<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>非標準宇宙（模型理論とその応用）</td>
</tr>
<tr>
<td>著者(s)</td>
<td>Murakami, Masahiko</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2001), 1213: 39-49</td>
</tr>
<tr>
<td>発行日</td>
<td>2001-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41162</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>発行機関</td>
<td>京都大学</td>
</tr>
</tbody>
</table>

この文書は日本の数学解析研究所の研究資料であることを示しています。
NONSTANDARD UNIVERSE

MASAHIKO MURAKAMI
DEPARTMENT OF MATHEMATICS
HOSEI UNIVERSITY

ABSTRACT. The nonstandard universes are frameworks of nonstandard analysis. We find sheaf representation for a nonstandard universe in Theorem 3.7.

1. NONSTANDARD Universe

Definitions 1.1 (superstructure, base set). Given a set X, we define the iterated power set $V_n(X)$ over X recursively by

$$V_0(X) = X, \quad \text{and} \quad V_{n+1}(X) = V_n(X) \cup \mathcal{P}(V_n(X)).$$

The superstructure $V(X)$ is the union $\bigcup_{n<\omega} V_n(X)$. The set X is said to be a base set if $\emptyset \not\in X$ and each element of X is disjoint from $V(X)$.

Definition 1.2 (nonstandard universe). A nonstandard universe is a triple $(V(X), V(Y), \star)$ such that:

1. X and Y are infinite base sets.
2. (Transfer Principle) The symbol \star is a map from $V(X)$ into $V(Y)$ such that

$$V(X) \models \varphi(a_1, \ldots, a_n) \quad \text{if and only if} \quad V(Y) \models \varphi(\star a_1, \ldots, \star a_n)$$

holds for any bounded formula $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in V(X)$.
3. $\star X = Y$.
4. For every infinite subset of A of X, $\{\star a \mid a \in A\}$ is a proper subset of $\star A$.

Definitions 1.3 (standard, internal). For $a \in V(\star X)$, we call a a standard if there is an $x \in V(X)$ such that $a = \star x$.

For $a \in V(\star X)$, we call a internal if there is an $x \in V(X)$ such that $a \in \star x$. We denote by $V(\star X)$ the set of all internal elements in $V(\star X)$.

From now on, we denote a nonstandard universe by single $\star V(X)$.

Definitions 1.4 (norm, radius). The norm (of standardness) of an internal element a is a cardinal defined by

$$\text{nos}(a) = \min \{|x| \mid a \in \star x\}.$$

The radius of $\star V(X)$ is a cardinal defined by

$$\text{rad}(\star V(X)) = \min \{\kappa \mid \forall y \in \star V(X) \text{ nos}(y) < \kappa\}.$$
Definition 1.5 (covering number). Let a be an internal element. The local ultra-power at a is defined by

$$V(X)[a] = \{(w)(a) \mid w \in V(X) \text{ and } a \in ^*(\text{dom}(w))\}.$$

For a subset $E \subseteq \mathcal{V}(X)$, we denote

$$V(X)[E] = \bigcup\{V(X)[s] \mid s \text{ is a finite subset of } E\}.$$

The covering number of $\mathcal{V}(X)$ is defined by

$$\text{cov}(\mathcal{V}(X)) = \min \{|E| \mid E \subseteq \mathcal{V}(X) \text{ and } V(X)[E] = \mathcal{V}(X)\}.$$

2. Locally atomic complete algebra

Definition 2.1 (regular complete subalgebra). Let $\langle \mathcal{B}, \wedge, \vee, \neg, 0_{\mathcal{B}}, 1_{\mathcal{B}} \rangle$ be a Boolean algebra. A subset $C \subseteq \mathcal{B}$ is said to be a regular complete subalgebra of \mathcal{B} if C is a complete subalgebra of \mathcal{B} and the inclusion map is also complete.

Notation. Let \mathcal{B} be a Boolean algebra. For a subset $S \subseteq \mathcal{P}(\mathcal{B})$, we denote

$$S^0 = \{C \in S \mid C \text{ is a regular complete subalgebra of } \mathcal{B}\}.$$

Definition 2.2 (LCA). A locally complete algebra (LCA) is a set Λ of subsets of a Boolean algebra \mathcal{B} satisfying the conditions below.

1. $\bigcup\Lambda = \mathcal{B}$.
2. If $S_1, S_2 \in \Lambda$ then $S_1 \cup S_2 \in \Lambda$.
3. If $S \in \Lambda$ and $T \subseteq S$ then $T \in \Lambda$.
4. For every $S \in \Lambda$, there is a $C \in \Lambda^0$ containing S.

For an LCA Λ, we denote by $\mathcal{B}(\Lambda)$ the Boolean algebra $\bigcup\Lambda$. We call the Boolean algebra $\mathcal{B}(\Lambda)$ the base Boolean algebra of Λ.

Definition 2.3 (LACA). An LCA Λ is a locally atomic complete algebra (LACA) if every $C \in \Lambda^0$ is atomic. We denote the set of atoms of $C \in \Lambda^0$ by $\text{Atom}(C)$.

Definition 2.4 (homomorphism). We introduce notation $R^\mathcal{S} = \{R^S \mid S \in \mathcal{S}\}$. Let Λ and Ξ be LCAs. A Boolean homomorphism $f : \mathcal{B}(\Lambda) \to \mathcal{B}(\Xi)$ is a pseudo-homomorphism of LCAs if $f^\mathcal{S} \subseteq \Xi$. We denotes a pseudo-homomorphism by $f : \Lambda \to \Xi$. A pseudo-homomorphism $h : \Lambda \to \Xi$ of LCAs is a (complete) homomorphism if $\bigvee h^S = h(\bigvee S)$ for all $S \in \Lambda$. An embedding or monomorphism $j : \Lambda \to \Xi$ is an injective homomorphism.

