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1Introduction

In order to investigate the structure of agroup G , we tried to study the
set  Mon_{1}(G) of all monomials over  G . We can naturally define two distinct
operations of such monomials. One is based on an ordinary multiplication
of  G and another is based on substitution. Amonomial over  G can also
be regarded as afunction over  G . Such arecognition shows that the set
of all monomials over agroup and certain subsets of it have some algebraic
structures. Actually  Mon_{1}(G) forms agroup under ordinary multiplication
and it also forms amonoid under substitution. In this paper we gave a
special attention to asubset  SMon_{1}(G) of  Mon_{1}(G) each of whose element
sends the identity of  G to itself.  SMon_{1}(G) and its certain quotient set form
semi‐distributive ring (SDR) and the group algebra  Z[G] respectively. In
the former part of this paper, some algebraic properties of  SMon_{1}(G) as an
SDR are discussed. Using  Mon_{1}(G) we defined atopology over  G . In order
to visualize inclusion relation of these closed sets, we defined asemi‐lattices
and alattice whose point is aclosed set of the topology The main purpose of
this paper is to show the relationship between the shape of the lattice and
the structure of the group.
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1 Introduction 

In order to investigate the structure of a group G, we tried to study the 

set Mon1(G) of all monomials over G. We can naturally define two distinct 

operations of such monomials. One is based on an ordinary multiplication 

of G and another is based on substitution. A monomial over G can also 

be regarded as a function over G. Such a recognition shows that the set 

of all monomials over a group and certain subsets of it have some algebraic 

structures. Actually Mon1 (G) forms a group under ordinary multiplication 

and it also forms a monoid under substitution. In this paper we gave a 

special attention to a subset SMon1 (G) of Mon1 (G) each of whose element 

sends the identity of G to itself. SMon1 (G) and its certain quotient set form 

semi-distributive ring (SDR) and the group algebra Z[G]. respectively. In 

the former part of this paper, some algebraic properties of SMon1(G) as an 

SDR are discussed. Using Mon1(G) we defined a topology over G. In order 

to visualize inclusion relation of these closed sets, we defined a semi-lattices 

and a lattice whose point is a closed set of the topology.The main purpose of 

this paper is to show the relationship between the shape of the lattice and 

the structure of the group. 



2Preliminary

Let  G be agroup and  F_{n} be afree group which is generated by  n invariants
 X_{1},  \ldots,  X_{n} . We regard amonomial over agroup with invariants  X_{1},  \ldots,  X_{n}
as an element of the free product  G*F_{n} of agroup  G and afree group  F_{n} . We
denote the set of all monomials over  G with  n invariants by  Mon_{n}(G) which
is the same set to  G*F_{n} . For elements  f(X)=(123)X^{2}(23)X^{-1},g(X)=
 (132)X^{-1}(23) of  Mon_{1}(S_{3}) , two different operations “.” and “ C’ can be
defined naturally as follows;

 f(X)\cdot g(X)  =  (123)X^{2}(23)X^{-1}(132)X^{-1}(23) ,

 g(X)\cdot f(X)  =  (132)X^{-1}(23)(123)X^{2}(23)X^{-1}=(132)X^{-1}(12)X^{2}(23)X^{-1} .

Hence it is clear to see  1=1_{G} is the identity element of  Mon_{1}(S_{3}) and

 f(X)^{-1}=X(23)X^{-2}(132) , and  g(X)^{-1}=(23)X(123) .

 f(X)\circ g(X)  =  f(g(X))=(12)X^{-3}(23)X and

 g(X)\circ f(X)  =g(f(X))=X^{-1}(23)X^{2}(12) .

It is clear to see that  X is the identity element for the operation  "\circ”  .Therefore

we can see that  Mon_{1}(S_{3}) forms agroup under the operation “.” with the
identity element  1_{G} and forms amonoid under the operation “  0 ” with the
identity element  X . But it is not easy to analize the algebraic structure of
 Mon_{n}(G) , so we are going to investigate certain subsets and quotient set of
 Mon_{n}(G) with which we are able to deal more easily. Take it for granted to
call  f(X)\cdot g(X) and  f(X)og(X) the ordinary product and the composition
product of  f(X) and  g(X) respectively.

