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NONSTANDARD UNIVERSE

MASAHIKO MURAKAMI
DEPARTMENT OF MATHEMATICS
HOSEI UNIVERSITY

ABSTRACT. The nonstandard universes are frameworks of nonstandard anal-
ysis. We find sheaf representation for a nonstandard universe. in Theorem
3.7.

1. NONSTANDARD UNIVERSE

Definitions 1.1 (superstructure, base set). Given a set X, we define the iterated
power set V,,(X) over X recursively by

W(X) =X, and V541(X)=Vo(X)UDP(V,(X)).

The superstructure V(X) is the union J,,_, Va(X). The set X is said to be a base
set if @ ¢ X and each element of X is disjoint from V(X).
Definition 1.2 (nonstandard universe). A nonstandard universe is a triple
(V(X),V(Y),*) such that:

(1) X and Y are infinite base sets.

(2) (Transfer Principle) The symbol % is a map from V(X) into V(Y) such that

V(X) E ¢(a1,...,a,) ifand only if V(Y) E ¢(fay,...,%an)

holds for any bounded formula ¢(z1,...,z,) and a4, ..., a, € V(X).
3) *X =Y.
(4) For every infinite subset of A of X, {*a | a € A} is a proper subset of *A.

Definitions 1.3 (standard, internal). For a € V(*X), we call a standard if there
is an z € V(X) such that a = *z. .

For a € V(*X), we call a internal if there is an x € V(X) such that a € *z. We
denote by *V (X)) the set of all internal elements in V (*X).

From now on, we denote a nonstandard universe by single *V (X).

Definitions 1.4 (norm, radius). The norm (of standardness) of an internal ele-

ment a is a cardinal defined by
nos(a) = min {|z| | a € *z}.
The radius of *V(X) is a cardinal defined by
rad(*V(X)) = min {« | Vy € *V(X) nos(y) < }.
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Definition 1.5 (covering number). Let a be an internal element. The local ultra-
power at a is defined by

V(X)la] = {(*w)(a) | w € V(X) and a € *(dom(w))}.
For a subset E C *V(X), we denote
V(X)[E] = U{V(X)[s] | s is a finite subset of E}.
The covering number of *V(X) is defined by

cov(*V(X)) = min {|E| | E C *V(X) and V(X)[E] = *V(X)}.

2. LOCALLY ATOMIC COMPLETE ALGEBRA

Definition 2.1 (regular complete subalgebra). Let (B,A,V,—,08,13) be a
Boolean algebra. A subset C C B is said be a regular complete subalgebra of B if
C is a complete subalgebra of B and the inclusion map is also complete.

Notation. Let B be a Boolean algebra. For a subset 8§ C P(B), we denote

8% = {C € 8| C is a regular complete subalgebra of B}.

Definition 2.2 (LCA). A locally complete algebra (LCA) is a set A of subsets of
a Boolean algebra B satisfying the conditions below.

(1) UA =B.

(2) If $1,S2 € A then S; US; € A.

(3) If Se Aand T C S then T € A.

(4) For every S € A, there is a C € A® containing S.

For an LCA A, we denote by B(A) the Boolean algebra | JA. We call the Boolean
algebra B(A) the base Boolean algebra of A.

Definition 2.3 (LACA). An LCA A is a locally atomic complete algebra (LACA)
if every C € A9 is atomic. We denote the set of atoms of C € A by Atom(C).

Definition 2.4 (homomorphism). We introduce notation R““8 = {R“S | S € §}.
Let A and Z be LCAs. A Boolean homomorphism f: B(A) — B(E) is a pseudo-
homomorphism of LCAs if f“A C E. We denotes a pseudo-homomorphism by
f: A = Z. A pseudo-homomorphism h: A — = of LCAs is a (complete) homo-
morphism if \/h“S = h(\/S) for all S € A. An embedding or monomorphism
j= A — Z is an injective homomorphism.

Definition 2.5 (subLCA). A subLCA of an LCA A is a nonempty subset of A
which is itself an LCA and the inclusion map is an embedding.