Definition 2.5 (subLCA). A subLCA of an LCA Λ is a nonempty subset of Λ which is itself an LCA and the inclusion map is an embedding.

Definition 2.6 (generator). Let Λ be an LCA. A subset $\mathcal{G} \subseteq \Lambda^0$ is a generator of Λ or \mathcal{G} generates Λ if Λ is the only subLCA of Λ containing \mathcal{G}.
Definitions 2.7 (radius, covering number, diameter). The radius of an LCA Λ is a cardinal defined by

$$\text{rad}(\Lambda) = \min \{ \kappa \mid \forall C \in \Lambda \diamond \ |\text{Atom}(C)| < \kappa \}$$

The covering number of an LCA Λ is a cardinal defined by

$$\text{cov}(\Lambda) = \min \{|\mathcal{G}| \mid \mathcal{G} \text{ is a generator of } \Lambda \}.$$

The diameter of an LCA Λ is a cardinal defined by

$$\text{diam}(\Lambda) = \min \left\{ \sum_{C \in \mathcal{G}} |\text{Atom}(C)| \mid \mathcal{G} \text{ is a generator of } \Lambda \right\}.$$

Definition 2.8 (direct product). Let I be an index set. The direct product $\Lambda^[[I]]$ of the LCA Λ is defined by:

$$\Lambda^[[I]] = \{ S \subseteq B(\Lambda)^I \mid \bigcup_{g \in S} \text{rng } g \in \Lambda \}$$

with the pointwise Boolean operations on $B(\Lambda^[[I]]) = \bigcup \Lambda^[[I]] \subseteq B(\Lambda)^I$. Then $\Lambda^[[I]]$ is an LCA. The LCA Λ is embedded into $\Lambda^[[I]]$ by the canonical embedding $b \mapsto I \times \{b\}$.

Definitions 2.9 (embedding system, direct limit). The embedding system of LCAs is a family of embeddings

$$\mathcal{E} = \{ j^d_{d'} : \Lambda_d \to \Lambda_{d'} \}_{d \leq d', d, d' \in D}$$

satisfying $j^d_{d'} \circ j^{d''}_{d} = j^{d''}_{d}$ for all $d \leq d' \leq d''$, where D is an upper direct set. The direct limit of \mathcal{E} is $\bigcup \{ j^d_d : B(\Lambda_d) \to B(\Lambda_{d'}) \}_{d \leq d', d, d' \in D}$ as Boolean algebras.

Definition 2.10 (ultrafilter). Let Λ be an LCA. A subset \mathcal{U} of $B(\Lambda)$ is an ultrafilter of an LCA Λ if it is an ultrafilter of the base Boolean algebra $B(\Lambda)$.

3. ULTRALIMIT

Definition 3.1 (LACA-valued model). Let Λ be an LACA and let M be a model for a language \mathcal{L}. The $B(\Lambda)$-valued universe of M is defined by

$$M^{\langle \Lambda \rangle} = \left\{ u : M \to B(\Lambda) \mid u(x) \land u(y) = 0 \text{ for } x \neq y, \text{ rng } u \in \Lambda, \text{ } \lor \text{rng } u = 1 \right\}.$$

For $u \in M^{\langle \Lambda \rangle}$, the support of u is a subset of M defined by

$$\text{supp } u = \{ x \in M \mid u(x) \neq 0 \}.$$

To each function F of $\mathcal{L}(M)$ and each $u_1, \ldots, u_n \in M^{\langle \Lambda \rangle}$, we assign a $\check{F}(u_1, \ldots, u_n) \in M^{\langle \Lambda \rangle}$ by:

$$\check{F}(u_1, \ldots, u_n)(y) = \lor \left\{ \bigwedge_{i=1}^{n} u_i(x_i) \mid M \models y = F(x_1, \ldots, x_n) \right\} \text{ for } y \in M.$$
We regard a constant of \(L(M) \) as a function without any variables. Note that \(\bigwedge_{i=1}^{n} u_{i}(x_{i}) = 1 \) if \(n = 0 \). To each sentence \(\varphi \) of \(L(M^{\langle A \rangle}) \) we assign a truth value \([\varphi] \in \mathcal{B}(A) \) by following recursive rules:

\[
[u = v] = \bigvee \{ u(x) \land v(x) \mid x \in M \},
\]

\[
[R(u_{1}, \ldots, u_{m})] = \bigvee \left\{ \bigwedge_{i=1}^{m} u_{i}(x_{i}) \mid \mathfrak{M} \models R(x_{1}, \ldots, x_{m}) \right\},
\]

\[
[-\varphi] = -[\varphi],
\]

\[
[\varphi_{1} \lor \varphi_{2}] = [\varphi_{1}] \lor [\varphi_{2}],
\]

\[
[\exists x \varphi(x)] = \bigvee \{ [\varphi(u)] \mid u \in M^{\langle A \rangle} \},
\]

where \(R \) is any predicate in \(L \).

Definition 3.2 (LACA-valued superstructure). Let \(A \) be an LACA. The \(A \)-valued superstructure of \(V(X) \) is defined by

\[
\hat{V}(X)^{\langle A \rangle} = \{ u \in V(X)^{\langle A \rangle} \mid \text{supp } u \in V(X) \}.
\]

While the truth values range over \(\overline{\mathcal{B}(A)} \) on this definition, we shall see \([\varphi]_{A} \in \mathcal{B}(A)\).