Definition 1Let  G be agroup,  X_{1},  \ldots,  X_{n} be invariants.  F_{n} is afree group
generated by  X_{1},  \ldots,  X_{n-1} and  X_{n} .
(1)  Mon_{n}(G) denotes the set of all monomials over  G , which is the same
thing to the free product  G*F_{n} of  G and  F_{n} .

Ageneral form of an element  f(X) of  Mon_{1}(G) is as follows;

 f(X)=\{  a_{1}X^{e_{1}}a_{2}X^{e_{2}}\cdots a_{f}X^{e_{r}}a_{0} or

 a

where  a_{1},  a_{2},  \cdots a_{r}\in G-\{1\} ,  a_{0},  a_{1},  a\in G ,  e_{1},  \cdots,  e_{r}\in \mathbb{Z}-\{0\} .

(2) For an element  f(X_{1}, \ldots, X_{n}) of  Mon_{n}(G),  \deg_{i}f(X) is defined to be
the sum of powers of invariant  X_{i} which appear in  f(X) .
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2 Preliminary 

Let G be a group and凡 bea free group which is generated by n invariants 
ふ，．．．，Xn.We regard a monomial over a group with invariants X1,..., Xn 
as an element of the free product G＊凡ofa group G and a free group Fn. We 
denote the set of all monomials over G with n invariants by Monn (G) which 

is the same set to G * Fn. For elements f(X) = (123)炉 (23)x-1,g(X) = 
(132)X-1(23) of Mon1(S3), two different operations "・" and " o " can be 
defined naturally as follows; 

f(X) ・ g(X) = (123)X2(23)X-1(132)X-1(23), 
g(X) ・ f(X) = (132)X-1(23)(123)X町23)x-1= (132)X-1(12)X2{23)X-1. 

Hence it is clear to see 1 = la is the identity element of Mon1(S3) and 

f(X)-1 = X(23)X-2(132), and g(X)-1 = (23)X(123). 

f(X) o g(X) = f(g(X)) = {12)X-3(23)X and 
g(X) o f(X) = g(f(X)) = x-1(23)X2(12). 

It is clear to see that Xis the identity element for the operation "o".Therefore 
we can see that Mon1 (S3) forms a group under the operation " ・" with the 
identity element la and forms a monoid under the operation "o " with the 

identity element X. But it is not easy to analize the algebraic structure of 

Monn(G), so we are going to investigate certain subsets and quotient set of 

Monn(G) with which we are able to deal more easily. Take it for granted to 

call f(X) ・ g(X) and /(X) o g(X) the ordinary product and the composition 

product of f(X) and g(X) respectively. 

Definition 1 Let G be a group, X1,...，ふbeinvariants. Fn is a free group 
generated by X1,...,Xn-1 and Xn. 
(1) Monn (G) denotes the set of all monomials over G, which is the same 

thing to the free product G *凡 ofG and Fn. 

A general form of an element f(X) of Mon1(G) is as follows; 

f(X) = {“国xe:・・・aぷ咋。 or
a 

， 

where a1,aぁ・・・arEG-{1}, a。,a1,a E G, e1, ・ ・ ・, er E Z -{O}. 
(2) For an element f (Xi,..., Xn) of Monn(G), deg;J(X) is defined to be 
the sum of powers of invariantふ whichappear in f (X). 



(3) For an element  f(X) of  Mon_{n}(G),  \deg f(X) is defined to be the sum
  \sum X\ovalbox{\tt\small REJECT}_{1}\deg\ovalbox{\tt\small REJECT}(X) of  \deg\ovalbox{\tt\small REJECT}(X\ovalbox{\tt\small REJECT} s for all  i .

Note that an element  f(X)=f(X_{1}, \ldots, X_{n}) of  Mon_{n}(G) can be regarded
as amapping of  G^{n} to  G when an element (  (g_{1}, \ldots, g_{n}) of  G^{n} is substituted
into  f(X) .

