $j_{d'}^{d''} \circ j_{d}^{d'} = j_{d}^{d''}$ for all $d \leq d' \leq d''$, where D is an upper direct set. The direct limit of \mathcal{E} is $\bigcup \{j_{d} \text{```} \Lambda_{d} \mid d \in D\}$ where $\{j_{d} \colon \mathcal{B}(\Lambda_{d}) \to \mathcal{B}\}_{d \in D}$ is the direct limit of $\{j_{d}^{d'} \colon \mathcal{B}(\Lambda_{d}) \to \mathcal{B}(\Lambda_{d'})\}_{d \leq d', d, d' \in D}$ as Boolean algebras.

Definition 2.10 (ultrafilter). Let Λ be an LCA. A subset \mathcal{U} of $\mathcal{B}(\Lambda)$ is an ultrafilter of an LCA Λ if it is an ultrafilter of the base Boolean algebra $\mathcal{B}(\Lambda)$.

3. Ultralimit

Definition 3.1 (LACA-valued model). Let Λ be an LACA and let M be a model for a language \mathcal{L} . The $\mathcal{B}(\Lambda)$ -valued universe of M is defined by

$$M^{\langle\!\langle \Lambda \rangle\!\rangle} = \left\{ u \colon M \to \mathcal{B}(\Lambda) \; \middle| \; egin{array}{l} u(x) \wedge u(y) = \mathbf{0} \; \mathrm{for} \; x
eq y, \ \mathrm{rng} \, u \in \Lambda, \; \bigvee \mathrm{rng} \, u = \mathbf{1} \end{array}
ight\}.$$

For $u \in M^{\langle \! \langle \Lambda \rangle \! \rangle}$, the *support* of u is a subset of M defined by

$$\operatorname{supp} u = \{x \in M \mid u(x) \neq \mathbf{0}\}.$$

To each function F of $\mathcal{L}(M)$ and each $u_1, \ldots, u_n \in M^{\langle \Lambda \rangle}$, we assign a $\check{F}(u_1, \ldots, u_n) \in M^{\langle \Lambda \rangle}$ by:

$$\check{F}(u_1,\ldots,u_n)(y) = \bigvee \left\{ \bigwedge_{i=1}^n u_i(x_i) \mid M \models y = F(x_1,\ldots,x_n) \right\} \quad \text{for } y \in M.$$

We regard a constant of $\mathcal{L}(M)$ as a function without any variables. Note that $\bigwedge_{i=1}^n u_i(x_i) = 1$ if n = 0. To each sentence φ of $\mathcal{L}(M^{\langle \Lambda \rangle})$ we assign a truth value $[\![\varphi]\!] \in \overline{\mathcal{B}(\Lambda)}$ by following recursive rules:

where R is any predicate in \mathcal{L} .

Definition 3.2 (LACA-valued superstructure). Let Λ be an LACA. The Λ -valued superstructure of V(X) is defined by

$$\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} = \{ u \in V(X)^{\langle\!\langle \Lambda \rangle\!\rangle} \mid \operatorname{supp} u \in V(X) \}.$$

While the truth values range over $\overline{\mathcal{B}(\Lambda)}$ on this definition, we shall see $[\![\varphi]\!]_{\Lambda} \in \mathcal{B}(\Lambda)$.

Theorem 3.1. Let $\varphi(x_1,\ldots,x_r)$ be a formula of \mathcal{L} with only x_1,\ldots,x_r free. For $u_1,\ldots,u_r\in M^{\langle\!\langle\Lambda\rangle\!\rangle}$,

Proof. For φ either " $x_1 = x_2$ " or \mathbf{R} , (*) holds by definition. If (*) holds for an atomic formula $\varphi(x)$ then, by simple calculus of Boolean algebra, (*) holds for $\varphi(\mathbf{F}(x_1,\ldots,x_n))$. Thus, by induction, (*) holds for φ atomic. Suppose (*) holds for φ , φ_1 and φ_2 . Since there is an atomic $C \in \Lambda^{\Diamond}$ containing all the ranges of u_1,\ldots,u_r and every range of u_i is a partition of unity except for $\mathbf{0}$,

$$\llbracket \neg \varphi
\rrbracket_{\Lambda} = \bigvee \left\{ \bigwedge_{i=1}^r u_i(x_i) \mid \mathfrak{M} \models \neg \varphi(x_1, \ldots, x_r) \right\}.$$

It is easy to see:

$$\llbracket \varphi_1 \vee \varphi_2 \rrbracket_{\Lambda} = \bigvee \left\{ \bigwedge_{i=1}^r u_i(x_i) \mid \mathfrak{M} \models \varphi_1(x_1, \ldots, x_r) \vee \varphi_2(x_1, \ldots, x_r) \right\}.$$

Since $\llbracket \varphi(u) \rrbracket_{\Lambda} = \bigvee_{x \in M} (u(x) \wedge \llbracket \varphi(\check{x}) \rrbracket_{\Lambda})$, we have $\llbracket \exists x \ \varphi(x) \rrbracket_{\Lambda} = \bigvee_{x \in M} \llbracket \varphi(\check{x}) \rrbracket_{\Lambda}$.

