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Abstract

Tk competitive equilibrium is defined for an economy with aclub and many identical consumers. In an

example of the economy, the eristence of the competitive equilibium is shown Also, it is proved that any

allocation under the competitive equilibrium in the economy is Pareto optimum

I. Introduction

Groups of people who share and jointly consume goods are called “clubs”, or consumption

ownels呻 membership alTangements. G\otimes 出 consumed in clubs are intemediate $\mathrm{g}\infty \mathrm{d}\mathrm{s}$ 反 oen

purely private goods and purely public goods. In this paper we shall consider asimple model ofan

economy where there is one club and there are many, but identical consumers. The market of

membership ofthe dub is analyzed and the competitive equilibri um for the economy is defined In

an example of the economy, the competitive equilibrium is shown to exist. Our definition of

competitive $\eta \mathrm{u}\mathrm{i}1\mathrm{i}\mathrm{b}\mathrm{r}^{\mathfrak{l}}\mathrm{i}\mathrm{u}\mathrm{m}$ is an extension of the usual competitive equilibrium for economies only

with private goods. In addition, allocations under the competitive equilibrium are proved to be

Pareto optimum.
In his famous paper J. $\mathrm{M}$ Buchanan (1965) presented amodel of economy with clubs, and

considered Pareto optimality of allocations in the economy. Following his paper, many papers

have been published (for detail, confer the survey article by T. Sandier and J. T. Tschirhart (1980)).

In most papers such as $\mathrm{Y}$ -K. Ng (1976), 1974, 1978), E. Berglas (1976), and E. Helpman and A. $\mathrm{L}\backslash$.
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Hillman (1977), the optimality of alocations was considered In afew papers, the competitive

equilibrium for economies with clubs is analyzed, for example, by S. Scotchmer and $\mathrm{M}$ H. Wooders

(1987). On the other 1mA acompetitive equilibrium was defined by D. Foley (1967) and D. $\mathrm{K}$

Richter (1974) for economies with public goods, which is aspecial case of clubs. However, such

an equilibrium is quite different from the equilibrium in economies with clubs, because clubs are
independent agents and behave for their own purpose.

The definition of competitive equilibrium depends on the behavior of clubs. In this paper we
assume that the club $\ovalbox{\tt\small REJECT}$ its members’ utilities. In our model ofeconomy all individual are

assumed to be identical in that their utility $\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\alpha \mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ are the same and they have initially the same
amount of wealth By virture of this $\mathrm{a}\mathrm{s}\mathrm{s}\iota \mathrm{n}\mathrm{n}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{L}$ we can easiy define anatural concept of

competitive equilibrium for the economy. However, in general cases, we exped that many kinds of

equilibrium concepts might be defined

II. A General Model

First we present ageneral model of an economy with clubs. There are $J$ kinds of commodities,

each ofwhich is shared and consumed in aclub. Thus, there are $n$ clubs in the economy and each

one them is indicated by an $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}\dot{\Gamma}^{-1},\cdots$, $J$. Clubj is group people who share $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{y}/$

in consumptioa Also, there are $n$ kinds of other commodities, which are usual private goods and

consumed separately by each single person.
We assume that individuals are “divisibl\"e, and the set of all the persons in the economy is

denoted by $A$ , which is aunit interval, i.e., $A=[0,1]$ .

Let us denote the quantity of commodity $j$ consumed in club $j$ by $x_{j}$. Also, let us denote the

fraction people belonging to dub by $\theta_{j}$ , where $0\leqq\theta_{j}\leqq 1$ . When the set ofthe members ofdub

$j$ is measurable subset $M_{j}\mathrm{o}\mathrm{f}A$, $\theta_{j}=2$ (A4) where $X$ (A4) is the Lebesgue measure of set $M_{j}$. The

total number of indiiduals in the economy is fix4 and $\mathrm{f}\mathrm{i}\mathrm{a}\alpha \mathrm{i}\mathrm{o}\mathrm{n}$

$\#\mathrm{y}$-denotes the number of people

participating in $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$.