Theorem 3.1. Let \(\varphi(x_{1}, \ldots, x_{r}) \) be a formula of \(L \) with only \(x_{1}, \ldots, x_{r} \) free. For \(u_{1}, \ldots, u_{r} \in M^{\langle A \rangle} \),

\[
([\varphi(u_{1}, \ldots, u_{r})]_{A} = \bigvee \left\{ \bigwedge_{i=1}^{r} u_{i}(x_{i}) \mid \mathfrak{M} \models \varphi(x_{1}, \ldots, x_{r}) \right\}.
\]

Proof. For \(\varphi \) either "\(x_{1} = x_{2} \)" or \(R \), (*) holds by definition. If (*) holds for an atomic formula \(\varphi(x) \) then, by simple calculus of Boolean algebra, (*) holds for \(\varphi(F(x_{1}, \ldots, x_{n})) \). Thus, by induction, (*) holds for \(\varphi \) atomic. Suppose (*) holds for \(\varphi, \varphi_{1} \) and \(\varphi_{2} \). Since there is an atomic \(C \in \Lambda^{0} \) containing all the ranges of \(u_{1}, \ldots, u_{r} \) and every range of \(u_{i} \) is a partition of unity except for \(0 \),

\[
[-\varphi]_{A} = \bigvee \left\{ \bigwedge_{i=1}^{r} u_{i}(x_{i}) \mid \mathfrak{M} \models -\varphi(x_{1}, \ldots, x_{r}) \right\}.
\]

It is easy to see:

\[
[\varphi_{1} \lor \varphi_{2}]_{A} = \bigvee \left\{ \bigwedge_{i=1}^{r} u_{i}(x_{i}) \mid \mathfrak{M} \models \varphi_{1}(x_{1}, \ldots, x_{r}) \lor \varphi_{2}(x_{1}, \ldots, x_{r}) \right\}.
\]

Since \([\varphi(u)]_{A} = \bigvee_{x \in M} (u(x) \land [\varphi(x)])_{A} \), we have \([\exists x \varphi(x)]_{A} = \bigvee_{x \in M} [\varphi(x)]_{A} \).

Therefore (*) holds for \(\exists x \varphi(x) \). \(\square \)

Similarly, we shall obtain the superstructure version.

Corollary 3.2. Let \(\varphi(x_{1}, \ldots, x_{r}) \) be a formula of \(L_{\in} \) with only \(x_{1}, \ldots, x_{r} \) free. For \(u_{1}, \ldots, u_{r} \in \hat{V}(X)^{\langle A \rangle} \),

\[
[\varphi(u_{1}, \ldots, u_{r})]_{A} = \bigvee \left\{ \bigwedge_{i=1}^{r} u_{i}(x_{i}) \mid V(X) \models \varphi(x_{1}, \ldots, x_{r}) \right\}.
\]
By the theorem and the corollary above, we have a fundamental property
\([u = v] \land [\varphi(u)] \leq [\varphi(v)]\). We have just introduced \(\mathcal{B}(\Lambda)\)-valued model
\(\mathcal{M}^{\langle\Lambda\rangle} = (M^{\langle\Lambda\rangle}, \hat{R}, \hat{F}, \check{c})\) and \(\mathcal{B}(\Lambda)\)-valued superstructure \(\hat{V}(X)^{\langle\Lambda\rangle}\). We say that
a sentence \(\varphi\) of \(\mathcal{L}(M^{\langle\Lambda\rangle})\) holds in \(\mathcal{M}^{\langle\Lambda\rangle}\) if \([\varphi]_{\Lambda} = 1\) and that a sentence \(\psi\) of
\(\mathcal{L} \in \hat{V}(X)^{\langle\Lambda\rangle}\) holds in \(\hat{V}(X)^{\langle\Lambda\rangle}\) if \([\psi]_{\Lambda} = 1\). Theorem 3.1 and Corollary 3.2
follow that we consider the values \(u(x)\) only for \(x \in \text{supp } u\). For \(E \subseteq M\), we may
regard \(E^{\langle\Lambda\rangle}\) as a subset of \(M^{\langle\Lambda\rangle}\) by extending the domain of \(u \in E^{\langle\Lambda\rangle}\) to \(M\).
This means that we define for \(u \in E^{\langle\Lambda\rangle}\)

\[u(x) = 0 \text{ if } x \notin E.\]

In the superstructure version, if \(E\) is a set relative to \(V(X)\) then we may assume

\[E^{\langle\Lambda\rangle} = \{u \in \hat{V}(X)^{\langle\Lambda\rangle} | u \in \hat{E} \text{ holds in } \hat{V}(X)^{\langle\Lambda\rangle}\}.\]

Theorem 3.3 (Maximum principle). Let \(\varphi(x)\) be a formula of \(\mathcal{L}(M^{\langle\Lambda\rangle})\) with only
\(x\) free. Then there is \(u \in M^{\langle\Lambda\rangle}\) such that \([\varphi(u)]_{\Lambda} = [\exists x \varphi(x)]_{\Lambda}\).

Proof. Let \(\{a_\zeta\}_{\zeta < \alpha}\) be a well-ordering for \(M\). By theorem 3.1, there is \(C \in \Lambda^0\)
containing \(\{[\varphi(x)] | x \in M\}\). Putting \(b_\zeta = [\varphi(a_\zeta)] \land \neg \bigvee_{\zeta < \alpha} [\varphi(a_\zeta)]\), we have
\(\{b_\zeta\}_{\zeta < \alpha} \subseteq C\). Since \(\{b_\zeta\}_{\zeta < \alpha}\) is a pairwise disjoint family, we can pick \(u \in M^{(C)}\)
with \(u(a_\zeta) \geq b_\zeta\). Then \([\varphi(u)] \geq u(a_\zeta) \land [\varphi(a_\zeta)] \geq b_\zeta\) for any \(\zeta < \alpha\). Since
\(\exists x \varphi(x) = \bigvee_{\zeta < \alpha} \varphi(a_\zeta) = \bigvee_{\zeta < \alpha} b_\zeta\), we have \([\varphi(u)] \geq [\exists x \varphi(x)].\)

Corollary 4.4. Let \(\varphi(x)\) be a formula of \(\mathcal{L} \in \hat{V}(X)^{\langle\Lambda\rangle}\) with only \(x\) free and let \(v\)
be an element of \(\hat{V}(X)^{\langle\Lambda\rangle}\). Then there is \(u \in \hat{V}(X)^{\langle\Lambda\rangle}\) such that \(\varphi(u)]_{\Lambda} = [\exists x \in v \varphi(x)]_{\Lambda}\).