Definition 2.6 (generator). Let A be an LCA. A subset § C A° is a generator of
A or G generates A if A is the only subLCA of A containing G.
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Definitions 2.7 (radius, covering number, diameter). The radius of an LACA A
is a cardinal defined by

rad(A) = min {« | VC € A® | Atom(C)| < k}
The covering number of an LCA A is a cardinal defined by
cov(A) = min {|G| | G is a generator of A}.

The diameter of an LACA A is a cardinal defined by

diam(A) = min { Z | Atom(C)| ‘ g lis a generator of A}.
Ces§

Definition 2.8 (direct product). Let I be an index set. The direct product Al of
the LCA A is defined by:

A = {s C B(A)! ] |Jmgge A}
geS

with the pointwise Boolean operations on B(All) = | JAI} € B(A)!. Then Alll is
an LCA. The LCA A is embedded into A/l by the canonical embedding b — I x {b}.

Definitions 2.9 (embedding system, direct limit). The embedding system of
LCAs is a family of embeddings

&€={j§ = Aa— A}y gaep
satisfying j& o34 = j4" for all d < d’ < d”, where D is an upper direct set. The

direct limit of € is U{jd“‘ Ag | de D} where {ja: B(Ag) — B} cp is the direct
limit of {4 : B(Ag) — B(Aa)}y<ar g arep @s Boolean algebras.

Definition 2.10 (ultrafilter). Let A be an LCA. A subset U of B(A) is an ultrafilter
of an LCA A if it is an ultrafilter of the base Boolean algebra B(A).

3. ULTRALIMIT

Definition 3.1 (LACA-valued model). Let A be an LACA and let M be a model
for a language L. The B(A)-valued universe of M is defined by

u(z) Au(y) = 0 for = # y, }

(a) — .
M _{U'M—)B(A) mgu € A, \/rngu=1

For u € M{A), the support of u is a subset of M defined by
suppu = {r € M | u(z) # 0}.

To each function F of L(M) and each u;, ..., up € M €AY, we assign a
F(uy,...,up) € MEA) by:

n

Fluso- un)®) =V { A (e

i=1

M|=y=F(x1,...,mn)} forye M.
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We regard a constant of L(M) as a function without any variables. Note that
Niej wi(z;) = 1 if n = 0. To each sentence ¢ of L(MEA)) we assign a truth value

[¥] € B(A) by following recursive rules:
[u=v] = \/{u(x)/\v(x) |z € M},

A 9ﬁ|=R(z1,...,xm)},

[[R(ul, ceum)] = V {/\ ui(z;)

i=1

[-¢l = -[¥l,
[er V2] = [e1] V [z,
[Bz o(@)] = V/ {lp(w)] | v € MM},

where R is any predicate in L.

Definition 3.2 (LACA-valued superstructure). Let A be an LACA. The A-valued
superstructure of V(X) is defined by

V(X)) = {u e V(X)) | suppu € V(X)}.

While the truth values range over B(A) on this definition, we shall see [¢], €
B(A).

Theorem 3.1. Let o(z1,...,z,) be a.formula of L with only z,,...,z, free. For
UL,...,Ur € M«A»’

r

*) le(us, -, ur)ls =V { N\ wi(z:)

i=1

931}=<p(a:1,...,:c,.)}.

Proof. For ¢ either “x; = z2” or R, (*) holds by definition. If (*) holds for an
atomic formula ¢(z) then, by simple calculus of Boolean algebra, (*) holds for
¢(F(z1,...,2,)). Thus, by induction, (*) holds for ¢ atomic. Suppose (*) holds
for ¢, @1 and 2. Since there is an atomic C € A containing all the ranges of
ui,...,ur and every range of u; is a partition of unity except for 0,

[-ela =V { N wi=:)
=1

M E= ~p(r1,...,Zr) }

It is easy to see:

[or Verly =\ { N wi(z:)
=1

Since [p(u)], = V::GM("’(‘T) A [[‘P(j)]l/\), we have [3z p(z)]y = V,enm [9(2)]a-
Therefore (*) holds for 3z ¢(z). a

im|=<p1(x1,...,z,)Vgoz(:rl,...,:v,.)}.

Similarly, we shall obtain the superstructure version.