Example 1Let  G be the dihedral group  D_{10} of order 10. An element  f(X_{1}, X_{2})
 (13524)X_{1}^{-1}(12)(35)X_{2} of  Mon_{2}(D_{10}) sends an element  ((12345), (14253)) of
 D_{10}\cross D_{10} to (14)(23).

(4)  SMon_{n}(G) stands for anormal subgroup of  Mon_{n}(G) defined by

 SMon_{n}(G)=\{f(X)=f(X_{1}, \ldots, X_{n})\in Mon_{n}(G)|f(1, \ldots, 1)=1\} .

It is obvious that  SMon_{n}(G) is anormal subgroup and asubmonoid of
 Mon_{n}(G) under operations “. ” and  "\circ" respectively. We write this situation
that  (SMon_{n}(G), \cdot) forms asubgroup of (  Mon_{n}(G),  \cdot\rangle and  (SMon_{n}(G), \circ)
forms asubmonoid of  (Mon_{n}(G), 0) . Seeing an element of  Mon_{n}(G) as
afunction or amapping of  G^{n} to  G , it is observed that two distinct ele‐
ments  f(X) and  h(X) are possible to work as the same function, namely
 f(g_{1}, \ldots,g_{n}) coinsides with  h(g_{1}, \ldots,g_{n}) for any element  (g_{1}, \ldots, g_{n}) of  G^{n} .
This fact urges us to divide  Mon_{n}(G) into some classes each of which is a
collection of elements which stand for the same function of  G^{n} to  G . In order

to formulate the situation above, we define  I_{n}(G).and  PMon_{n}(G) as follows.
 I_{\eta}(G) is asubset of  Mon_{n}(G) any of whose element  f(X)=f(X_{1}, \ldots, X_{n})
satisfies that  f(g_{1}, \ldots,g_{n})=1 for any element  (g_{1}, \ldots,g_{n}) of  G^{n} .  PMon_{n}(G)
is defined to be aquotient group  Mon_{n}(G)/I_{n}(G) of  Mon_{n}(G) by  I_{n}(G) and
it is claer that each equivalent class is acollection of the same functions on
G.  PSMon_{n}(G) can be d.efined in the same way:

 PSMon_{n}(G)=SMon_{n}(G)/I_{n}(G) .

Following propositions show the structures of  PMon_{1}(G)for some known

goup  G .

Theorem 1Let  G be an abelian group. Then  PMon_{n}(G) is isomorphic to
 \mathbb{Z}_{\exp G}^{n}\cross G .

Remark 1For a dihedal group  D_{2p} of order  2p for a prime  p ,
 PSMon_{1}(D_{2p}) is isomorphic to  \mathbb{Z}_{p}\cross(\mathbb{Z}_{p}^{2} : \mathbb{Z}_{2}) .

Theorem 2Let  G be a group.  PMon_{1}(G)\simeq G\cross\cdots\cross G(|G|times) if and
only if  G\simeq \mathbb{Z}_{2} or  G is a non abelian simple group.
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(3) For an element J(X) of Monn(G), degf(X) is defined to be the sum 

江＝1deg; J(X) of deg; J(X)'s for all i. 

Note that an element J(X) = J(X1,..., Xn) of Monn(G) can be regarded 
as a mapping of an to a when an element ((g1,..., 9n) of an is substituted 

into J(X). 

Example 1 Let a be the dihedral group D10 of order 10. An element J(X1，ふ）
(13524)X11(12)(35)X2 of Mon2(D10) sends an element ((12345), (14253)) of 

D10 x D10 to (14)(23). 

(4) SMonn(a) stands for a normal subgroup of Monn(a) defined by 

SMonn(a) = {J(X) = f(X1,...,Xn) E Monn(a)lf(l,..., 1) = l}. 