We assume that people do not care about who are members of $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$, but only about the number

of its members. Therefore, $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$ is described by pair $(x_{j}, \theta_{j})$ .

The utility ffinction ofperson $a\in A$ is denoted by

$u=U_{o}((x_{1}, \theta_{1}),\cdots$ , $(x_{n}, \theta_{n}),y)$,

where $y\in K$ denotes the quantities of private goods. The variable $\theta_{j}$ of club $(x_{j}, \theta_{j})$ indicates $\mathrm{a}$ .
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degree ofcongestion.
To denote the utility of aperson who is not amember of aclub, we assume that people can get

nothing fiom belonging to clubs in which nothing is consumed Namely, when $x_{J}=0$, people in
$\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$ get as the same level ofutility as people out of $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$ get

The production set ofthe commodities consumed in clubs and the private goods is denoted by $Y$,

which is asubset ofthe non-negative orthant of a $(J+n)$ -dimensional Euclidean space. When we
write $(x,y)\in Y$, ffiej-th coordinate of vector $x\in R^{J}$ denotes an amount of the commodity consumed
in $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$, whereas vector$y\in F$ denotes amounts ofprivate goods.
Ng by measurable $\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{c}\dot{\mathrm{u}}\mathrm{o}\mathrm{n}$ $m$: $Aarrow R$, let us denote the income each individual, which arises

fiun production of commodities. The total of incomes is pqud to the valued of commodities
produced in the economy. When production $(x,y)\in Y$ is chosen and the price $\mathrm{o}\mathrm{f}x$ is $p\in R^{J},\mathrm{a}\mathrm{n}\mathrm{d}$ the
price ofyis $q\in P$ the total value produced $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{i}\dot{\mathrm{b}}\mathrm{e}\mathrm{s}$ is $px+\emptyset/\mathrm{a}\mathrm{n}\mathrm{d}$ the followingmust hold.

$\int_{A}m(a)da$ $=px+\wp$

Finally, we assume that every individual is initially amember of each club where nothing is
consumed in the club, that is, $x_{j}4$ and $\theta_{J}=1$ in $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$. Initially, each $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$ is specified by $(0, 1)$,

and every individual has the membership of $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$. When an individual wants to leave $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$, he

sells his membership in the market and $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{b}/$buys it. Ifthe price membership ofclubj is $r_{j}$, then

the initial income ofindividual $a$ is $m(a)+ \sum_{J^{1}}^{n}.r_{J}$ .

III. A Simple Model

Now, we shall confine ourselves to an economy in which there are two kinds ofcommodities, say
$” \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{M}^{\cdot}\mathrm{q}$ $1$

” and commodity 2”. commodity 1is agood shared and consumed in aclub.
The club is ayoup people who share commodity 1in consumption. We ass ume that there is only

one club in the economy. Commodity 2is aprivate good and consumed by each single person.
In what follows, we assume that commodity 2is numeraire and its price is always unity.

We assume that individuals are “divisible” and the set of all the persons in the economy is
denoted by $A$ , which is aunit interval, i.e., $A=[0,1]$. Also, we assume that all individuals are
identical, and their utility ffinctions are the same and their incomes are equal.

Let us denote the quantity of commodity 1consumed in the club by $x$. Also, let us denote the.

66



fraction of people belonging to the club by $\theta$ , wtoeoe $0\leqq\theta\leqq 1$ . When the set ofthe members of
the club is ameasurable subset $M\mathrm{o}\mathrm{f}A$, $\theta=2(\lambda 4)$ wlaeoe $\mathrm{Z}\{\mathrm{M}$) is the Lebesgue measure of set A#

The total number ofindividuals in the economy is fix4 and fiwrion d&notoe the number ofpeople
participating in the club.

We assume that people do not care about who are members ofthe club, but only about the number
ofits members. Therefore, the club is described by pair $(x, \theta)$.