Similarly, we shall obtain the superstructure version.

Corollary 3.2. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L}_{\in} with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$,

$$\llbracket \varphi(u_1,\ldots,u_r)
bracket_{\Lambda} = \bigvee \left\{ \bigwedge_{i=1}^r u_i(x_i) \mid V(X) \models \varphi(x_1,\ldots,x_r) \right\}.$$

By the theorem and the corollary above, we have a fundamental property $\llbracket u=v \rrbracket \wedge \llbracket \varphi(u) \rrbracket \leq \llbracket \varphi(v) \rrbracket$. We have just introduced $\mathcal{B}(\Lambda)$ -valued model $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle} = \langle M^{\langle\!\langle \Lambda \rangle\!\rangle}, \check{R}, \check{F}, \check{c} \rangle$ and $\mathcal{B}(\Lambda)$ -valued superstructure $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$. We say that a sentence φ of $\mathcal{L}(M^{\langle\!\langle \Lambda \rangle\!\rangle})$ holds in $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}$ if $\llbracket \varphi \rrbracket_{\Lambda} = 1$ and that a sentence ψ of $\mathcal{L}_{\in}(\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle})$ holds in $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ if $\llbracket \psi \rrbracket_{\Lambda} = 1$. Theorem 3.1 and Corollary 3.2 follow that we consider the values u(x) only for $x \in \text{supp } u$. For $E \subseteq M$, we may regard $E^{\langle\!\langle \Lambda \rangle\!\rangle}$ as a subset of $M^{\langle\!\langle \Lambda \rangle\!\rangle}$ by extending the domain of $u \in E^{\langle\!\langle \Lambda \rangle\!\rangle}$ to M. This means that we define for $u \in E^{\langle\!\langle \Lambda \rangle\!\rangle}$

$$u(x) = 0$$
 if $x \notin E$.

In the superstructure version, if E is a set relative to V(X) then we may assume

$$E^{\langle\!\langle \Lambda \rangle\!\rangle} = \{ u \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} \mid u \in \check{E} \text{ holds in } \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} \}.$$

Theorem 3.3 (Maximum principle). Let $\varphi(x)$ be a formula of $\mathcal{L}(M^{\langle\!\langle \Lambda \rangle\!\rangle})$ with only x free. Then there is $u \in M^{\langle\!\langle \Lambda \rangle\!\rangle}$ such that $[\![\varphi(u)]\!]_{\Lambda} = [\![\exists x \ \varphi(x)]\!]_{\Lambda}$.

Proof. Let $\{a_\zeta\}_{\zeta<\alpha}$ be a well-ordering for M. By theorem 3.1, there is $C\in\Lambda^{\Diamond}$ containing $\{\llbracket\varphi(\check{x})\rrbracket\mid x\in M\}$. Putting $b_\zeta=\llbracket\varphi(\check{a_\zeta})\rrbracket\wedge\neg\bigvee_{\xi<\zeta}\llbracket\varphi(\check{a_\xi})\rrbracket$, we have $\{b_\zeta\}_{\zeta<\alpha}\subseteq C$. Since $\{b_\zeta\}_{\zeta<\alpha}$ is a pairwise disjoint family, we can pick $u\in M^{\langle C\rangle}$ with $u(a_\zeta)\geq b_\zeta$. Then $\llbracket\varphi(u)\rrbracket\geq u(a_\zeta)\wedge\llbracket\varphi(\check{a_\zeta})\rrbracket\geq b_\zeta$ for any $\zeta<\alpha$. Since $\llbracket\exists x\;\varphi(x)\rrbracket=\bigvee_{\zeta<\alpha}\varphi(\check{a_\zeta})=\bigvee_{\zeta<\alpha}b_\zeta$, we have $\llbracket\varphi(u)\rrbracket\geq \llbracket\exists x\;\varphi(x)\rrbracket$.

Corollary 3.4. Let $\varphi(x)$ be a formula of $\mathcal{L}_{\in}(\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle})$ with only x free and let v be an element of $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$. Then there is $u \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ such that $[\![u \in v \land \varphi(u)]\!]_{\Lambda} = [\![\exists x \in v \ \varphi(x)]\!]_{\Lambda}$.