It is obvious that SMonn(G) is a normal subgroup and a submonoid of 

Monn(G) under operations"・" and" o" respectively. We write this situation 
that (SMonn(G), •) forms a subgroup of (Monn(G), ・) and (SMonn(G), o) 
forms a submonoid of (Monn(G), o). Seeing an element of Monn(G) as 
a function or a mapping of an to G, it is observed that two distinct ele— 

ments f(X) and h(X) are possible to work as the same function, namely 

f(g1,..., 9n) coinsides with h(g1,..., 9n) for any element (91,..., 9n) of an. 
This fact urges us to divide Monn(G) into some classes each of which is a 
collection of elements which stand for the same function of an to G. In order 
to formulate the situation above, we define In(G).and PMonn(G) as follows. 

l11(G) is a subset of Monn(G) any of whose element J(X) = J(X1,..., Xn) 
satisfies that /(91,...,9n) = 1 for any element (91,...,9n) of G". PMonn(G) 
is defined to be a quotient group Monn (G) / In (G) of Monn (G) by In (G) and 
it is claer that each equivalent class is a collection of the same functions on 

G. PSMo叫 (G)can be defined in the same way: 

PSMonn(G) = SMonn(G)/In(G). 
Following propositions show the structures of PMon1 (G)for some known 

group G. 

Theorem 1 Let G be an abelian 9roup. Then PMonn(G) is isomorphic to 
zn 
expG xG. 

Remark 1 For a dihedal group D2p of order 2p for a prime p, 

PSMon1 (D2p) is isomorphic to Zp x (Z; : Zか

Theorem 2 Let G be a 9roup. PMon1(G) ~ G x ・ ・ ・ x G (IGltimes) if and 
only if G ~ Z2 or G is a non abelian simple 9roup. 



3Semi Distributive Rings

Definition 2Let  R=(R, \cdot, 0) be aset in which two distinct operations are
defined.  R=(R, \cdot, \circ) is said to be aleft SDR if  R satisfies following four
conditions

(1)  (R, \cdot) forms agroup with the identity  1_{R} ,
(2)  (R, \circ) forms amonoid with the identity  X ,
(3)  1_{R}\circ a=a\circ 1_{R}=1_{R} holds for any  a\in R ,
(4)  Left distributity holds, namely

 (x\cdot y)oz=(xoz)(yoz) for any  x,  y and  z\in R .

In order to see the some analogues of considerations which appear in
ordiary ring theory, we give definitions of an ideal, homomorphisms of SDR,
and the homomorphism theorem for them as follows.

Definition 3Let  R be an SDR. Asubset I of  R is said to be an ideal of  R

if I satisfies following three conditions:
(1)  I is anormal subgroup of  (R, \cdot)
(2)  R\circ I  \circ R\subseteq I ,
(3)  (a\cdot I)\circ(b\cdot I)\subseteq(aob)\cdot I for any  a,  b\in R , equivqlently  ao(b\cdot i)\cdot I\subseteq(aob)\cdot I
for any  i\in I and  a,  b\in R .

Following three are examples of an ideal of an SDR.
 (i)An ideal of an arbitrary ring.
 (ii)The commutator subgroup  [SMon_{n}(G)^{n}, SMon_{n}(G)^{n}] is an ideal of an SDR
 SMon_{n}(G)^{n} .

(iii) For arational integer  m , the inverse image  \deg(m\mathbb{Z}) of an ideal  m\mathbb{Z} of
 \mathbb{Z} is an ideal of an SDR  SMon_{1}(G) .

Definition 4Let  A and  B be SDR’s. Amapping  \varphi of  A to  B is said to be
an SDR homomorphism if  \varphi preserves two operations “. ” and  "\circ”and sends
the identity element of  A to that of  B .

Note that akernel of  \varphi is an ideal of  A . Aproposition which is similar
to the homomorphism theorem for an ordinary ring holds as follows.

Theorem 3Let  A and  B be SDR ’s and  \varphi be an SDR homomorphism of  A

to  B , then the image of  \varphi is isomorphic to the quotient SDR   A/ker\varphi as an
SDR,  i.e .   Im\varphi\simeq A/ker\varphi . as an SDR.

