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WHAT DIFFERENTIATES STATIONARY STOCHASTIC
PROCESSES FROM ERGODIC ONES: A SURVEY

MICHEL VALADIER

ABSTRACT. Stationarity of a stochastic process seems connected to the idea of con-
stancy. But ergodicity is needed for the property that almost surely the observation
of a trajectory from time —co to 0 makes possible the identification of the law of the
whole process, including the future. When the stationary process is a Markov chain
with a finite number of states it is well known that the set of states divides in ergodic
classes. Decomposition of more general stationary processes in ergodic classes goes
back to von Neumann. This seems a hidden result rarely developed in text books.
After some preliminaries we will expose Choquet way and the Kryloff-Bogoliouboff
way which was made a bit more precise by Oxtoby and greatly generalized by Dynkin.

1. Introduction

Very often in contemporary papers the authors assume that a stochastic process is
ergodic because under the weaker hypothesis of stationarity their proofs no lbnger
hold. One aim of this paper is to show that this difficulty may be immaterial.

A specially interesting problem is prediction. Stationarity (of a stochastic process
— for a precise definition see Section 2) seems connected to the idea of constancy.
But ergodicity is needed for the property that (almost surely of 'coursé) the obser-
vation of a trajectory from time —co to 0 makes possible the identification of the
law of the whole process, including the future: this is made precise in Theorem 2
and the consequence after.

When the stationary process is a Markov chain with a finite number of states

the classical theory, already in [Do, Chapter V], shows that the set of states divides
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M. VALADIER

in ergodic classes. And when one observes a trajectory, this trajectory lives in one
ergodic class and it amounts (if only one observation is done which is the only
possibility if the time is the one of our life) to the same thing as if the process
was ergodic. Decomposition of more general stationary processes in ergodic classes
goes back to von Neumann [N1]. This seems a hidden result rarely developed in
text books: Denker, Grillenberger and Sigmund’s book [DGS] is an exception but
it does not emphasize the consequences. All amounts to the following: there is
a probability law which I call it contingency law, A, on the set of ergodic laws;
firstly an ergodic law Q is chosen according to A and then the trajectory is chosen
according to Q.

After some preliminaries we will give the main result. It was proved by different
methodsv. The elegant Choquet way will be summarized quickly. The Kryloff-
Bogoliouboff way which was made a bit more precise by Oxtoby and greatly gener-
alized by Dynkin will be more detailed. For some other works see Maharam [Mabh],
Varadarajan [Var] and for a generalization to capacities Talagrand [T].

I have discovered the existence of Chersi’'s paper [Che] in May 2000. I don’t
know more than the title and the very short Math. Reviews analysis. Surely it is
also on the subject.

The author thanks Gérard MICHAILLE and Charles CASTAING for their helpful

comments.

2. Stationary and ergodic processes

Let (K,K) be a Borel standard measurable space, that is a measurable space iso-

morphic to a Borel subset of a Polish topological space (for the Choquet point of
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STATIONARY PROCESSES.

view, K will be compact metrizable). A stochastic process with discrete time tak-
ing its values in K is a bilateral sequence (Xn)nez of random variables (in short
r.v.) defined on a probability space (Z,S,II) which take their values in K. The
set Q = KZ is more fundamental than =. It is still Borel standard and is compact
metrizable when K is compact. Let F = K®Z; wheﬁ K is compact and K = B(K )
F = B(Q), that is the product of the Borel tribes coincides with the Borel tribe of
the product topology. The law of the process, always denoted by P in this paper, is
the probability measure on (£, F) image of Il by £ — (X5 (§))nez - The “canonical”
process (Xn)nez is defined on 2 by the property that X, is the n-th coordinate
function. In the sequel we do not use (Z,S,II) and the canonical process is simply
denoted by (Xn)nez-

A point w = (Tp)nez € Q is a trajectory. The bijective map T of Q in itself
defined by T' ((x,;)nez) = (Zn+1)nez is the Bemoulli shift. It is an homeomorphism

when K is compact. The image of P by T is denoted by T%(P).

Definition. The process (Xn)nez is stationary if its law is invariant i.e. for any

A€ B(Q), P(T7'A) = P(A) (that is T¢(P) = P). We write P € L.