Proof. Since there is n such that supp $v \subseteq V_{n+1}(X)$,

$$\lbrack\!\lbrack\check{x}\in v\rbrack\!\rbrack = \bigvee \{v(y) \mid x\in y\in \operatorname{supp} v\} = \mathbf{0} \quad \text{ for } x\not\in V_n(X).$$

Therefore we can choose u whose support is a subset of $V_n(X)$.

Definition 3.3 (ultralimit). We denote by u/\mathcal{U} the equivalence class of $u \in M^{\langle \Lambda \rangle}$ by the equivalence relation

$$x \sim_{\mathcal{U}} y \equiv [x = y]_{\Lambda} \in \mathcal{U}.$$

The ultralimit $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathfrak{U}$ of \mathfrak{M} modulo \mathfrak{U} of Λ is defined by:

$$M^{\langle\!\langle A \rangle\!\rangle}/\mathfrak{U} = ig\{ u/\mathfrak{U} \ ig| \ u \in M^{\langle\!\langle \Lambda \rangle\!\rangle} ig\}.$$
 $\check{F}/\mathfrak{U}(u_1/\mathfrak{U}, \ldots, u_n/\mathfrak{U}) = ig(\check{F}(u_1, \ldots, u_n)ig)/\mathfrak{U}.$
 $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathfrak{U} \models \mathbf{R}(u_1/\mathfrak{U}, \ldots, u_m/\mathfrak{U}) \quad \text{iff} \quad \llbracket \mathbf{R}(u_1, \ldots, u_m)
rbracket \in \mathfrak{U}.$

Definition 3.4 (bounded ultralimit). We denote by u/\mathcal{U} the equivalence class of $u \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ by the equivalence relation

$$x \sim_{\mathcal{U}} y \equiv [x = y]_{\Lambda} \in \mathcal{U}.$$

The bounded ultralimit $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$ of V(X) modulo \mathcal{U} of Λ is defined by:

$$\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} = \big\{ u/\mathcal{U} \bigm| u \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} \big\},$$

$$\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \models u/\mathcal{U} \in v/\mathcal{U} \quad \text{iff} \quad \llbracket u \in v \rrbracket \in \mathcal{U}.$$

Theorem 3.5 (Loś Principle of Ultralimits). Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L} with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in M^{\langle \Lambda \rangle}$,

$$\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathfrak{U} \models \varphi(u_1/\mathfrak{U}, \dots, u_r/\mathfrak{U}) \quad \textit{iff} \quad \llbracket \varphi(u_1, \dots, u_r) \rrbracket \in \mathfrak{U}.$$

Proof. The proof proceeds by induction on the complexity of formulae. The only nontrivial step is the case where φ is of the form $\exists x \psi(x)$. Suppose $[\exists x \psi(x)] \in \mathcal{U}$. By the maximal principle (Theorem 3.3), there is u satisfying $[\![\psi(u)]\!] = [\![\exists x \psi(x)]\!]$. Then $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle} \models \psi(u/\mathcal{U})$ by the induction assumption. We have thus $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle} \models \exists x \psi(x)$. Conversely, suppose $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle} \models \exists x \psi(x)$. Then there is some u such that $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle} \models \psi(u/\mathcal{U})$. By the induction assumption, $[\![\exists x \psi(x)]\!] \geq [\![\psi(u/\mathcal{U})]\!] \in \mathcal{U}$.

Corollary 3.6 (Łoś-Mostowski Principle of Bounded Ultralimits).

Let $\varphi(x_1,\ldots,x_r)$ be a Δ_0 -formula of \mathcal{L}_{\in} with only x_1,\ldots,x_r free. For $u_1,\ldots,u_r\in \widehat{V}(X)^{\langle\!\langle \Lambda\rangle\!\rangle}$,

$$\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \models arphi(u_1/\mathcal{U},\ldots,u_r/\mathcal{U}) \quad \textit{iff} \quad \llbracket arphi(u_1,\ldots,u_r)
rbracket \in \mathcal{U}.$$

Proof. The proof is similar to that of Theorem 3.5. The only different part is the if-part of the case where φ is of the form $\exists x \in y \ \psi(x)$. Suppose $[\![\exists x \in u_k \ \psi(x)]\!] \in \mathcal{U}$. It follows from Corollary 3.4 that there is $u \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ satisfying $[\![u \in u_k \land \psi(u)]\!] = [\![\exists x \in u_k \ \psi(x)]\!]$.

A bounded ultralimit is a pre-nonstandard universe: that satisfies (1),(2) and (3) of Definition 1.2 with Mostowski collapsing.

Definition 3.5 (atlas). An atlas is a pair $\langle \Lambda, \mathcal{U} \rangle$ of an LACA Λ and an ultrafilter of Λ such that $\operatorname{rad}(\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}) = \operatorname{rad}(\Lambda)$ and $\operatorname{cov}(\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}) = \operatorname{cov}(\Lambda)$.