Proof. Since there is \(n\) such that \(\text{supp } v \subseteq V_{n+1}(X)\),

\[[x \in v] = \bigvee \{v(y) | x \in y \in \text{supp } v\} = 0 \text{ for } x \notin V_n(X).\]

Therefore we can choose \(u\) whose support is a subset of \(V_n(X).\)

Definition 3.3 (ultralimit). We denote by \(u/\mathcal{U}\) the equivalence class of \(u \in M^{\langle\Lambda\rangle}\)
by the equivalence relation

\[x \sim u y \equiv [x = y]_{\Lambda} \in \mathcal{U}.\]

The ultralimit \(\mathcal{M}^{\langle\Lambda\rangle}/\mathcal{U}\) of \(\mathcal{M}\) modulo \(\mathcal{U}\) of \(\Lambda\) is defined by:

\[M^{\langle\Lambda\rangle}/\mathcal{U} = \{u/\mathcal{U} | u \in M^{\langle\Lambda\rangle}\}.\]

\[\hat{F}/\mathcal{U}(u_1/\mathcal{U}, \ldots, u_n/\mathcal{U}) = (\hat{F}(u_1, \ldots, u_n))/\mathcal{U}.\]

\[\mathcal{M}^{\langle\Lambda\rangle}/\mathcal{U} \models \mathcal{R}(u_1, \ldots, u_m) \iff [\mathcal{R}(u_1, \ldots, u_m)] \in \mathcal{U}.\]

Definition 3.4 (bounded ultralimit). We denote by \(u/\mathcal{U}\) the equivalence class of \(u \in \hat{V}(X)^{\langle\Lambda\rangle}\) by the equivalence relation

\[x \sim u y \equiv [x = y]_{\Lambda} \in \mathcal{U}.\]
The bounded ultralimit $\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U}$ of $V(X)$ modulo \mathfrak{U} of Λ is defined by:

$$\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U} = \{ u/\mathfrak{U} \mid u \in \hat{V}(X)^{\langle\Lambda\rangle} \},$$

$$\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U} \models u/\mathfrak{U} \in v/\mathfrak{U} \iff [u \in v] \in \mathfrak{U}.$$

Theorem 3.5 (Łoś Principle of Ultralimits). Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L} with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in M^{\langle\Lambda\rangle}$,

$$M^{\langle\Lambda\rangle}/\mathfrak{U} \models \varphi(u_1/\mathfrak{U}, \ldots, u_r/\mathfrak{U}) \iff [\varphi(u_1, \ldots, u_r)] \in \mathfrak{U}.$$

Proof. The proof proceeds by induction on the complexity of formulae. The only nontrivial step is the case where φ is of the form $\exists x \psi(x)$. Suppose $[\exists x \psi(x)] \in \mathfrak{U}$. By the maximal principle (Theorem 3.3), there is u satisfying $[\psi(u)] = [\exists x \psi(x)]$. Then $M^{\langle\Lambda\rangle} \models \psi(u/\mathfrak{U})$ by the induction assumption. We have thus $M^{\langle\Lambda\rangle} \models \exists x \psi(x)$. Conversely, suppose $M^{\langle\Lambda\rangle} \models \exists x \psi(x)$. Then there is some u such that $M^{\langle\Lambda\rangle} \models \psi(u/\mathfrak{U})$. By the induction assumption, $[\exists x \psi(x)] \geq [\psi(u/\mathfrak{U})] \in \mathfrak{U}$.

Corollary 3.6 (Łoś-Mostowski Principle of Bounded Ultralimits). Let $\varphi(x_1, \ldots, x_r)$ be a Δ_0-formula of \mathcal{L}_\in with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in \hat{V}(X)^{\langle\Lambda\rangle}$,

$$\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U} \models \varphi(u_1/\mathfrak{U}, \ldots, u_r/\mathfrak{U}) \iff [\varphi(u_1, \ldots, u_r)] \in \mathfrak{U}.$$

Proof. The proof is similar to that of Theorem 3.5. The only different part is the if-part of the case where φ is of the form $\exists x \in \underline{y} \psi(x)$. Suppose $[\exists x \in u_k \psi(x)] \in \mathfrak{U}$. It follows from Corollary 3.4 that there is $u \in \hat{V}(X)^{\langle\Lambda\rangle}$ satisfying $[u \in u_k \land \psi(u)] = [\exists x \in u_k \psi(x)].$

A bounded ultralimit is a pre-nonstandard universe: that satisfies (1),(2) and (3) of Definition 1.2 with Mostowski collapsing.

Definition 3.5 (atlas). An atlas is a pair $\langle\Lambda, \mathfrak{U}\rangle$ of an LACA Λ and an ultrafilter of Λ such that $\text{rad}(\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U}) = \text{rad}(\Lambda)$ and $\text{cov}(\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U}) = \text{cov}(\Lambda)$.

Theorem 3.7 (Sheaf representation Theorem for Nonstandard Universes). For any nonstandard universe $^*V(X)$, there is an atlas $\langle\Lambda, \mathfrak{U}\rangle$ such that $\hat{V}(X)^{\langle\Lambda\rangle}/\mathfrak{U}$ isomorphic to $^*V(X)$.

We prove the theorem in the next section.