Definitions. Let (X,)nez be a stationary process. The invariant events are the
A € F satisfying T"'A = A (or TA = A). The set they constitute is a tribe
denoted by Z. The process of law P is ergodic! if 7 is coarse (up to P-negligible
sets), that is if A € T = P(A) = 0 or 1. One also says that P is an ergodic law.

We write P € Lerg.

In ergodic theorems, T7 denotes, when j € Z% = N*, the j-th power of T :

1 Doob [Do, p.457], and several authors, say “metrically transitive”.
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TIi=ToTo---oT, T° =idq and, when j € Z* , T7 denotes (T"~1)lJl.

The notation 8, denotes the Dirac measure at z.

3. Identification of the law of an ergodic process from the observation

of its past

Proposition 1 is elementary. It will be applied, when K is compact,to A =Q = K z

as well as to A = K¢. For the Borel standard case see Proposition 5.

Proposition 1. Let A be compact metrizable and D a dense subset? of C(A) (usu-
ally D will be countable). Let (Pi)ken be a sequence of probability measures on A.
It weakly converges (i.e. for the weak topology relative to the duality with C(A)) iff

Vf € D, the sequence (f, f dPi)ren converges in R.

Proof. The “only if” part is obvious. For the converse assume that Vf € D, the
sequence ([, f dPk)ken converges in R. The space M} (A) of all probability mea-
sures on A is weakly compact metrizable. The sequence (Px)xen has a unique limit
point. Indeed if @Q; and @ are two limit points, one has, for i =1 and 2, Vf € D,

J\ fdQi =limg [, fdP; hence Q1 = Q2. O

Theorem 2. Assume that K is compact and that the process (X, )nez with values
in K is ergodic. Then almost surely, for all d € N*, the law Pix_,,,,..x,) ©of

(X_dgt1,---,Xo) is the weak limit of k=* Z;‘f;é O(x_jraciyrnzj) @5 kK — +o0.

Consequence. Hence P-almost surely, knowing (z,)n<o implies the knowledge of

P(X_441,....Xo) hence of P(x,,,x Xqo1,Xq) (this writing supposes (p, q) € Z? and

Pl

p < q) since stationarity implies P(x, ... x,) = P(x,_,,..Xo) - Recall now that P

2 1t is sufficient that the linear subspace of C(A) spanned by D is dense.



STATIONARY PROCESSES
is the projective limit of the measures® Pix,....x,)- So, mathematically, P can be
identified; from a numerical point of view, this is another story: see all the concepts

defined and studied in Statistical Theory.

Proof. Let d € N* and Dy be a countable dense subset of C(K¢). For any fo € Dy
let f denote the function on 2 associated to fo which is defined by: f((zn)nez) =
fo(z-g+1,---,Z0). By Birkhoff’s theorem if (z,)nez does not belong to a P-negligi-

ble set Ny,:

k-1 k-1
/Q fo d[k—1 Zé(z_(,.+,,_,),...,z_,.)] =k fo(T-(j4d-1)s-- -2 T5)
- j=0 3=0

k-1
=k ) f[T7((zn)n))]
i=0
(k—+o0)
/Q fdpP

—_ /}(d fo dP(X_d-’-l,---aXO) .

By Proposition 1 this proves the convergence of k! Zf;é 5(:5_;1.“_1),“_,:_].) to

Px_airrnXo) i (Zn)nez & Ujyep, Nso- So the statement holds for (zn)nez not in

UdeN~ [UfQGDd Nfo]- O

Comment. The meaning of Theorem 2 is that almost surely the mere observation
of the past (from —o0) of an ergodic process allows to identify the law of the whole
process (including the future). From a theoretical point of view this is a perfect
situation for prediction. Indeed when () is written Q = K2- x KN and w = (€,()
that is £ = (Tn)nco = wjz_ and ¢ = (Tn)n>0 = wn-, there is a disintegration

(see next Section) of P unique up to equality a.e. which is a family (Li)g cxt- of

3 More simply when the P(x,, ..... X,) are known, the values of P on the algebra of cylindrical
sets are known, and this algebra generates B(2).
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probability laws on KN". Then knowing £ = wjz_ = (Zn)a<o, the future obeys to

the conditional law L¢ on KN°.