Corollary 3.2. Let p(z1,...,z,) be a formula of Le with only x1,...,z, free. For
Uly...,Up € V(X)«A»,

T

le(ur, ..., ur)lp = V{ N\ wi(z:)

i=1

V(X) |=<p(x1,...,:c,)}.
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By the theorem and the corollary above, we have a fundamental property
[u=v] A [p(uw)] < [e(v)]. We have just introduced B(A)-valued model
MEAY = (MM R, F, &) and B(A)-valued superstructure V(X)¢A). We say that
a sentence ¢ of L(MYA)) holds in MMCA) if [p], = 1 and that a sentence ¢ of
Le(V (X)) holds in V(X)) if [], = 1. Theorem 3.1 and Corollary 3.2
follow that we consider the values u(z) only for z € suppu. For E C M, we may
regard E4A) as a subset of M¢A) by extending the domain of u € EXA} to M.
This means that we define for v € E{A)

u(z) =0 ifzx¢gPFE.
In the superstructure version, if E is a set relative to V(X) then we may assume

E4A) = {u e V(X)) | u € E holds in V(X)4M}.

Theorem 3.3 (Maximum principle). Let ¢(x) be a formula of L(M{AY) with only
« free. Then there is u € M{AY such that [p(u)], = [Bx ¢(z)],.

Proof. Let {ac}.., be a well-ordering for M. By theorem 3.1, there is C € A

containing {[¢(Z)] | z € M}. Putting b¢ = [p(dc)] A = Ve [o(de)], we have
{b¢ticq € C. Since {b¢},, is a pairwise disjoint family, we can pick u € M{©
with u(ac) > bc. Then [p(u)] > u(a¢) A [p(de)] > be for any { < a. Since
Be 0@)] = Veca 0(6) = Veca be we have [p(w)] > [3z o(z)] o

Corollary 3.4. Let p(x) be a formula of Le (V(X )&M) with only = free and let v
be an element of V(X)A) . Then there isu € V(X)) such that [u € v A p(u)], =

[3z € v ¢(2)],-
Proof. Since there is n such that suppv C V,4+1(X),

[£ev] = V{v(y) |z€yesuppv} =0 forzgVo(X).

Therefore we can choose u whose support is a subset of V,,(X). O

Definition 3.3 (ultralimit). We denote by u/U the equivalence class of u € M{A)

by the equivalence relation
z~yy = [r=y], el
The ultralimit MY /U of M modulo U of A is defined by:
M Y = {u/u | u € M((A))}_
F/U(ur /U, ... ,un/U) = (F(uy,...,ua))/U.
MM /U = R(ur /U, -, um/U) i [Rlu,...,um)] € U.

Definition 3.4 (bounded ultralimit). We denote by u/U the equivalence class of
u € V(X)) by the equivalence relation

z~yy = [z=y], el
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The bounded ultralimit V(X )M /U of V(X) modulo U of A is defined by:
V(X)W /U = {u/U | ue V(Xx)],
VXM MU = w/Uev/U i [uev] €U

Theorem 3.5 (Lo$ Principle of Ultralimits). Let ¢(z1,...,x,) be a formula of L
with only x1,...,z, free. Foruy,...,u, € M{A)

MM MU= o /U, un /U)W [e(u, ... un)] € U

Proof. The proof proceeds by induction on the complexity of formulae. The only
nontrivial step is the case where ¢ is of the form 3z (z). Suppose [3zy(z)] € U.
By the maximal principle (Theorem 3.3), there is u satisfying [¢(u)] = [3zy(x)].
Then M{A) = y(u/U) by the induction assumption. We have thus DAY
3zy(z). Conversely, suppose MEA) |= 3zep(z). Then there is some u such that
MEA) = 4(u/U). By the induction assumption, [3zy(z)] > [¥(u/U)] € U. O

Corollary 3.6 (Los-Mostowski Principle of Bounded Ultralimits).
Let ¢(z1,...,2,) be a Ao-formula of Le with only x,,...,z, free. Foruy,...,u, €

V(X))
V(X)W U ou /A, ..., ur /W) iff [e(us,. .., un)] € U

Proof. The proof is similar to that of Theorem 3.5. The only different part is the
if-part of the case where ¢ is of the form 3z € y v(z). Suppose [3z € ux ¥(z)] € U.
It follows from Corollary 3.4 that there is u € V(X)A) satisfying [u € ux A (u)] =
[Bzx € ux ¥(z)]. O

A bounded ultralimit is a pre-nonstandard universe: that satisfies (1),(2) and
(3) of Definition 1.2 with Mostowski collapsing.