4. LOCAL ULTRALIMITS

We shall see that a homomorphism of LACAs induces an elementary embedding of ultralimits and a bounded elementary embedding of bounded ultralimits. Let $h: \Lambda \rightarrow \Xi$ be a homomorphism. The induced map $h_*: M^{\langle\Lambda\rangle} \rightarrow M^{\langle\Xi\rangle}$ is defined by $h_*(u) = h \circ u$. Then we have the lemma below.

Lemma 4.1. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L} with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in M^{\langle\Lambda\rangle}$

$$[\varphi(h_*(u_1), \ldots, h_*(u_r))]_\Xi = h([\varphi(u_1, \ldots, u_r)]_\Lambda).$$
Proof. There is $C \in \Lambda^\circ$ containing all the ranges of u_k. Since $h \upharpoonright C$ is complete, we have from Theorem 3.1
\[
\bigvee \left\{ \bigwedge_{i=1}^r h(u_i(x_i)) \bigg| \mathfrak{M} \models \varphi(x_1, \ldots, x_r) \right\} = h \left(\bigvee \left\{ \bigwedge_{i=1}^r u_i(x_i) \bigg| \mathfrak{M} \models \varphi(x_1, \ldots, x_r) \right\} \right)
\]
\[
\llbracket \varphi(h_*(u_1), \ldots, h_*(u_r)) \rrbracket_\mathfrak{M} = h(\llbracket \varphi(u_1, \ldots, u_r) \rrbracket_\Lambda).
\]
We have thus proved the lemma. □

For $u \in \hat{V}(X)^\langle\Lambda\rangle$, since $\text{supp}(h \circ u) \subseteq \text{supp} u$, we can define the induced map $h_* : \hat{V}(X)^\langle\Lambda\rangle \to \hat{V}(X)^\langle\Lambda\rangle$ similarly.

Corollary 4.2. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L}_\in with only x_1, \ldots, x_r free. For $u_1, \ldots, u_r \in \hat{V}(X)^\langle\Lambda\rangle$
\[
\llbracket \varphi(h_*(u_1), \ldots, h_*(u_r)) \rrbracket_\mathfrak{M} = h(\llbracket \varphi(u_1, \ldots, u_r) \rrbracket_\Lambda).
\]
Proof. Using Corollary 3.2, we see the proof is similar to that of Lemma 4.1. □

Let \mathcal{U} and \mathcal{V} be ultrafilters of Λ and Ξ, respectively. Suppose $h^{-1}\mathcal{U} \subseteq \mathcal{V}$. Then we have from Lemma 4.1 or from Corollary 4.2
\[
[u = u']_\Lambda \in \mathcal{U} \iff [h_*(u) = h_*(u')]_\Lambda \in \mathcal{V}.
\]
Therefore we can define the injection $h_* : M^\langle\Lambda\rangle / \mathcal{U} \to M^\langle\Xi\rangle / \mathcal{V}$, denoted by same h_*, by $h_*(u/\mathcal{U}) = h_*(u)/\mathcal{V}$. Since $\text{supp} h_*(u) \subseteq \text{supp} u$, we can define the injection $h_* : \hat{V}(X)^\langle\Lambda\rangle / \mathcal{U} \to \hat{V}(X)^\langle\Xi\rangle / \mathcal{V}$ similarly.

Lemma 4.3. The injection h_* is an elementary embedding of $M^\langle\Lambda\rangle / \mathcal{U}$ into $M^\langle\Xi\rangle / \mathcal{V}$.

Proof. Let $\varphi(x_1, \ldots, x_r)$ be a formula of \mathcal{L} with only x_1, \ldots, x_r free. From Theorem 3.5, we have for $u_1, \ldots, u_r \in M^\langle\Lambda\rangle$
\[
h(\llbracket \varphi(u_1, \ldots, u_r) \rrbracket_\Lambda) \in \mathcal{V} \iff \llbracket \varphi(u_1, \ldots, u_r) \rrbracket_\Lambda \in h^{-1}\mathcal{U} \mathcal{V}
\]
\[
\llbracket \varphi(h_*(u_1), \ldots, h_*(u_r)) \rrbracket_\mathfrak{M} \in \mathcal{V} \iff \llbracket \varphi(h_*(u_1), \ldots, h_*(u_r)) \rrbracket_\mathfrak{M} \in \mathcal{V}
\]
\[
\mathfrak{M}^\langle\Xi\rangle / \mathcal{V} \models \varphi(h_*(u_1/\mathcal{U}), \ldots, h_*(u_r/\mathcal{U})) \iff \mathfrak{M}^\langle\Lambda\rangle / \mathcal{U} \models \varphi(u_1, \ldots, u_r).
\]
□

Corollary 4.4. The injection h_* is a bounded elementary embedding of $\hat{V}(X)^\langle\Lambda\rangle / \mathcal{U}$ into $\hat{V}(X)^\langle\Xi\rangle / \mathcal{V}$.