Theorem 3.7 (Sheaf representation Theorem for Nonstandard Universes). For any nonstandard universe ${}^*V(X)$, there is an atlas $\langle \Lambda, \mathcal{U} \rangle$ such that $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U}$ isomorphic to ${}^*V(X)$.

We prove the theorem in the next section.

4. LOCAL ULTRALIMITS

We shall see that a homomorphism of LACAs induces an elementary embedding of ultralimits and a bounded elementary embedding of bounded ultralimits. Let $h: \Lambda \to \Xi$ be a homomorphism. The *induced map* $h_*: \mathfrak{M}^{\langle \Lambda \rangle} \to \mathfrak{M}^{\langle \Xi \rangle}$ is defined by $h_*(u) = h \circ u$. Then we have the lemma below.

Lemma 4.1. Let $\varphi(x_1,\ldots,x_r)$ be a formula of \mathcal{L} with only x_1,\ldots,x_r free. For $u_1,\ldots,u_r\in M^{\langle\!\langle\Lambda\rangle\!\rangle}$

$$\llbracket \varphi(h_*(u_1), \dots, h_*(u_r)) \rrbracket_{\Xi} = h(\llbracket \varphi(u_1, \dots, u_r) \rrbracket_{\Lambda}).$$

Proof. There is $C \in \Lambda^{\Diamond}$ containing all the ranges of u_k . Since $h \upharpoonright C$ is complete, we have from Theorem 3.1

$$\bigvee \left\{ \bigwedge_{i=1}^r h(u_i(x_i)) \middle| \mathfrak{M} \models \varphi(x_1, \dots, x_r) \right\} = h(\bigvee \left\{ \bigwedge_{i=1}^r u_i(x_i) \middle| \mathfrak{M} \models \varphi(x_1, \dots, x_r) \right\}$$
$$\llbracket \varphi(h_*(u_1), \dots, h_*(u_r)) \rrbracket_{\Xi} = h(\llbracket \varphi(u_1, \dots, u_r) \rrbracket_{\Lambda}).$$

We have thus proved the lemma.

For $u \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$, since $\operatorname{supp}(h \circ u) \subseteq \operatorname{supp} u$, we can define the *induced map* $h_* \colon \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} \to \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ similarly.

Corollary 4.2. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L}_{\in} with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$

$$[\![\varphi(h_*(u_1),\ldots,h_*(u_r))]\!]_{\Xi} = h([\![\varphi(u_1,\ldots,u_r)]\!]_{\Lambda}).$$

Proof. Using Corollary 3.2, we see the proof is similar to that of Lemma 4.1. \Box

Let \mathcal{U} and \mathcal{V} be ultrafilters of Λ and Ξ , respectively. Suppose h^{-1} " $\mathcal{V} = \mathcal{U}$. Then we have from Lemma 4.1 or from Corollary 4.2

$$\llbracket u=u'
rbracket_{\Lambda}\in\mathcal{U}\quad ext{iff}\quad \llbracket h_*(u)=h_*(u')
rbracket_{\Xi}\in\mathcal{V}.$$

Therefore we can define the injection $h_*: M^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \to M^{\langle\!\langle \Xi \rangle\!\rangle}/\mathcal{V}$, denoted by same h_* , by $h_*(u/\mathcal{U}) = h_*(u)/\mathcal{V}$. Since supp $h_*(u) \subseteq \text{supp } u$, we can define the injection $h_*: \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \to \widehat{V}(X)^{\langle\!\langle \Xi \rangle\!\rangle}/\mathcal{V}$ similarly.

Lemma 4.3. The injection h_* is an elementary embedding of $M^{\langle \Lambda \rangle}/U$ into $M^{\langle \Xi \rangle}/V$.

Proof. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L} with only x_1, \ldots, x_r free. From Theorem 3.5, we have for $u_1, \ldots, u_r \in M^{\langle \! \langle \Lambda \rangle \! \rangle}$

$$\begin{split} h(\llbracket \varphi(u_1,\ldots,u_r) \rrbracket_{\Lambda}) \in \mathcal{V} & \text{ iff } & \llbracket \varphi(u_1,\ldots,u_r) \rrbracket_{\Lambda} \in h^{-1} \mathcal{V} \\ \llbracket \varphi(h_*(u_1),\ldots,h_*(u_r)) \rrbracket_\Xi \in \mathcal{V} & \text{ iff } & \llbracket \varphi(u_1,\ldots,u_r) \rrbracket_{\Lambda} \in \mathcal{U} \\ \mathfrak{M}^{\langle\!\langle \Xi \rangle\!\rangle}/\mathcal{V} \models \varphi(h_*(u_1/\mathcal{U}),\ldots,h_*(u_r/\mathcal{U})) & \text{ iff } & \mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \models \varphi(u_1,\ldots,u_r). \end{split}$$

Corollary 4.4. The injection h_* is a bounded elementary embedding of $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/U$ into $\widehat{V}(X)^{\langle\!\langle \Xi \rangle\!\rangle}/V$.