The utility fimction ofeach person, who becomes amember club $(x, \theta)$, is denoted by
$u=U((x,\theta)$, $y)$ ,

where $y$ denotes the quantity ofcommodity 2.
The variable dot club $(x, \theta)$ indicates degree of congestion. The following assumption means

that people prefer aless crowded club.

Assumion 3.1: $U$ is acontinuous ffindion and $U((x,\theta),y)$ is increasing in both $x$ and $y$, and
decreasing in 7.

On the other hand, we denote the utility ofa person who is not amember ofthe club by
$u=V(\gamma)$ .

Assumption 3.1: $V(yFU((0,\theta),y)$ for ally and 7.

The above assumption implies that people can get nothing ffom belonging to the club in which
nothing is consumed. Namely, when $=0$, people in club $(x, \theta)$ get as the same level of utility as
people out ofthe club get.

In Figure 1, an indifference sufface for the utility $\mathrm{f}\mathrm{i}\mathrm{m}\alpha \mathrm{i}\mathrm{o}\mathrm{n}$ satisfying the above assumptions is
illustrated

The production set of commodities 1and 2is denoted by $Y$, which is asubset ofthe non-negative
orthant ofa2-dimeniional Euclidean space.

Assumption 3.3: Set $Y$ is non-empty, closed, and convex.

Next, let us denote by $m$ the income of each individual, which arises ffom production of
commodities. The total ofincomes is equal to the valued commodities produced in the economy.
When production $(x,y)\in \mathrm{Y}$ is chosen and the price ofcommodity 1is$p$,the total value ofproduced.
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Fig. 1: Indifferent Su&ce for Utility Function $U$

commodities is$px+y$, and the following must hold.

$m= \int_{A}mda=px+y$

Namely, the value of produced commodities is diMbutd equally among all the individuals in the

economy.
Finally, we assume that every individual is initially amember ofthe club and nothing is cons umed

in the club, that is, $x4$ and $\theta=1$ in club $(x, \theta)$. Initially, the club is specified by $(0, 1)$, and every

individual has the membership ofclub $(0, 1)$. When an individual wants to leave the club, he sells

his membership in the market and the club buys it. Ifthe price ofmembership of club $(0, 1)$ is $r$,

then the initial income ofeach individual is $m+r$.

IV Competitive Equilibrium

As some individuals leave the club and the club buys some amount of commodity 1club $(0, 1)$

changes to club $(x, \theta)$ . Let us denote the price of membership of club $(x, \theta)$ by $q$ . Price $q$ is an

admission fee that individuals have to pay if they join club $(x, \theta)$ . Since each individual is
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negligible, and single person does not affect variable Iofclub $(x, \theta)$.

The budget consffaint which each individual must satisfy injoining the club, is denoted by

$q+y\leqq m+r$,

where $y\mathrm{i}\mathrm{s}$ the amount ofconsumption commodity 2. Thus, each person will continue tojoin the
club if $V(m+r)<U((x,\theta),m+r-q)$ , or leave the club if $V(m+r)>U((x,\theta),m+r-q)$ .

Given $m$, $r$, andx, let us define $q_{0}$ and $q_{1}$ by
$q_{0}= \max\{q|V(m+r)\leqq U((x,0),m+r-q)\}$

and
$q_{1}= \max\{q|V(m\dagger r)\leqq U((x,1),m+r-q)\}$ .

By Assumption 3.1, we have $q_{0}\geqq q_{1}$ . When $q>q_{0}$, nobody will join the club, and therefore $\theta=$

$0$ . On the other hand, when $q\leqq q_{1}$ , everybody willjoin the club, and therefore $\theta=1$ . When $q_{0}\geqq$

$q>q_{1}$ , some will join the club, but others will not The fiaction $\theta \mathrm{o}\mathrm{f}$ individualsjoining the dub is
determined by

$V(m+r)=U((x,\theta),m+r-q)$ ,

and $0\leqq\theta<1$ . We write the above relation as $\theta=\mathrm{X}q,x$, $m$, $r$). Thus, the demand for membership

ofthe club is defined by

$\theta$ $=F(q,x, m, r)\equiv\{$

1 $0\leqq q<q_{1}$

$f(q,x,m, r)$ $q_{1}\leqq q<q_{0}$ .