Proof. Using Corollary 3.6, we see the proof is similar to that of Lemma 4.3. □

Let I be a set relative to $V(X)$. We shall find a one-to-one correspondence between $\mathcal{P}(I)^\langle\Lambda\rangle$ and $\mathcal{B}(\Lambda^\circ I)$. Note that $\mathcal{P}(I)^\langle\Lambda\rangle$ is the set of "the subsets of I in $\hat{V}(X)^\langle\Lambda\rangle"$. For $A \in \mathcal{P}(I)^\langle\Lambda\rangle$, there is $C \in \Lambda^\circ$ such that $\text{rng} A \subseteq C$. Define $g : I \to \mathcal{B}(\Lambda)$ by $g(i) = [i \in A]_\Lambda$. Then we have $\text{rng} g \subseteq C$ and $g \in \mathcal{B}(\Lambda^\circ I)$. Conversely, for $g \in \mathcal{B}(\Lambda^\circ I)$, there is $C \in \Lambda^\circ$ such that $\text{rng} g \subseteq C$. Define $A : \mathcal{P}(I) \to C$ by
\[
A(x) = \bigwedge_{i \in I} \text{sg}_x(i, g(i)), \quad \text{where} \quad \text{sg}_x(i, b) = \begin{cases} b & \text{if } i \in x, \\ -b & \text{if } i \in I \setminus x. \end{cases}
\]
Since C is completely distributive, we have $A \in \mathcal{P}(I)^{\langle\Lambda\rangle}$. Suppose $g(i) = [i \in A]_\Lambda$ and $g'(i) = [i \in A']_\Lambda$. Then we see $(g \wedge g')(i) = [i \in A \cap A']_\Lambda$ and $(\neg g)(i) = [i \not\in I \setminus A]_\Lambda$. In the context above, the relation $g(i) = [i \in A]_\Lambda$ sets up a one-to-one correspondence between $\mathcal{P}(I)^{\langle\Lambda\rangle}$ and $\mathfrak{B}(\Lambda^{[I]})$ as Boolean algebras. From now on, we identify $\mathcal{P}(I)^{\langle\Lambda\rangle}$ with $\mathfrak{B}(\Lambda^{[I]})$.

We shall define the special element $\delta \in I^{\langle\Lambda^{[I]\rangle}} \subseteq \check{V}(X)^{\langle\Lambda^{[I]\rangle}}$ by

$$\delta(x)(i) = \begin{cases} 1 & \text{if } x = i, \\ 0 & \text{if } x \neq i. \end{cases}$$

We call the δ diagonal element of I on Λ. Let $j : \Lambda \to \Lambda^{[I]}$ be the canonical embedding. Then j is also a Boolean monomorphism of $\mathfrak{B}(\Lambda)$ into $\mathcal{P}(I)^{\langle\Lambda\rangle}$. The diagonal element δ has following properties.

Lemma 4.5. The following statements hold.

1. $[j(b) = \check{I}]_\Lambda = b$ for every $b \in \mathfrak{B}(\Lambda)$.
2. $[\delta \in j_*(g)]_{\Lambda^{[I]}} = g$ for every $g \in \mathcal{P}(I)^{\langle\Lambda\rangle}$.

Proof. Since $[i \in j(b)]_\Lambda = j(b)(i) = b$ for all $i \in I$, $[j(b) = \check{I}]_\Lambda = [j(b) \supseteq \check{I}]_\Lambda = \bigwedge_{i \in I} [i \in j(b)]_\Lambda = b$. From the definition of δ, it is clear that $[\delta = \check{I}]_{\Lambda^{[I]}}(i) = \delta(i)(i) = 1$. Then we have $[\delta \in j_*(g)]_{\Lambda^{[I]}}(i) = [i \in j_*(g)]_{\Lambda^{[I]}}(i) = [i \in g]_\Lambda = g(i)$.

Theorem 4.6. For any $v \in \check{V}(X)^{\langle\Lambda^{[I]\rangle}}$, there is a map $w : \check{I} \to (\text{supp } v)^\vee$ in $\check{V}(X)^{\langle\Lambda\rangle}$ such that $v = j_*(w)(\delta)$ holds in $\check{V}(X)^{\langle\Lambda\rangle}$.

Proof. Since $\text{rng } v \in \Lambda^{[I]}$, $\bigcup_{g \in \text{rng } v} \text{rng } g \in \Lambda$. Therefore we can define $w : (\text{supp } v)^\check{I} \to \mathfrak{B}(\Lambda)$ by

$$w(s) = \bigvee_{i \in I} v(s(i))(i).$$

Then we get w as required. First, we show $w \in \check{V}(X)^{\langle\Lambda\rangle}$. If $s \neq s'$, then there is $i_0 \in I$ such that $s(i_0) \neq s'(i_0)$. Since $\text{rng } v$ is pairwise disjoint, we have

$$w(s) \wedge w(s') \leq v(s(i_0))(i_0) \wedge v(s'(i_0))(i_0) = 0.$$
We have thus shown $w \in \hat{V}(X)^{\langle \Lambda \rangle}$. For each $i \in I$, since $w(s) \leq v(s(i))(i)$ holds for every $s \in (\text{supp } v)^I$, we have
\[
\begin{align*}
\langle v = j_*(w)(\delta) \rangle_{\Lambda[I]}(i) &= \langle v = j_*(w)(\check{i}) \rangle_{\Lambda[I]}(i) \\
&= \left(\bigvee \{ v(y) \wedge j(w(s)) \wedge \check{i}(x) \mid y = s(x) \} \right)(i) \\
&= \bigvee_{s \in (\text{supp } v)^I} (v(s(i))(i) \wedge w(s)) \\
&= \bigvee_{s \in (\text{supp } v)^I} w(s) = 1.
\end{align*}
\]
We have thus proved the theorem. \hfill \Box

Let \mathcal{U} be an ultrafilter of an LACA Λ. A **local ultralimit** $\rho : \hat{V}(X)^{\langle \Lambda \rangle} / \mathcal{U} \to \star V(X)$ is a bounded elementary embedding satisfying $\rho(\check{x}/\mathcal{U}) = \check{x}$ for every $x \in V(X)$.

Theorem 4.7 (Local Ultralimit Theorem). Let $\rho : \hat{V}(X)^{\langle \Lambda \rangle} / \mathcal{U} \to \star V(X)$ be a local ultralimit and let p be an internal element of $\star V(X)$. Then there is a local ultralimit $\tau : \hat{V}(X)^{\langle \Lambda[I] \rangle} / \mathcal{V} \to \star V(X)$ such that the following conditions hold.