Proof. Using Corollary 3.6, we see the proof is similar to that of Lemma 4.3. \Box

Let I be a set relative to V(X). We shall find a one-to-one correspondence between $\mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$ and $\mathcal{B}(\Lambda^{[I]})$. Note that $\mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$ is the set of "the subsets of \check{I} in $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ ". For $A \in \mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$, there is $C \in \Lambda^{\Diamond}$ such that $\operatorname{rng} A \subseteq C$. Define $g \colon I \to \mathcal{B}(\Lambda)$ by $g(i) = [\check{i} \in A]_{\Lambda}$. Then we have $\operatorname{rng} g \subseteq C$ and $g \in \mathcal{B}(\Lambda^{[I]})$. Conversely, for $g \in \mathcal{B}(\Lambda^{[I]})$, there is $C \in \Lambda^{\Diamond}$ such that $\operatorname{rng} g \subseteq C$. Define $A \colon \mathcal{P}(I) \to C$ by

$$A(x) = \bigwedge_{i \in I} \operatorname{sg}_x ig(i, g(i)ig), \quad ext{where } \operatorname{sg}_x(i, b) = egin{cases} b & ext{if } i \in x, \
eg b & ext{if } i \in I \setminus x. \end{cases}$$

Since C is completely distributive, we have $A \in \mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$. Suppose $g(i) = [\![\check{i} \in A]\!]_{\Lambda}$ and $g'(i) = [\![\check{i} \in A']\!]_{\Lambda}$. Then we see $(g \wedge g')(i) = [\![\check{i} \in A \cap A']\!]_{\Lambda}$ and $(\neg g)(i) = [\![\check{i} \in \check{I} \setminus A]\!]_{\Lambda}$. In the context above, the relation $g(i) = [\![\check{i} \in A]\!]_{\Lambda}$ sets up a one-to-one correspondence between $\mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$ and $\mathcal{B}(\Lambda^{[I]})$ as Boolean algebras. From now on, we identify $\mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$ with $\mathcal{B}(\Lambda^{[I]})$.

We shall define the special element $\boldsymbol{\delta} \in I^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle} \subseteq \widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}$ by

$$\delta(x)(i) = \begin{cases} 1 & \text{if } x = i, \\ 0 & \text{if } x \neq i. \end{cases}$$

We call the δ diagonal element of I on Λ . Let $j:: \Lambda \to \Lambda^{[I]}$ be the canonical embedding. Then j is also a Boolean monomorphism of $\mathcal{B}(\Lambda)$ into $\mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$. The diagonal element δ has following properties.

Lemma 4.5. The following statements hold.

- $(1) \ \ \llbracket j(b) = \check{I} \rrbracket_{\Lambda} = b \quad \text{ for every } b \in \mathfrak{B}(\Lambda).$
- (2) $\llbracket \delta \in j_*(g) \rrbracket_{\Lambda^{[I]}} = g$ for every $g \in \mathcal{P}(I)^{\langle \! \langle \Lambda \rangle \! \rangle}$.

Proof. Since $[\![\check{i} \in j(b)]\!]_{\Lambda} = j(b)(i) = b$ for all $i \in I$, $[\![j(b) = \check{I}]\!]_{\Lambda} = [\![j(b) \supseteq \check{I}]\!]_{\Lambda} = \Lambda_{i \in I} [\![\check{i} \in j(b)]\!] = b$. From the definition of δ , it is clear that $[\![\delta = \check{i}]\!]_{\Lambda^{[I]}}(i) = \delta(i)(i) = 1$. Then we have $[\![\delta \in j_*(g)]\!]_{\Lambda^{[I]}}(i) = [\![\check{i} \in j_*(g)]\!]_{\Lambda^{[I]}}(i) = [\![\check{i} \in g]\!]_{\Lambda} = g(i)$.

Theorem 4.6. For any $v \in \widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}$, there is a map $w \colon \check{I} \to (\operatorname{supp} v)^{\checkmark}$ in $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$ such that $v = j_*(w)(\delta)$ holds in $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$.