4. Basic ideas of disintegration

When a sub-tribe G of F is given, there exists under very general topological hy-
potheses concerning (2, a disintegration with respect to G, that is a family of prob-

ability measures (Q“)weqn on (Q, F) which is G-measurable in w and which satisfies
VBe F,VYVAeG, P(ANB)= / Q“(B)dP(w).
A

Let us consider, as it always should be, the conditional expectation Eg(lg) as a
class of random variables up to equality a.s. The functions w — Q¥ (B) (B running
through F) constitute a “consistent”* family of versions of the E%(1p).

This has a long story in probability theory: von Neumann [N1], Kolmogorov
[Ko], Jirina [Ji], Hoffmann-Jgrgensen [HJ], Valadier [V1-2] for some details®. (For
textbooks see Bauer [Ba], Dudley [Du].) But disintegration is unduly considered as
a hard concept reserved to experts and, in my opinion, too rarely used.

Classically for any real integrable r.v. Y (see for example Dudley [Du, 10.2.5

p.272}, Doob [Do, Th.9.1 p.27], Kolmogorov [Ko, ch.V (12) and (14)]) :

/ Y (w')dQ¥(w') % (EFY)(w).
Q
An important particular case is the following. Suppose 2 is a product® 2; x 03,

w = (£,¢) and G is generated by the projection on ; (possibly £ is the past, ¢ is

4 The problem if one chose anyhow versions of ES(1g) would lie in the g-additivity with respect
to B. A classical expression for disintegration is regular conditional probabilities.

5 At the time when in France only Bourbaki and Jirina were quoted, I wrote [V1] where I gave
a result of Hoffmann-Jgrgensen [HJ] in the framework of a product and where I compared several
statements of this time. In [V2, p.13] I had the idea, being not aware of [H11}, of introducing the
quotient tribe.

6 To be more precise (1, F1) is separated and countably generated and 2 is a “good”
topological space, that is Polish or Suslin...
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STATIONARY PROCESSES
the future). Then Q“ depends only on £ and has the form 6 ® L¢ where é¢ is the

Dirac mass at £ and L¢ is the conditional law of ¢ given &.

5. Decomposition of a stationary process. The contingency law

In the following P always denote a probability measure on 2 = K Z and we will
say equivalently that P is invariant;, or stationary. This refers to the stationarity of
the “canonical” process defined in Section 2. And P is said ergodic if the process
is ergodic. Although the decomposition theorem admits séveral non trivial proofs

and some variants in its formulation, it roughly says at least the following:
Theorem 3. Any stationary law P on Q is a mizing of ergodic laws.

Comments. 1) All amounts to the following: there is a probability law which I call
contingency law, X, on the set of ergodic laws; firstly an ergodic law Q is chosen
according to A and then the trajectory is chosen according to Q. So, if only one
observation is done, one observes a trajectory of an ergodic process. And in my
opinion, the prediction of stationary processes’ is not a problem different frém the
prediction of ergodic ones.

2) For example imagine the set of meteorological phenomena appearing during
one year is the value of a stationary process with time in Z, and imagine that this
process has been always observed. Then it could be treated as an ergodic process:
two moons or another rotational velocity of the planet Earth could have occurred
if the world has been created differently. This is contingency.

3) Any probability is a mixing of Dirac measures: if P € M1 (R) it is the mixing

7 On the subject of prediction of stationary processes there is a very ambitious book: Fursten-
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of the measures §, according to the image P of P on ML (R) by 7 — &,. This has
not any interest. In the interpretation of Theorem 3 the roles of time, past and

future are essential.

Theorem 3 was originally proved by von Neumann in 1932 [N1]. It received
several interesting proofs: the one of Choquet [Chol, 1956/1957], the method of
Kryloff-Bogoliouboff [KB, 1937]; see also Maharam [Mah, 1950}, Farrell [Fa, 1962],

and specially Dynkin [Dy, 1978].
5.1 Choquet’s way.

Assume K is compact metrizable. Let M2 () denote the set of probability mea-

sures on (2, B(Q?)) endowed with the weak topology.

Theorem 4. Assume K is compact metrizable. 1) The set Lgy of invariant prob-
abilities on Q is a non empty convex compact subset of ML (Q). 2) The set 8L,
of extreme points of Ls coincide with the set of ergodic laws Lerg. 3) Let P € L.