Definition 3.5 (atlas). An atlas is a pair (A,U) of an LACA A and an ultrafilter
of A such that rad(V (X)) /U) = rad(A) and cov(V (X)) /U) = cov(A).

Theorem 3.7 (Sheaf representation Theorem for Nonstandard Universes). For
any nonstandard universe *V(X), there is an atlas (A,U) such that V(X)¢A) /u
isomorphic to *V (X).

We prove the theorem in the next section.

4. LocAL ULTRALIMITS

We shall see that a homdmorphism of LACAs induces an elementary embedding
of ultralimits and a bounded elementary embedding of bounded ultralimits. Let
h: A — = be a homomorphism. The induced map h,: DAY — 9CED is defined
by h«(u) = howu. Then we have the lemma below.

Lemma 4.1. Let o(x1,...,z,) be a formula of L with only x1,...,z, free. For
uy,. .., u. € MO

II‘p(h*(ul)’ sy h*(uf‘))]IE = h(l[‘p(ul’ cee ’ur)]]A)-
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Proof. There is C € A® containing all the ranges of ux. Since h[C is complete, we

have from Theorem 3.1
r

\/{ /\ h(ui(z:)) ‘SUI Ee(z1,.. ., 2r) } = h(\/{ /\'U'z‘(xi) M = p(z1,. .., Tr) }
i=1 i=1

H‘P(h*(ul)7 R h*(ur))IIE = h([[‘p(u‘lv cee 7“’1')]]1\)'
We have thus proved the lemma. O

For u € V(X)%), since supp(h o u) C suppu, we can define the induced map
hy: V(X)) 5 V(X)A) similarly.

Corollary 4.2. Let p(z1,...,z,) be a formula of Le with only x,,...,z, free. For
Ui, .. ur € V(X)EM)

[o(ha(ur), - - s hu(ur))le = A([p(ur, - -, ur)]p)-

Proof. Using Corollary 3.2, we see the proof is similar to that of Lemma 4.1. 0

Let U and V be ultrafilters of A and Z, respectively. Suppose h~1“V = U. Then

we have from Lemma 4.1 or from Corollary 4.2
[u=u], el iff [ha(u)=h.(u)]z€V.

Therefore we can define the injection h,: M) /U — M{E} /V denoted by same
hy, by hy(u/U) = hy(u)/V. Since supp h.(u) C supp u, we can define the injection
ha: V(X)) /U - V(X)4E) )V similarly.

Lemma 4.3. The injection h, is an elementary embedding of MM} /U into

MEY V.
Proof. Let ¢(z1,...,z,) be a formula of L with only z;,...,z, free. From Theo-
rem 3.5, we have for uq,...,u, € MEAD

h([p(uts- - un)])) €V Of [e(ur,...,ur)], € A7V
[o(ha(ua), .- ha(ur )z €V M [o(ur,-..,ur)], €U
MEED 1V = o(hy (ug /U, .. ., Ba(ur /W) iff DN /U = o(u, ..., uy).
O

Corollary 4.4. The injection h, is a bounded elementary embedding of
V(X)) /U into V(X)EEN /v,

Proof. Using Corollary 3.6, we see the proof is similar to that of Lemma 4.3. 0O

Let I be a set relative to V(X). We shall find a one-to-one correspondence
between P(I)A) and B(Al]). Note that P(I)€A) is the set of “the subsets of I in
V(X)) For A € P(I){M), there is C € A® such that rng A C C. Define g: I —
B(A) by g(i) = [i € A],. Then we have rngg C C and g € B(Al!]). Conversely,
for g € B(A!]), there is C € A® such that rngg C C. Define A: P(I) — C by
ifi €z,

A(z) = N sg.(3,9()), where sg,(i,b) = {ib ficI\z

i€l
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Since C is completely distributive, we have A € P(I)¢A). Suppose g(i) = [i € 4],
and ¢'(i) = [t € A’],. Then we see (g A g')(i) = [i € AN A], and (—-g)(i) =
[: € I\ A],. In the context above, the relation g(i) = [i € A], sets up a one-to-
one correspondence between P(I)A} and B(Al) as Boolean algebras. From now
on, we identify P(I)¢A) with B(All).