Proof. Since $\operatorname{rng} v \in \Lambda^{[I]}$, $\bigcup_{g \in \operatorname{rng} v} \operatorname{rng} g \in \Lambda$. Therefore we can define $w \colon (\operatorname{supp} v)^I \to \mathfrak{B}(\Lambda)$ by

$$w(s) = \bigwedge_{i \in I} v(s(i))(i).$$

Then we get w as required. First, we show $w \in \widehat{V}(X)^{\langle (\Lambda) \rangle}$. If $s \neq s'$, then there is $i_0 \in I$ such that $s(i_0) \neq s'(i_0)$. Since rng v is pairwise disjoint, we have

$$w(s) \wedge w(s') \leq v(s(i_0))(i_0) \wedge v(s'(i_0))(i_0) = \mathbf{0}.$$

There is $C \in \Lambda^{\Diamond}$ such that $\bigcup_{g \in \operatorname{rng} v} \operatorname{rng} g \subseteq C$. Then we have $\operatorname{rng} w \subseteq C$ and then

$$\bigvee_{s \in (\operatorname{supp} v)^I} w(s) = \bigvee_{s \in (\operatorname{supp} v)^I} \bigwedge_{i \in I} v\big(s(i)\big)(i) = \bigwedge_{i \in I} \bigvee_{y \in \operatorname{supp} v} v\big(y\big)(i) = \mathbf{1}.$$

We have thus shown $w \in \widehat{V}(X)^{\langle \! \langle \Lambda \rangle \! \rangle}$. For each $i \in I$, since $w(s) \leq v(s(i))(i)$ holds for every $s \in (\text{supp } v)^I$, we have

$$\begin{split} \llbracket v &= j_*(w)(\boldsymbol{\delta}) \rrbracket_{\Lambda^{[I]}}(i) = \llbracket v &= j_*(w)(\check{i}) \rrbracket_{\Lambda^{[I]}}(i) \\ &= \left(\bigvee \left\{ v(y) \wedge j(w(s)) \wedge \check{i}(x) \mid y = s(x) \right\} \right) (i) \\ &= \bigvee_{s \in (\text{supp } v)^I} \left(v(s(i))(i) \wedge w(s) \right) \\ &= \bigvee_{s \in (\text{supp } v)^I} w(s) = \mathbf{1}. \end{split}$$

We have thus proved the theorem.

Let \mathcal{U} be an ultrafilter of an LACA Λ . A local ultralimit $\rho: \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \to {}^*\!V(X)$ is a bounded elementary embedding satisfying $\rho(\check{x}/\mathcal{U}) = {}^*\!x$ for every $x \in V(X)$.

Theorem 4.7 (Local Ultralimit Theorem). Let $\rho: \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathcal{U} \to {}^*\!V(X)$ be a local ultralimit and let p be an internal element of ${}^*\!V(X)$. Then there is a local ultralimit $\tau: \widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}/\mathcal{V} \to {}^*\!V(X)$ such that the following conditions hold.

- (i) The index set I is a set relative to V(X) and |I| = nos(p).
- (ii) Let $j:: \Lambda \to \Lambda^{[I]}$ be the canonical embedding. Then $\mathcal{U} = j^{-1}$ " \mathcal{V} and $\rho = \tau \circ j_*$.
- (iii) The submodel rng τ of *V(X) is the minimal bounded elementary submodel of *V(X) that contains $\{p\} \cup \operatorname{rng} \rho$.

Proof. Let I be a set relative to V(X) such that $p \in {}^{\star}I$ and $|I| = \log(p)$. We have identified $\mathcal{B}(\Lambda^{[I]})$ with $\mathcal{P}(I)^{\langle\!\langle \Lambda \rangle\!\rangle}$. Define $\mathcal{V} \subseteq \mathcal{B}(\Lambda^{[I]})$ by

$$g \in \mathcal{V}$$
 iff $p \in \rho(g/\mathcal{U})$.

Then \mathcal{V} is an ultrafilter of $\Lambda^{[I]}$. Let b be an element of \mathcal{U} . From (1) of Lemma 4.5, $\rho(j(b)/\mathcal{U})$ coincides *I . Then we have $j(b) \in \mathcal{V}$ from the definition of \mathcal{V} . Since \mathcal{U} and \mathcal{V} are maximal filters, we obtain j^{-1} " $\mathcal{V} = \mathcal{U}$. Let $\varphi(x_1, \ldots, x_r)$ be a Δ_0 -formula of \mathcal{L}_{\in} with only x_1, \ldots, x_r free. Let v_1, \ldots, v_r be elements of $\widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}$. By Theorem 4.6, there are maps w_1, \ldots, w_r from \check{I} in $\widehat{V}(X)^{\langle\!\langle \Lambda^{\rangle} \rangle\!\rangle}$ such that $v_k = j_*(w_k)(\delta)$ hold, where δ is the diagonal element of I on Λ . Putting $g_0 = \{i \in \check{I} \mid \varphi(w_1(i), \ldots, w_r(i))\}$ in $\widehat{V}(X)^{\langle\!\langle \Lambda^{\rangle} \rangle\!\rangle}$, we have from (2) of Lemma 4.5