(i) The index set I is a set relative to $V(X)$ and $|I| = \text{nos}(p)$.
(ii) Let $j : \Lambda \to \Lambda[I]$ be the canonical embedding. Then $\mathcal{U} = j^{-1}\mathcal{V}$ and $\rho = \tau \circ j_*$.
(iii) The submodel rng τ of $\star V(X)$ is the minimal bounded elementary submodel of $\star V(X)$ that contains $\{p\} \cup \text{rng } \rho$.

\[
\begin{array}{c}
\hat{V}(X)^{\langle \Lambda[I] \rangle} / \mathcal{V} \xrightarrow{\tau} \star V(X) \\
V(X) \xrightarrow{j_*} \hat{V}(X)^{\langle \Lambda \rangle} / \mathcal{U} \xrightarrow{\rho} \star V(X)
\end{array}
\]

Proof. Let I be a set relative to $V(X)$ such that $p \in I$ and $|I| = \text{nos}(p)$. We have identified $\mathcal{B}(\Lambda[I])$ with $\mathcal{P}(I)^{\langle \Lambda \rangle}$. Define $\mathcal{V} \subseteq \mathcal{B}(\Lambda[I])$ by
\[
g \in \mathcal{V} \iff p \in \rho(g/\mathcal{U}).
\]
Then \mathcal{V} is an ultrafilter of $\Lambda[I]$. Let b be an element of \mathcal{U}. From (1) of Lemma 4.5, $\rho(j(b)/\mathcal{U})$ coincides \check{b}. Then we have $j(b) \in \mathcal{V}$ from the definition of \mathcal{V}. Since \mathcal{U} and \mathcal{V} are maximal filters, we obtain $j^{-1}\mathcal{V} = \mathcal{U}$. Let $\varphi(x_1, \ldots, x_r)$ be a Δ_0-formula of $\mathcal{L}_\mathcal{E}$ with only x_1, \ldots, x_r free. Let w_1, \ldots, w_r be elements of $\hat{V}(X)^{\langle \Lambda \rangle}$. By Theorem 4.6, there are maps w_1, \ldots, w_r from \check{I} in $\hat{V}(X)^{\langle \Lambda \rangle}$ such that $v_k = j_*(w_k)(\delta)$ hold, where δ is the diagonal element of I on Λ. Putting $g_0 = \{ i \in \check{I} \mid \varphi(w_1(i), \ldots, w_r(i)) \}$ in $\hat{V}(X)^{\langle \Lambda \rangle}$, we have from (2) of Lemma 4.5
\[
g_0 = \langle \delta \in j_*(g_0) \rangle_{\Lambda[I]} \\
= \langle \delta \in j_*(\{ i \in \check{I} \mid \varphi(w_1(i), \ldots, w_r(i)) \}) \rangle_{\Lambda[I]} \\
= \langle \delta \in \{ i \in \check{I} \mid \varphi(j_*(w_1)(i), \ldots, j_*(w_r)(i)) \} \rangle_{\Lambda[I]} \\
= \langle \varphi(j_*(w_1)(\delta), \ldots, j_*(w_r)(\delta)) \rangle_{\Lambda[I]} \\
= \langle \varphi(v_1, \ldots, v_r) \rangle_{\Lambda[I]}
\]
and we have
\[\hat{V}(X)^{\langle \Lambda \rangle}/U \models g_0/U = \{ i \in I/U \mid \varphi((w_1/U)(i), \ldots, (w_r/U)(i)) \} \]
\[\rho(g_0/U) = \{ i \in I \mid \varphi(\rho(w_1/U)(i), \ldots, \rho(w_r/U)(i)) \}. \]

By the definition of \(\mathcal{V} \), we obtain
\[g_0 \in \mathcal{V} \iff p \in \rho(g_0/U) \]
\[[\varphi(v_1, \ldots, v_r)]_{\Lambda[I]} \in \mathcal{V} \iff \varphi(\rho(w_1/U)(p), \ldots, \rho(w_r/U)(p)). \]

The case \(\varphi(x_1, x_2) \equiv "x_1 = x_2" \) enables us to define the operation \(v/\mathcal{V} \mapsto \rho(w/U)(p) \) where \(v = j_*(w)(\delta) \) holds in \(\hat{V}(X)^{\langle \Lambda[I] \rangle} \). Thus, defining \(\tau : \hat{V}(X)^{\langle \Lambda[I] \rangle}/\mathcal{V} \to \mathcal{V}(X) \) by \(\tau(v/\mathcal{V}) = \rho(w/U)(p) \) where \(v = j_*(w)(\delta) \) holds in \(\hat{V}(X)^{\langle \Lambda[I] \rangle} \), we get \(\tau \) as required. In fact, it is clear in the preceding context that \(\tau \) is a bounded elementary embedding of \(\hat{V}(X)^{\langle \Lambda[I] \rangle}/\mathcal{V} \) into \(\mathcal{V}(X) \). Let \(\iota \) be the identity map on \(I \), then we see \(\tau(j_*(\iota/U)(\delta/\mathcal{V})) = \rho(\iota/U)(p) = \iota(p) = p \). For \(u/U \in \hat{V}(X)^{\langle \Lambda \rangle}/U \), let \(\tilde{u} \) be the constant map from \(I \) onto \(\{ u \} \) in \(\hat{V}(X)^{\langle \Lambda \rangle} \), then we have \(\tau(j_*(u/U)) = \rho(\tilde{u}/U)(p) = \rho(u/U) \). Suppose a bounded elementary submodel \(W \) of \(\mathcal{V}(X) \) contains \(\{ p \} \cup \text{rng} \rho \). From the definition of \(\tau \), \(\tau(v/\mathcal{V}) = \rho(w/U)(p) \in W \) for some \(w/U \in \hat{V}(X)^{\langle \Lambda \rangle}/U \).