We shall define the special element & € 7€) ¢ (x)(A") b

w0} 425t

We call the § diagonal element of I on A. Let j: A — Al be the canonical
embedding. Then j is also a Boolean monomorphism of B(A) into P(I){A}. The
diagonal element & has following properties.

Lemma 4.5. The following statements hold.

(1) i) =1I], =b for every b€ B(A).
(2) [8 € ju(g)lam =g for every g € P(I){A).

(Al Leedyn P1)CA)

/“/

e (Al

B) =~z 20

Proof. Since [i € j(b)], = j(b)(s) = b for all i € I, [§(b) =1], = [i(d) 2 1], =

Nier [t € 5(b)] = b. From the definition of 4, it is clear that [6 =], (¢) =

8(i)(i) = 1. Then we have [8 € ju(9)lain(8) = [t € ju(9)]amn(d) = [ €gly
9(%)-

a

Theorem 4.6. For any v € V(X)«Am», there is @ map w: I — (suppv)” in
?(X)«A» such that v = j.(w)(8) holds in V(X)«A».

Proof. Since rngv € AUl | U
w: (suppv)! — B(A) by

gerngvTM89 € A.  Therefore we can define

w(s) = J\ v(s(3))(4).

i€l
Then we get w as required. First, we show w € V(X)¢A), If s # o', then there is
io € I such that s(i9) # s'(i9). Since rngv is pairwise disjoint, we have
w(s) Aw(s") < v(s(io))(i0) Av(s'(30)) (G0) =

There is C € A® such that |J rng g C C. Then we have rngw C C and then

geEmgv

V we)= V Avs@)o=A V

s€(suppv)! s€(suppv)! €1 i€l yEsuppv
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We have thus shown w € V(X )4A). For each i € I, since w(s) < v(s(i))(¢) holds
for every s € (suppv)?, we have

[v = 5+ (W) () = [v = o (@)D pn (0
= (V {o) A j(w(®) Ai(z) | y = s(2)}) ()
=V (os@)6) Aw(s))

s€(supp v)!

= \/ w(s) =1.

s€(suppv)!
We have thus proved the theorem. O

Let U be an ultrafilter of an LACA A. A local ultralimit p: V(X)$A) JU—-*V(X)
is a bounded elementary embedding satisfying p(#/U) = *z for every z € V(X).

Theorem 4.7 (Local Ultralimit Theorem). Let p: V(X )EAd /u — *V(X) be a lo-
cal ultralimit and let p be an internal element of *V(X). Then there is a local
ultralimit T: V(X )«Am Y /V — *V(X) such that the following conditions hold.
(i) The index set I is a set relative to V(X) and |I| = nos(p).
(ii) Letjz A — AU be the canonical embedding. Then U = j7“V and p = T07,.
(iii) The submodel rng T of *V (X)) is the minimal bounded elementary submodel of
*V(X) that contains {p} U rngp.

D) p T W (X)

/ Tj,. / ,p € IngT.

V(X) —— V(X)) )y

Proof. Let I be a set relative to V(X)) such that p € *I and |I| = nos(p). We have
identified B(All) with P(I)¢A), Define V C B(Al) by

gev iff pep(g/U).
Then V is an ultrafilter of Al/l. Let b be an element of U. From (1) of Lemma. 4.5,
p(4(b)/U) coincides *I. Then we have j(b) € V from the definition of V. Since
U and V are maximal filters, we obtain ;7 “V = U. Let ¢(z1,...,7,) be

a Ag-formula of L¢ with only z;,...,z, free. Let vy,...,v, be elements of

V(X)«Am». By Theorem 4.6, there are maps w;, ..., w, from I in V(X)«A» such

that vx = j«(wk)(6) hold, where § is the diagonal element of I on A. Putting
go = {i € I'| (w1 (i), ..., wr(i))} in V(X)) we have from (2) of Lemma 4.5

9o = [ € jx(go)]ain o
= [6 eju({i € I| o(wr(d), ..., wr(D))})] yin
= |[5 € {i € I'| p(ju(un)(3),... ,j*(wr)(i))}]]/\m
= [(ds (w1)(8); - - -, Ju(wr)(8)) A0
= (v, -, vr)] A
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and we have

V(X)) /U = go/U = {i € T/U | o((w1/U)(3),.. ., (w,/U)(5))}
p(go/U) = {i € T | p(p(w1/U)(3), ..., p(w,/U)(i))}.