$$\begin{split} g_0 &= \llbracket \boldsymbol{\delta} \in j_*(g_0) \rrbracket_{\Lambda^{[I]}} \\ &= \llbracket \boldsymbol{\delta} \in j_* \big(\{i \in \check{I} \mid \varphi(w_1(i), \dots, w_r(i)) \} \big) \rrbracket_{\Lambda^{[I]}} \\ &= \llbracket \boldsymbol{\delta} \in \{i \in \check{I} \mid \varphi(j_*(w_1)(i), \dots, j_*(w_r)(i)) \} \rrbracket_{\Lambda^{[I]}} \\ &= \llbracket \varphi(j_*(w_1)(\boldsymbol{\delta}), \dots, j_*(w_r)(\boldsymbol{\delta})) \rrbracket_{\Lambda^{[I]}} \\ &= \llbracket \varphi(v_1, \dots, v_r) \rrbracket_{\Lambda^{[I]}} \end{split}$$

and we have

$$\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle} / \mathcal{U} \models g_0 / \mathcal{U} = \{ i \in \check{I} / \mathcal{U} \mid \varphi((w_1 / \mathcal{U})(i), \dots, (w_r / \mathcal{U})(i)) \}$$

$$\rho(g_0 / \mathcal{U}) = \{ i \in {}^{\star}I \mid \varphi(\rho(w_1 / \mathcal{U})(i), \dots, \rho(w_r / \mathcal{U})(i)) \}.$$

By the definition of V, we obtain

$$g_0 \in \mathcal{V} \quad ext{iff} \quad p \in
ho(g_0/\mathcal{U})$$

$$\llbracket arphi(v_1, \ldots, v_r)
rbracket_{\Lambda^{[I]}} \in \mathcal{V} \quad ext{iff} \quad arphi(
ho(w_1/\mathcal{U})(p), \ldots,
ho(w_r/\mathcal{U})(p)).$$

The case $\varphi(x_1, x_2) \equiv "x_1 = x_2"$ enables us to define the operation $v/V \mapsto \rho(w/U)(p)$ where $v = j_*(w)(\delta)$ holds in $\widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}$. Thus, defining $\tau \colon \widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}/V \to {}^*V(X)$ by $\tau(v/V) = \rho(w/U)(p)$ where $v = j_*(w)(\delta)$ holds in $\widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}$, we get τ as required. In fact, it is clear in the preceding context that τ is an bounded elementary embedding of $\widehat{V}(X)^{\langle\!\langle \Lambda^{[I]} \rangle\!\rangle}/V$ into ${}^*V(X)$. Let ι be the identity map on I, then we see $\tau(j_*(i/U)(\delta/V)) = \rho(i/U)(p) = {}^*\iota(p) = p$. For $u/U \in \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/U$, let \widetilde{u} be the constant map from I onto $\{u\}$ in $\widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}$, then we have $\tau(j_*(u/U)) = \rho(\widetilde{u}/U)(p) = \rho(u/U)$. Suppose a bounded elementary submodel V of V ontains V contains V on the definition of V, V on the definition of V of V on the V of V on the definition of V of V on the definition of V on the definition of V of V on the definition of V of V on the V of V on the V of V on the definition of V on the V on the V of V on the V on the V of V on the V of V on the V of V on the V o

Let $\{j_d^{d'}: \Lambda_d \to \Lambda_{d'}\}_{d \leq d',d,d' \in D}$ be an embedding system of LACAs with direct limit $\{j_d: \Lambda_d \to \Lambda\}_{d \in D}$. Let \mathcal{U} be an ultrafilter of Λ , then each $\mathcal{U}_d = j_d^{-1}$ \mathcal{U} is an ultrafilter of Λ_d .

Theorem 4.8 (Elementary Net Theorem of Ultralimits). Let \mathfrak{M} and \mathfrak{N} be models for \mathcal{L} . Suppose there are elementary embeddings $\tau_d : \mathfrak{M}^{\langle \Lambda_d \rangle}/\mathfrak{U}_d \to \mathfrak{N}$ satisfying the condition $\tau_d = \tau_{d'} \circ j_{d_*}^{d'}$ for $d \leq d'$. Then there is an elementary embedding $\tau : \mathfrak{M}^{\langle \Lambda \rangle}/\mathfrak{U} \to \mathfrak{N}$ such that $\tau_d = \tau \circ j_{d_*}$ for $d \in D$.