0 $q_{0}\leqq q$

The demand curve ofF has negative slope with respect to $q$ as depicted in Figure 2.
Now, we assume that the purpose ofthe club is to $\ovalbox{\tt\small REJECT}$ its members’ utilities. In our simple

model economy, since individuals are all identical, we can assume that the club chooses $X$, $\theta$ , and

$q$ so as to $\ovalbox{\tt\small REJECT}$ $U((x,\theta),m$ \dagger $r-q$). In $\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{i}\dot{\mathrm{u}}04$ there is abudget constraint for the club.

Let $p$ be the price of commodity 1. Then, the budget constraint for the club is
$\sqrt x+r=q\theta$ .

The behavior of the club can be interpreted as follows. There is amanager in the club, whose

job is to $\ovalbox{\tt\small REJECT}$ the utilities of people joining the club. For that purpose, the manager will

determine amount $X$ of commodity 1consumed in the club, number $\theta$ ofmembers ofthe club, and

price $q$ of membership. Thus, given $p$, $m$, and $r$, the club will $\ovalbox{\tt\small REJECT}$ $U((x,\theta),m+r-q)$ with

respect to $X$, $q$ , and $\theta$ under budget constraint$px\dagger r=q\theta$ . Therefore, the demand for commodity

1and the supply membership by the club are defined by
$G(p, m, r)\equiv\{(x, \theta, q)|px+r=q\theta$ and $U((x,\theta),m+r-q)\geqq U((z,n),m+r-s)$

for all $(\underline{7}, n,s)$ with$p^{\underline{7}}+r=sn$}.
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price $\mathrm{o}\mathrm{f}\mathrm{m}\mathrm{e}\mathrm{r}\iota \mathrm{b}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{p}$

Fig. 2: Demand Curve of Membership of the Club

numbe ofmembers

$\mathrm{c}$ ommodity 1

Fig. 3: Behavior ofthe Club
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Given $q$, asituation ofthe club is $\mathrm{i}\mathrm{u}\ovalbox{\tt\small REJECT}$ in Figure 3. Usually, the demand for commodity 1
by the club will be adecreasing $\mathrm{f}\mathrm{i}\mathrm{u}\kappa\dot{\mathrm{h}}\mathrm{o}\mathrm{n}$

$\mathrm{o}\mathrm{f}p$ and the suPply membership by the club will be an
increasing function $\mathrm{o}\mathrm{f}q$ .

Finally, producers $\mathrm{m}\ovalbox{\tt\small REJECT}$ the value of commodities, and the supply function of commodity 1
and commodity 2is defined by

$H(p)\equiv$ { $(\mathrm{x},\mathrm{y})$ $|px+y\geqq px’+y$’for all $(x’,y’)\in Y$ }.
In equilibrium, the following must hold:

$\theta=F(q,x, m, r)$ , $(x, \theta, q)\in\infty$, $m$, $r)$, $(x,y)\in H(p)$, and $m=px+y$.
Thus, the competitive equilibrium for the economy can be described by ($\mathrm{p},$ $q,$ $(x, \theta),y,$ $m,$ $r\}$ and
defined as follows:

Definition 4.1: $\{p, q, (x, \theta), y, m, r\}$ is said to be a $\underline{\infty \mathrm{m}\mathrm{o}\mathrm{e}\dot{\mathrm{b}}\dot{\mathrm{h}}\mathrm{v}\mathrm{e}}$ equilibrium if the following
conditions are satisfied:
(1) If $\theta$ $>0$, then $V(m+r)\leqq U((x,\theta),m+r-q)$ , and if $\theta<1$ , then $V\{m+r)\geqq$

$U((x,\theta),m+r-q)$ .
(2) $px\dagger r=q\theta$ and $U((x,\theta),m+r-q)\geqq U((z,n),m+r-s)$ for all $(z, n,s)$ will

$\sqrt{}^{\underline{7}}+r\leqq sn$ .