Following are some fundamental properties of  SMon_{1}(G) .
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3 Semi Distributive Rings 

Definition 2 Let R = (R, ・, o) be a set in which two distinct operations are 
defined. R = (R, •, o) is said to be a left SDR if R satisfies following four 
conditions 
(1) (R, •) forms a group with the identity 1凡
(2) (R, o) forms a monoid with the identity X, 

(3)IR o a= a o IR= IR holds for any a E R, 
(4) Left distributity holds, namely 

(x • y) o z = (x o z) (y o z) for any x, y and z E R. 

In order to see the some analogues of considerations which appear in 
ordiary ring theory, we give definitions of an ideal, homomorphisms of SDR, 
and the homomorphism theorem for them as follows. 

Definition 3 Let R be an SDR. A subset I of R is said to be an ideal of R 
if I satisfies following three conditions: 
(l)I is a normal subgroup of (R, •) 
(2)R o Io R ~ I, 
(3)(a・ I) o (b・ I) ~ (aob) • l for any a, b E R, equivqlently ao (b-i) ・ I ~ (aob) ・ I 
for any i E I and a, b E R. 

Following three are examples of an ideal of an SDR. 
(i)An ideal of an arbitrary ring. 
(ii)The commutator subgroup [SMonn(Gt, SMonn(G)n] is an ideal ofan SDR 

SMonn(Gt. 
(iii) For a rational integer m, the inverse image deg(mZ) of an ideal mZ of 
Z is an ideal of an SDR SMon1(G). 

Definition 4 Let A and B be SDR's. A mapping <p of A to B is said to be 
an SDR homomorphism if <p preserves two operations "・" and "o" and sends 
the identity element of A to that of B. 

Note that a kernel of <p is an ideal of A. A proposition which is similar 
to the homomorphism theorem for an ordinary ring holds as follows. 

Theorem 3 Let A and B be SDR's and <p be an SDR homomorphism of A 
to B, then the image of <p is isomorphic to the quotient SDR A/ ker <p as an 
SDR, i.e. Im <p'.'.:::'. A/ker<p. as an SDR. 

Following are some fundamental properties of SMon1(G). 



Theorem 4Let  U(SMon.(G)) be the set of invertible elements of  (SMon_{\ovalbox{\tt\small REJECT}}(G), \circ) ,
then  U(SMon_{\ovalbox{\tt\small REJECT}}(G)) is isomorphic to  Z_{2}xG .

Corollary 1Let  G and  H be groups as an SDR  PSMon_{1}(G) is isomorphic
to  PSMon_{1}(H) as an SDR if and only if  G is isomorphic to  H as a group.

Theorem 5Let  G and  H be groups.  PSMon_{1}(G\cross H) is isomorphic to
 PSMon_{1}(G)\cross PSMon_{1}(H) as an SDR if and only if  \exp(H^{ab}) is prime to
 \exp(G^{ab}) .

Theorem 6  SMon_{1}(G)^{ab} is isomorphic to  Z[G] as an SDR.

4Topologies on  G defined by some set of
monomials

In this section we will try to consider some  topologies,semi‐lattices and
lattices which are defined by aset Aof monomials. Take it for granted to
choose  SMon_{1}(G) as such Awhich woud reflect the strcture of  G . Roughly
speaking, aclosed set of the topology considered here is aset of solutions of
an equation which is defined by an element of  SMon_{1}(G) .

Definition 5Let Abe a subset of  Mon_{1}(G) . We define the set of solutions
 Sol_{G}(\Lambda) of equations each of which is defined by an monomial of Aas follows

 Sol_{G}(\Lambda):= { g\in G|f(g)=1 for any   f(x)\in\Lambda}  )

Let Abe a subset of.  SMon_{1}(\sigma) .  \mathcal{F}_{\sigma\Lambda} is defined to be the collection of solution
set of any subset  \Delta of  \Lambda defined as follows

 \mathcal{F}_{0\Lambda}:=\{Sol_{G}(\Delta)|\Delta\subseteq\Lambda\}

Definition 6  \mathcal{F}_{\Lambda} is defined to be the weakest topology which contains  \mathcal{F}_{0\Lambda} as
a collection of closed sets.