By the definition of V, we obtain

g€V iff pe p(go/U)
[o(u, ..o, vr)lam €V it p(p(wi/U)(p), ..., p(w,/U)(D)).

The case p(z1,72) = “z1 = z2” enables us to define the operation v/V — p(w/U)(p)
where v = j, (w)(8) holds in V(X)A""). Thus, defining 7: V(X)) /v s (X)
by 7(v/V) = p(w/U)(p) where v = j,(w)(d) holds in V(X)«Am», we get T as
required. In fact, it is clear in the preceding context that 7 is an bounded elementary
embedding of 17(X )«Am» /V into *V(X). Let ¢ be the identity map on I, then we
see T(ju (E/U)(8/V)) = p(i/U)(p) = *(p) = p. For u/U € V(X)) /U, let & be the
constant map from I onto {u} in V(X )¢A), then we have (4, (u/U)) = p(ii/U)(p) =
p(u/U). Suppose a bounded elementary submodel W of *V'(X) contains {p} Urng p.
From the definition of 7, 7(v/V) = p(w/U)(p) € W for some w/U € V(X)) /u.
Therefore rng 7 is the minimum. We have completed the proof of Theorem 4.7. O

Let { jf," tAg — Agr} d<d' d,aep Pe an embedding system of LACAs with direct
limit {j4: Agq — A} cp. Let U be an ultrafilter of A, then each Uy = j4~“U is an
ultrafilter of A4.

Theorem 4.8 (Elementary Net Theorem of Ultralimits). Let 9t and 0N be models
for L. Suppose there are elementary embeddings 74: M) /Uy — N satisfying
the condition 74 = T4 © jg'* for d < d'. Then there is an elementary embedding
7: A /U — N such that 74 = 70 j4, for d € D.

am€Aad /Uy
jj', ZDZ«A» /u ......... s =91 .

o {Aad 1,

Proof. Let v be an element of M{A). Sincerngv € A = {j4“S |d € D and S € Ag}
from the definition of direct limits, there is u € 9{A4} such that v = jg, (u).
Therefore defining 7(v/U) = 74(u/U4) where v = ja,(u), we get T as required.
Let ¢(z1,...,2,) be a formula of L with only zi,...,z, free and let vy,..., v,
be elements M¢AY, Then there are d € D and uy,...,up € MEAa) guch that
Uk = jd.(ux). We conclude as below. ‘

A /Uy = p(ur /Ug, .. ur/Ug) i N o(ra(ur/U), . . ., 7a(ur/U))
A /U = p(ur /U, ... o /U) B N = o(r(or /U, . . ., T(vy /U)).

48



NONSTANDARD UNIVERSE

Theorem 4.9 (Bounded Elementary Net Theorem of Bounded Ultralimits).
Suppose there are local ultralimits 4: V(X)) /Uy — *V(X) satisfying
the condition 74 = T4 © jg'* for d < d'. Then there is a local ultralimit
7 V(X)) /U - W (X) such that 74 = T 0 jg, for d € D.

V(x)aad fug,

k

i . P (XA A v V(X
Jd

Td

V(X)) Sy
Proof. Similar to the proof of Theorem 4.8. O
We call the pair (A,U) in Theorem 4.8 or Theorem 4.7 the direct limit of

{<Ad’ud>}d§d’,d,d’€D'
Proof of Theorem 3.7 Let {p¢},_, be a sequence in *V(X) with x = cov(*V(X)).
We define local ultralimits {p; : ?((AC»/UC =V (X)} <. of 'V(X) by:

Ao =P({0,1}), Up = {1}.

Aey1 = AU where |I¢| = nos(p¢), pe €rmgpcy1 in Theorem 4.7.

(Ax,Un) is the direct limit of {{(A¢,U¢). 5} in Theorem 4.9.
Then the direct limit (A,U) of {(A¢,U¢)}, ., is an atlas of *V(X).
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