Proof. Let v be an element of $\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}$. Since $\operatorname{rng} v \in \Lambda = \{j_d \text{``} S \mid d \in D \text{ and } S \in \Lambda_d\}$ from the definition of direct limits, there is $u \in \mathfrak{M}^{\langle\!\langle \Lambda_d \rangle\!\rangle}$ such that $v = j_{d_*}(u)$. Therefore defining $\tau(v/\mathcal{U}) = \tau_d(u/\mathcal{U}_d)$ where $v = j_{d_*}(u)$, we get τ as required. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L} with only x_1, \ldots, x_r free and let v_1, \ldots, v_r be elements $M^{\langle\!\langle \Lambda_d \rangle\!\rangle}$. Then there are $d \in D$ and $u_1, \ldots, u_r \in M^{\langle\!\langle \Lambda_d \rangle\!\rangle}$ such that $v_k = j_{d_*}(u_k)$. We conclude as below.

$$\mathfrak{M}^{\langle\!\langle \Lambda_d \rangle\!\rangle}/\mathfrak{U}_d \models \varphi(u_1/\mathfrak{U}_d, \dots, u_r/\mathfrak{U}_d) \quad \text{iff} \quad \mathfrak{N} \models \varphi(\tau_d(u_1/\mathfrak{U}), \dots, \tau_d(u_r/\mathfrak{U}))$$
$$\mathfrak{M}^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathfrak{U} \models \varphi(v_1/\mathfrak{U}, \dots, v_r/\mathfrak{U}) \quad \text{iff} \quad \mathfrak{N} \models \varphi(\tau(v_1/\mathfrak{U}), \dots, \tau(v_r/\mathfrak{U})).$$

Theorem 4.9 (Bounded Elementary Net Theorem of Bounded Ultralimits). Suppose there are local ultralimits $\tau_d \colon \widehat{V}(X)^{\langle\!\langle \Lambda_d \rangle\!\rangle}/\mathfrak{U}_d \to {}^*\!V(X)$ satisfying the condition $\tau_d = \tau_{d'} \circ j_{d'}^{d'}$ for $d \leq d'$. Then there is a local ultralimit $\tau \colon \widehat{V}(X)^{\langle\!\langle \Lambda \rangle\!\rangle}/\mathfrak{U} \to {}^*\!V(X)$ such that $\tau_d = \tau \circ j_{d*}$ for $d \in D$.

Proof. Similar to the proof of Theorem 4.8.

We call the pair $\langle \Lambda, \mathcal{U} \rangle$ in Theorem 4.8 or Theorem 4.7 the *direct limit* of $\{\langle \Lambda_d, \mathcal{U}_d \rangle\}_{d < d', d, d' \in D}$.

Proof of Theorem 3.7 Let $\{p_{\zeta}\}_{{\zeta}<\kappa}$ be a sequence in ${}^*\!V(X)$ with $\kappa=\operatorname{cov}({}^*\!V(X))$. We define local ultralimits $\{\rho_{\zeta}\colon \widehat{V}^{\langle\!\langle \Lambda_{\zeta}\rangle\!\rangle}/\mathfrak{U}_{\zeta}\to {}^*\!V(X)\}_{{\zeta}<\kappa}$ of ${}^*\!V(X)$ by:

$$\Lambda_0 = \mathcal{P}(\{0,1\}), \, \mathcal{U}_0 = \{1\}.$$

 $\Lambda_{\zeta+1} = \Lambda^{[I_{\zeta}]}$, where $|I_{\zeta}| = \cos(p_{\zeta})$, $p_{\zeta} \in \operatorname{rng} \rho_{\zeta+1}$ in Theorem 4.7.

 $\langle \Lambda_{\lambda}, \mathfrak{U}_{\lambda} \rangle \text{ is the direct limit of } \{ \langle \Lambda_{\zeta}, \mathfrak{U}_{\zeta} \rangle_{\zeta < \lambda} \} \quad \text{in Theorem 4.9}.$

Then the direct limit $\langle \Lambda, \mathfrak{U} \rangle$ of $\{\langle \Lambda_{\zeta}, \mathfrak{U}_{\zeta} \rangle\}_{\zeta < \kappa}$ is an atlas of ${}^{\star}V(X)$.

REFERENCES

- [1] C. CHANG and J. KEISLER, *Model Theory*, 3rd ed, North-Holland, Amsterdam, (1990).
- [2] R. MANSFIELD, The theory of Boolean ultrapowers, Ann. Math. Logic, 2 (1971) 297-323.
- [3] M. OZAWA, Forcing in nonstandard analysis, Annals of Pure and Applied Logic, 68 (1994), 263-297.
- [4] M. Murakami, Standardization principle of Nonstandard universes, Journal of Symbolic Logic, 64, 4(1999), 1645–1655.

E-mail address: muramasa@ms.u-tokyo.ac.jp