Example 2Let  \sigma,  \tau be generations of  Z_{4},  Z_{9} respectively and  \Lambda_{1} , A2 be

 SM..on_{1}(Z_{4})\wedge' SMon_{1}(Z_{9}) respectively. Then  \mathcal{F}_{oA_{1}} and  \mathcal{F}_{0\Lambda_{2}} can be drawn as
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Theorem 4 Let U(SMon1 (G)) be the set of invertible elements of (SMon1 (G), o), 

then U(SMon1(G)) is isomorphic to Z2 x G. 

Corollary 1 Let G and H be groups as an SDR PSMon1 (G) is isomorphic 

to PSMon1 (H) as an SDR if and only if G is isomorphic to H as a group. 

Theorem 5 Let G and H be groups. PSMon1 (G x H) is isomorphic to 

PSMon1(G) x PSMon1(H) as an SDR if and only if exp(H0b) is prime to 

exp(G叫．

Theorem 6 SMon1(G)0b is isomorphic to Z[G] as an SDR. 

4 Topologies on G defined by some set of 

monomials 

In this section we will try to consider some topologies,semi-lattices and 

lattices which are defined by a set A of monomials. Talce it for granted to 

choose SMon1 (G)邸 suchA which woud reflect the strcture of G. Roughly 

speaking, a closed set of the topology considered here is a set of solutions of 

an equation which is defined by an element of SMon1(G). 

Definition 5 Let A be a subset of Mon1 (G). We define the set of solutions 

Sola(A) of匈uationseach of which is defined by an monomial of A as follows 

Sola(A) := {g E Glf(g) = 1 for any f(x) EA}) 

Let A be a subset of SMon1(a). :FuA is defined to be the collection of solution 

set of any subset△of A defined as follows 

F。A:={Sola(•) I•~ A} 

Definition 6 :FA is defined to be the weakest topology which contains :F.。Aas 
a collection of closed sets. 

Example 2 Let a, r be generations of Z4, Z9 respectively and A1, A2 be 

SMon1(Z4), SMon1(Z9) respectively.Then :F.。Ai and :F.。A2can be drawn as 



case

Theorem 7Let  G^{ab} stand for  G/[G, G] for a goup G.  If|G^{ab}| is prime to
 |H^{ab}| , then

 \mathcal{F}_{SMon_{1}(G\cross H)} is homeomorphic to  \mathcal{F}_{SMon_{1}(G)}\cross \mathcal{F}_{SMon_{1}(H)}

Definition 7Let  (L, \subseteq) be a poset with binary relahon  \subseteq .

i)  (L, \subseteq) is said to be a semi‐lattice if  L has the greatest lower bound  x\wedge y
for any pair of elements  x and  y of  L .

 ii) A semi‐lattice  (L, \subseteq) is said to be a lattice if  L has the least lower bound
 x\vee y for any pair of elements  x and  y of  L .

Remark  2Let\subseteq be an inclusion relation.

i)  (\mathcal{F}_{0SMon_{1}(G)}, \subseteq) forms a  semi- lattice- and--\dot{\iota}s denoted‐by  \mathcal{L}_{o(G\rangle} .

 ii)(\mathcal{F}_{SMon_{1}(G)}, \subseteq) forms a lattice and is denoted by  \mathcal{L}_{(G)} .

Definition 8Let  L and  K be lattices. A mapping  \sigma :  Larrow Kis said to be  a

(lattice)homomorphism if

 (x\Lambda y)^{\sigma}=x^{\sigma}\Lambda y^{\sigma} and  (x\vee y)^{\sigma}=x^{\sigma}\vee y^{\sigma}

for any pair of elements  x,  y of  L .

Alattice homorphism  \sigma is said to be alattice isomorphism if it is bijective.A
semi‐lattice homomorphism and asemi‐lattice isomorphism can be defined
similarly.  L\simeq K stands for that there exists a(semi)lattice isomorphism
betwen two (semi)lattices  L and  K .