There exists a probability measure A on 0Ly = Lerg such that
P= QdA Q). (1)

(In (1) the right-hand side is a weak integral of measures whose meaning is as well

Vo € C(R), /dep=/cm[/ﬂsod62] dA(Q)

VB e B(Q), P(B)= /,_- Q(B)dA(Q) )
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Some ideas of the proof. The first assertion has an easy proof. The second is well
known of specialists and a rather old result: see Blum-Hanson [BH, 1960] and Cho-
quet knew it before; I recommend the proof of Denker-Grillenberger-Sigmund [DGS,
(5.6) p.24]. Then the conclusion follows from the Choquet integral representation
theorem (besides the quoted works of Choquet one can see [Bo, IV.7.2 Th.1 p.219]

and Phelps [Ph]).

Remarks. One year before Choquet, Hewitt-Savage [HS] used the same argument
with the set of laws on R! invariant by permutation of coordinates whose extreme
points are the laws of families of i.i.d. random variables (they continued a famous
work of de Finetti [Fi]). But in [HS] the set of extreme points is closed which

makes the integral representation elementary while here Lerg is not closed (think of
11

. . . . 1
stationary Markov chains with matrices ( 1" 1 ™y ), for n € N*, n — +00).
n

n

5.2 Kryloff-Bogoliouboff’s way (generalized by Dynkin).

Let us summarize the main result of Kryloff-Bogoliouboff as it was generalized by

Dynkin [Dy].

Proposition 5. Let ) be Borel standard. There ezists a countable set W of
bounded measurable functions satisfying:

BS1. Let (Pi)ren be a sequence of probability measures on s;uch that Vf € W,
the sequence ( fQ f dPy)ren converges in R. Then there exists a probability P such
thatVfeW, [, fdP, — Jo fdP.

BS2. If H is a linear space of real functions on Q containing W and stable with

respect to the “bounded pointwise convergence®”, then H contains all bounded mea-

8 That is: if fn € H, if the sequence (fn )n is uniformly bounded and converges pointwisely to
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surable functions on (.
Thanks to BS2 there is a unique P satisfying BS1.

Remark. A short time after Dynkin’s paper [Dy, 1978], Ramakrishnan and Rao
proved in [RR, 1980] that the notion of B-space introduced by Dynkin coincides

with the notion of Borel standard.
Proof. See Dynkin [Dy] Section 4.2 page 714. O

Notations. Let F denote the set of all real bounded F-measurable functions on

Q. Let F denote the intersection

F= () 7
PeL,,
of the P-completions of F.
1 n-1 -
Theorem 6. (1) Let Q¥ denote - ZéT.-w and W given by Proposition 5. The
=0

two following subsets of 2, Q' and Qerg defined by:
QA ={weN:VfeWw, (/ fdQ‘,‘:) converges in R}
0 n

and, if Q“ denotes the probability — whose ezistence follows from BS1 — satisfying

view, [ raQs - [ sae-,
Q 0
Qerg := {w € Q' : Q¥ is an ergodic law}

belong to F and have P-measure 1 for any invariant probability P. Moreover VP €

Lo, Vf€F, [o fdQy =25 [ fdQ.

f, then f € H.
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(2) The family (Q¥)weq.,, disintegrates any invariant probability P relatively to

T, which means: for any B € F, (E5(1g))(w) "2 Q¥(B) or

VBeF, VAeT, P(AmB):/

ANQerg

Q“(B)dP(w) (2)
as well as, for any Y € LY(Q, F, P) (or Y > 0 and F-measurable),

VA w Pg.s. )
(BLY)(w) /Q Y dQ® .

Remarks. 1) When K is compact metrizable as in [KB], [Ox] and [DGS], one gets
on a set denoted by {24, the weak convergence Q¥ — Q¥ fér the o(M®(Q),C(R))
topology. There are less P-negligible sets and equalities P-almost everywhere than
here (in the [Dy] framework). And here one gets only the following two weak
convergences: (i) on the set ', Vf e W, [, fdQ% — [, fdQ¥;

(i) YP € Lo, Vf € F, [, fdQY £2% [ £dQw, that is Vf € F, VP € Ly,
P{weQ': [ fdQy — [, fdQ¥}) =1

2) In the Dynkin framework (2 is not necessarily a product and T is not assumed
to be bijective. When Q2 = K®2 and T is the Bernoulli shift, as in [KB], [O>x] and
[DGS], Q¥ can be treated as a bilateral limit as written in the following formula