(3) $(x,y)\in Y\mathrm{a}\mathrm{n}\mathrm{d}$ $m=px+y\geqq\sqrt x’+y$’for all $(x’ y’)\in Y$ .

In the above definition, condition (1) means that each person is $\ovalbox{\tt\small REJECT} \mathrm{g}$ utility under abudget
constlaiffi Condition (3)

means that producers ofcommodities are $\mathrm{m}\ovalbox{\tt\small REJECT} \mathrm{g}$ profits. Conditions (1) and (2) imply that the
market of membership is in equilibrium. Also, conditions (2) and (3) imply that the market of
commodity 1is in equilibrium. Therefore, by Walras’ law, the market of commodity 2is in
equilibrium.

The competitive $\mathrm{e}^{1}\mathrm{q}$uilibrium can be defined in more general cases (see Takekuma (1999)). In

condition (1) oflhe above $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\dot{\mathrm{m}}\dot{\mathfrak{n}}\mathrm{o}\mathrm{l}$ each person simply decides whether he (or she) should the
existing club, or not Therefore, our definition of competitive equilibrium is weaker than, or
different from that of S. Scotchmer, S. and M. H. Wooders (1987), in which people choose one club

join among many potentially existing clubs
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price ofconu[off.iy $1$ – dunuld club,

Fig. 4: Market ofCommodity 1

V. An EXample ofthe Economy

In this section we are going to show an example of the economy in Section I. Commodity 1,

which is consumed in the club, is interpreted as the fidities ofthe club. Commodity 2, which is a

private good, is assumed to $\mathrm{k}" \mathrm{m}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{y}"$.
The set of all the persons in the economy is denoted by $A=[0,1]$ . Let us denote the size of

facilities of the club by $k$ and the fiaction of people belonging to the club by $\theta$ , where $0\leqq\theta$ $\leqq 1$ .

Therefore, the club is characterized by apair $(k, \theta)$ .

All individuals are identical, and their utility functions and the initial holdings ofmoney are the

same. The utilty $\mathrm{f}\mathrm{f}\mathrm{i}^{1}\mathrm{n}$ $\mathrm{c}\dot{0}\mathrm{o}\mathrm{n}$ ofeach person, when he (or she) is amember of club $(k, \theta)$, is assumed

to have the following special form.
$u=18\sqrt{k(1-\theta)}+y$,

where $y$ denotes the quantity of money. On ffi other hand, the utility of aperson who is not a

member ofthe club is assumed to be

$u=y$.

The cost for producing the $\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{i}\dot{\mathrm{b}}\mathrm{o}\mathrm{e}$ of the club is denoted by acost $\mathrm{f}\mathrm{i}\mathrm{m}\mathrm{c}\dot{\mathrm{h}}\mathrm{o}\mathrm{L}$ which has the
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following special form.

$c= \frac{1}{3}\emptyset$ .

Let$p\mathrm{b}\mathrm{e}$ the price ofcommodityl. Producers commodity 1maximize profits,

$\pi=pk-c=pk^{-}\frac{1}{3}t$ .

The condition for profit maximization is

$\frac{d\pi}{dk}=p-\frac{2}{3}k=0$ , i.e., $k= \frac{3}{2}$p. (5.1)

Therefore, the supply curve of commodity 1is astraight line with apositive slope illustrated in

Figure 4.
Each individual $\mathrm{i}\dot{\mathrm{m}}\dot{\mathrm{b}}\mathrm{a}\mathrm{u}\mathrm{y}$ holds the same amount $\overline{y}$ of money, and we assume that $\overline{y}=10$ .