Following propositions are the main theorem of this paper which stand
for arelation between the shape of a(semi)lattice and the structure of the
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case A1./  Z4 C邸 eA2 / ~9 

T2 T4 
o• 

Theorem 7 Let cab stand for C/[C, G] for a goup C. If IC叫isprime to 
IH叫， then

FsMon1(GxH) is homeomorphic to FsMon1(G) X FsMon1(H) 

Definition 7 Let (L, ~) be a poset with binary relation ~-

i) (L,こ） issaid to be a semi-lattice if L has the greatest lower bound x A y 
for any pair of elements x and y of L. 

ii) A semi-lattice (L, ~) is said to be a lattice if L has the least lower bound 
x Vy for any pair of elements x and y of L. 

Remark 2 Let ~ be an inclusion relation. 

i) (;;;。SMoni(G),~) forms a semi-lattice and切-denotedby.C。(G)・

ii) (FsMon1(G)，こ） formsa lattice and is denoted by.C(a)・

Definition 8 Let L and K be lattices. A mapping u : L→Kis said to be a 
(lattice)homomorphism if 

(x I¥ザ＝ザ/¥yaand(xVyt=x"Vya 

for any pair of elements x, y of L. 

A lattice homorphism a is said to be a lattice isomorphism if it is bijective.A 
semi-lattice homomorphism and a semi-lattice isomorphism can be defined 
similarly. L'.::::'. K stands for that there exists a (semi)lattice isomorphism 
betwen two (semi)lattices Land K. 

Following propositions are the main theorem of this paper which stand 
for a relation between the shape of a (semi)lattice and the structure of the 



Theorem 8i)  G is an abelian  p‐group such that  \exp(G)\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} for some
positive integer  ei\ovalbox{\tt\small REJECT} and only  i\ovalbox{\tt\small REJECT} j_{0}(G) is isomorphic to the following
semi‐lattice.

 \downarrow e-1e

 |_{0}^{2}1
 \simeq  \mathcal{L}_{0}(G)

In this case,  \mathcal{L}_{0}(G) is isomophic to  \mathcal{L}(G) as a lattice.

 ii)G is a finite  p‐group if and only if  \mathcal{L}_{0}(G) is ispmorhpic to the following
semi‐lattice.

— unknown

 \mathcal{L}(G) is also isomorphic to a lattice which is drawn as above. Whereas
it does not alnays imply that  \mathcal{L}_{0}(G) is isomorphic to  \mathcal{L}(G) as a semi‐
lattice.

 iii)G is an abelian group such that  \exp(G)=p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{r}^{e_{r}} for some prime
 p:( p_{1}.  \neq p_{j} if  i\neq j) and some integer  e_{i} if and only if  \mathcal{L}_{0}(G) is isomorp
to the following semi‐lattice.

 |_{1}^{2}\downarrow e_{1}-10e\cross  |_{1}^{2}\downarrow e_{2}-10e\cross  \cross  |_{1}^{2}\downarrow e_{f}-10e
In this case  \mathcal{L}_{0}(G) is not isomorphic to  \mathcal{L}(G) as a semi‐lattice for  r\geq 2 .
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Theorem 8 i) G is an abelian p-group such that exp(G) = pe for some 
positive integer e if and only if Co(G) is isomorphic to the following 

semi-lattice. 

~ Co(G) 

In this case, C0(G) is isomophic to C(G) as a lattice. 

ii) G is a finite p-group if and only if Co(G) is ispmorhpic to the following 
semi-lattice. 

¢'：翌翌忍誘翌翌，：7•• 
9 ，ンヘ'••'· • 

ゞ全涎·表：：’,忍';，~... unknown 

£(G) is also isomorphic to a lattice which is drawn as above. Whereas 

it does not always imply that £0(G) is isomorphic to £(G) as a semi-

lattice. 

iii) G is an abelian group such that exp(G) = P?P~2 • • • p~r for some prime 
Pi (p, # Pi if i =/: j) and some integer ei if and only if Co(G) is isomorp 
to the following semi-lattice. 
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In this case £0(G) is not isomorphic to C(G) as a semi-latticeforr 2 2. 
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