Q“i= Im Nlnl™ > by

nez” lJ'Slnl_l
sgnj=sgnn

Proof. All arguments are those of [Dy] with some simplifications possible thanks to
the framework and some more explanations when I feel them useful. Part (A) comes
from Lemmas 4.1 and 6.1 of [Dy], (B) comes from Lemma 3.1 and Theorem 3.4 and

(C) is a part of Theorem 3.1.
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(A) It is easy to prove )’ € F. By Birkhoff’s theorem
VPe Ly VieF, [ 7dQy L2 BN, 3)
Q

Since W is countable, (3) implies VP € L, P(§)') = 1. By the definition of Q“

and (3), VP € Ly, Vf e W,

(B f)(w) F2* / fdQY. @
Q

We postpone the discussion of the measurability properties of w — Q“ to the end

of Part (A). Now let for P € Lq,
Hpi={f € F: (BEN@) "2 [ £aQ).
Q

Property BS2 applies to Hp so Hp = F. As consequences, (4) holds firstly if
f € F; then (4) still holds if f is F-measurable and [0, +0o]-valued and it holds too
for f € LY(Q, F,P) (use f = f* — f~). This proves Part 2 of the statement (with

letter f in place of Y). Now, again by Birkhoff’s theorem, for f € Fand P € L,

P({w€9’=/nfdQ‘,i—>/QfdQ‘”})=1-

Now we discuss the measurability properties of w — @Q“. Firstly for any f € F ,
w fn fdQ is F|o-measurable because it is the limit of a sequence of measurable

functions. Thanks to BS2
H:={f€ Fiwe / fdQ¥ is Fiq-measurable}
Q

equals F. Then (4) extended to F implies: forany B € F,w — Q% is Z-measurable,

hence there exists pp: 2 — R which is Z-measurable and satisfies VP € Ls,
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P(Ng) = 0 where Ng := {w € @ : Q¥(B) # ¢p(w)}. Let A be a countable
algebra which generates 7 and N := |Jgc 4 NB. Then VP € Ly, P(N) = 0 and
w — Q¥(B) is I-measurable on Q'\N, firstly for B € A, and then, thanks to the

monotone class lemma, for B € F.

(B) Now we prove that for any P € L, for P-almost every w in ', Q¥ is

T-invariant which writes also Q“ € Lg. Firstly let us prove

VP& Ly, Vf€F, ER(f) "2V ER(foT). (5)
Indeed, for any f € Fand any A€ 7T,

/ 14(foT)dP :/(1A oT)foT)dP = /'lAfd[T#P] ='°/ 1ofdP.
Q Q Q - Ja
Formula (5) can be written
[raqe 2 [ (romyag-. (6)
Q Q

Now let A be a countable algebra which generates 7. Taking, for any B € A,
f = 1p, one gets from (6) Q“(B) Pas. Q“(T~1B). So there exists a P-negligible
set N such that Yw € Q'\N, one has [VB € A, Q¥(B) = Q“(T"'B)]. Hence

Pwe Q' : Q¥ € Ly}) =1.

(C) Now we have to prove that Qe := {w € Q' : QY is ergodic} belongs to F

and has P-measure 1 for any P € Lg. Let for B € F and v € Ly,
fe(v):= N [Q“(B) — V(B)]2 dv(w) .
Since v(B) is the v-mean of w — Q“(B),

fe(v) = L Q¥ (B)? dv(w) — 1/(B)2 .
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Now let us consider Yp(w) := @“(B)? which is Z-measurable (more precisely

f—measurable) in w. Then, for P € Ly,

fB(Q“") = /QYB dQ“’ - YB(LU) P-é.s. [Ef)(YB)] (w) _ YB(w) P-é.s. 0.

So there exists N a P-negligible set such that VB € A4, Yw € V'\N, fp(Q“) =0.

Now let us prove that if v € Ly, [v is ergodic] <= [VB € A, fg(v) = 0]. Firstly
VB € A, fg(v) = 0] implies v({w € ' : VB € A, Q“(B) = v(B)}) = 1, hence
v({w € Q' : Q¥ = v}) = 1. This ensures VB € F, v({(EZ(18))(.) = v(B)}) = 1
and, taking B € Z, 13 “=* EZ(15) “&" v(B) hence v(B) = 0 or 1. This proves
the implication <=. The converse is easily checked.