Therefore \(\text{rng} \tau \) is the minimum. We have completed the proof of Theorem 4.7. \(\square \)

Let \(\{ j_{d'} : \Lambda_d \to \Lambda_{d'} \}_{d \leq d', d \in D} \) be an embedding system of LACAs with direct limit \(\{ j_d : \Lambda_d \to \Lambda \}_{d \in D} \). Let \(U \) be an ultrafilter of \(\Lambda \), then each \(U_d = j_d^{-1}U \) is an ultrafilter of \(\Lambda_d \).

Theorem 4.8 (Elementary Net Theorem of Ultraproducts). Let \(\mathcal{M} \) and \(\mathcal{N} \) be models for \(\mathcal{L} \). Suppose there are elementary embeddings \(\tau_d : \mathcal{M}^{\langle \Lambda_d \rangle}/U_d \to \mathcal{N} \) satisfying the condition \(\tau_d = \tau_d \circ j_{d*}^{d'} \) for \(d \leq d' \). Then there is an elementary embedding \(\tau : \mathcal{M}^{\langle \Lambda \rangle}/U \to \mathcal{N} \) such that \(\tau_d = \tau \circ j_{d*} \) for \(d \in D \).

Proof. Let \(v \) be an element of \(\mathcal{M}^{\langle \Lambda \rangle} \). Since \(\text{rng} v \in \Lambda = \{ j_d'' S \mid d \in D \text{ and } S \in \Lambda_d \} \) from the definition of direct limits, there is \(u \in \mathcal{M}^{\langle \Lambda_d \rangle} \) such that \(v = j_{d*}(u) \). Therefore defining \(\tau(v/U) = \tau_d(u/U_d) \) where \(v = j_{d*}(u) \), we get \(\tau \) as required.

Let \(\varphi(x_1, \ldots, x_r) \) be a formula of \(\mathcal{L} \) with only \(x_1, \ldots, x_r \) free and let \(v_1, \ldots, v_r \) be elements \(\mathcal{M}^{\langle \Lambda \rangle} \). Then there are \(d \in D \) and \(u_1, \ldots, u_r \in \mathcal{M}^{\langle \Lambda_d \rangle} \) such that \(v_k = j_{d*}(u_k) \). We conclude as below.

\[\mathcal{M}^{\langle \Lambda_d \rangle}/U_d \models \varphi(u_1/U_d, \ldots, u_r/U_d) \iff \mathcal{N} \models \varphi(\tau_d(u_1/U_d), \ldots, \tau_d(u_r/U_d)) \]
\[\mathcal{M}^{\langle \Lambda \rangle}/U \models \varphi(v_1/U, \ldots, v_r/U) \iff \mathcal{N} \models \varphi(\tau(v_1/U), \ldots, \tau(v_r/U)). \]
Theorem 4.9 (Bounded Elementary Net Theorem of Bounded Ultralimits).
Suppose there are local ultralimits \(\tau_d: \hat{V}(X)^{\langle \Lambda_d \rangle}/\mathfrak{U}_d \to \star V(X) \) satisfying
the condition \(\tau_d = \tau_{d'} \circ j_{d*}^{d'} \) for \(d \leq d' \). Then there is a local ultralimit
\(\tau: \hat{V}(X)^{\langle \Lambda \rangle}/\mathfrak{U} \to \star V(X) \) such that \(\tau_d = \tau \circ j_{d*} \) for \(d \in D \).

\[
\begin{array}{c}
\hat{V}(X)^{\langle \Lambda_d \rangle}/\mathfrak{U}_d \\
\downarrow j_{d*}^{d'} \\
\hat{V}(X)^{\langle \Lambda_d \rangle}/\mathfrak{U}_d \\
\end{array}
\begin{array}{c}
\star V(X) \\
\downarrow \tau \\
\star V(X) \\
\end{array}
\]

Proof. Similar to the proof of Theorem 4.8. \(\square \)

We call the pair \(\langle \Lambda, \mathfrak{U} \rangle \) in Theorem 4.8 or Theorem 4.7 the direct limit of
\(\{ \langle \Lambda_d, \mathfrak{U}_d \rangle \}_{d \leq d', d, d' \in D} \).

Proof of Theorem 3.7 Let \(\{ p_\zeta \}_{\zeta < \kappa} \) be a sequence in \(\star V(X) \) with \(\kappa = \text{cov}(\star V(X)) \).
We define local ultralimits \(\{ \rho_\zeta: \hat{V}^{\langle \Lambda_\zeta \rangle}/\mathfrak{U}_\zeta \to \star V(X) \}_{\zeta < \kappa} \) of \(\star V(X) \) by:
\[
\begin{align*}
\Lambda_0 &= \mathcal{P}(\{0,1\}), \quad \mathfrak{U}_0 = \{1\}, \\
\Lambda_{\zeta+1} &= \Lambda^{[I_\zeta]}, \quad |I_\zeta| = \text{nos}(p_\zeta), \quad p_\zeta \in \text{rng} \rho_{\zeta+1} \quad \text{in Theorem 4.7}. \\
\end{align*}
\]

\(\langle \Lambda_\lambda, \mathfrak{U}_\lambda \rangle \) is the direct limit of \(\{ \langle \Lambda_\zeta, \mathfrak{U}_\zeta \rangle_{\zeta < \lambda} \} \) in Theorem 4.9.

Then the direct limit \(\langle \Lambda, \mathfrak{U} \rangle \) of \(\{ \langle \Lambda_\zeta, \mathfrak{U}_\zeta \rangle \}_{\zeta < \kappa} \) is an atlas of \(\star V(X) \). \(\square \)

REFERENCES

E-mail address: muramasa@ms.u-tokyo.ac.jp