The functions fp are measurable functions with respect to the tribe on L
generated by the maps P — P(C) (C running through F). Hence

Leg= [ {v € Ls: fa(v) =0}
BeA

is a measurable subset of Ls; and Qerg € F. The property P({w € Q' : Q¥ €

Qerg}) = 1 follows from the foregoing observations. O

Remarks. 1) There are two equivalence relations: firstly

’

QY =qQ" (R1)
which makes sense on 2’ and secondly
VA €T, lA(w) =1A(w'). (RQ)

Let I',, denote the class of w € Q' for (R1) and let us prove its invariance. For

any f € W changing w in Tw or in T~ 'w does not change the Cesaro limit of the
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sequence (f(Tjw))j that is lim, [ fdQ¥. Hence QT+ = QT '¥ = Q¥, so Tw and
T~ 'w both belong to I',,, and since T is bijective, TT, = T,,.

The class of w for (R2) is w = {T9w : j € Z} because this is the smallest Borel
invariant set containing w.

Thanks to the invariance of I, relation (R2) is always finer than (R1). But in
general they do not coincide neither on (2e;g nor on Q\ N where N is any negligible
set. Let us give an example: let @ be a probability measure on K not reduced to a
Dirac mass and P := w®Z. Since the X, are i.i.d. Q¥ Paep (and as well known
— [Do] Th.1.2 page 460 — the process is ergodic). So there is a unique class for
(R1). For any P-negligible N, Q\N has the cardinal of R (because P is isomorphic
to the Lebesgue measure). The existence of only one class for (R2) would lead to a
contradiétion. Indeed, suppose there is only the class w = {T9w : j € Z}. For any
w’, 3j € Z such that v’ = TYw and the set Q\N ;)f trajectories under consideration
would be countable.

The set Q\Qer is not the biggest P-negligible set possible. For a discussion of
negligible sets when K = {0,1} in connection with the notion of random numbers
see Dellacherie [De].

2) Since (R2) is finer than (R1), w — Q“ is constant on each class w; let O
denotes its value on w and £ the set of all classes. Then as a consequencebf (2), P
is ﬁhe mixing of the ergodic laws O¥ (w € Q) according to the image of P on 0 by
w — w. Thus (2) looks as (1) of Theorem 4. For historical works which attacked
disintegrating P with respect to Z see Halmos [H11] and Ambrose-Halmos-Kakutani
[AHK].

3) Dynkin proves many other results: specially he gets (Theorem 3.1) that L
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is a simplex in the Choquet sense whose extreme points are the ergodic measures.

6. Further comments

When one observes only one trajectory of a process which is assumed to be station-
ary, one can only identify the law Q“ corresponding to the observed trajectory. For

example if one observes a Markov trajectory living in {1,2} obeying to the tran-

1 1
sition matrix ( g f > then either the whole process is ergodic and obeys to this
i 2 R
transition matrix with probabilities of states equal to ( g ) or there exists other
5

ergodic classes about nothing is known.

A remark about a small strange phenomenon: suppose one observes (Zn)nez._
where z, = (—1)". One possibility is: there is not any random and this is just
a periodic behavior which may continue with z, = (=1)" for n > 1. If we are
sure that there is behind a stationary stochastic process then the observed trajec-
tory continues in this way and the trajectory (yn)nez = ((=1)"*?),_ ., is another
(hidden) possibility. So, if the process is ergodic, these two trajectories are the

only ones and have probability 1/2. This is the Markov chain with states {—1,1},

1

1
matrix of transitions ((1) (1)) and probabilities of states equal to ( 2 )
2

7. Prospects

Let us consider manufacturing of concrete. The dimensions and shapes of the stones
are random variables with stochastic characteristics which are the same as long as
the stones come from the same origin. This origin could change when building a new
work. This is contingency. But as long as the origin of stones remains unchanged,

all amounts as if the ergodic hypothesis was satisfied. To be more precise the results
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of Section 5 would have to be extended to the group R" in place of Z. Fomin [Fo]

gives in Russian some results in this line; see also Remark 6.1 in [Dy, p.717). More

generally the problem of relaxing the ergodic hypothesis into the stationarity one

comes up in stochastic homogenization. For a few references see Dal Maso-Modica.

[DMM1-2], Nguyen-Zessin and Licht-Michaille [LM1-2].

[AHK]

[Bal

[Bir]

(BH]

(Bo]

[Che]

[Chol]

(Cho?2]
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