The profits obtained in production ofcommodity 1are $\eta \mathrm{u}\mathrm{a}\mathrm{U}\mathrm{y}$ distributed to all the individuals in the

economy. Each individual receives the same amount $\pi$ profits from producers. In $\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{i}\dot{\mathrm{u}}\mathrm{o}\mathrm{l}$

every individual is $\mathrm{i}\cdot \mathrm{i}\dot{\mathrm{b}}\mathrm{a}\mathrm{u}\mathrm{y}$ member ofthe dub where nothing is consumed Let $r$ be the price of
membership of club $(0, 1)$. The total income of each indvidual is $\overline{y}$ \dagger $\pi+r$, and the budget

constraint, which each individual must satisfy injoining the club, is denoted by
$q+y\leqq\overline{y}$ $+$ $\pi+r$,

where $y$ is the amount ofmoney and $q$ is the price ofmembership of club $(k, \theta)$ . Therefore, each

person will join the club if $\overline{y}+\pi+r<18\sqrt{k(1-\theta)}$ \dagger $\overline{y}+\pi+r-q$, or will join the club if
$\overline{y}+\pi\dagger r>18\sqrt{k(1-\theta)}$ \dagger $\overline{y}+\pi+r-q$. Hence, the $\mathrm{f}\mathrm{i}\mathrm{a}\alpha \mathrm{i}\mathrm{o}\mathrm{n}\theta \mathrm{o}\mathrm{f}$individuals joining the club

is determined by
$\overline{y}+\pi+r=18\sqrt{k(1-\theta)}+\overline{y}+\pi+r-q$, i.e., $q=18\sqrt{k(1-\theta)}$ , (5.2)

ffom which the demand curve ofmembership in Figure 5is derived.

The purpose of the club is to maximize its members’ utility. In club $(k, \theta)$, members’ utility.
$18\sqrt{k(1-\theta)}+\overline{y}+\pi+r^{-}q$, is maximized with respect to $k$, $\theta$ , and $q$ under budget constraint$pk$

$+r=q\theta$ . The Lagrangian for the maximization problem is defined by
$L=18\sqrt{k(1-\theta)}+\overline{y}+\pi+r^{-}q+a(q\theta-r-\sqrt k)$ ,

where 4is Lagrangian multiplier. The necessary conditions for maximization are

$\frac{\partial L}{\partial k}=9\sqrt{\frac{1-\theta}{k}}-ap=0$, (5.3)
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price $\mathrm{o}\mathrm{f}\mathrm{n}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{h}\dot{\varphi}$

–dmond curve

Fig. 5: Market $\mathrm{o}\mathrm{f}\mathrm{M}\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{s}\psi$

.

$\frac{\partial L}{\partial\theta}=-9\sqrt{\frac{k}{1-\theta}}+aq=0$ , (5.4)

$\frac{\partial L}{\Psi}=-1\dagger$ a $d.=0$, and (5.5)

$\frac{\partial L}{\partial a}=q\theta-r^{-}pk=0$ . (5.6)

From (5.3), (5.5), and (5.6), it follows that

$\frac{1-\theta}{k}=_{\mathrm{t}}\frac{p}{q}$ and 81 $\theta^{2}=m$ . (5.7)

By (5.6) and (5.7) we have 81 $\theta^{2}(1-2\theta)+pr=0$, which implies that $\theta$ is determined by $p$ and $r$.
Thus, we have the stipply curve membership, which is vertical line in Figure 5.

In equilibrium, by solving six equations ffom (5.1) to (5.6), we have $\theta=\frac{2}{3}$ , $k=3,p=2$, $q=18$,

$r=6$, and $a= \frac{3}{2}$ . Furthermore, $\pi^{=}3$ , and the consumption of commodity 2by each member

ofthe club is $\overline{y}+_{X}+r^{-}q=1$ , whereas the consumption ofcommodity 2by each non-member is
$\overline{y}$ \dagger $\pi+r=19$ . Thus, acompetitive equilibrium is shown to exist for this example of the
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Moreover, by (5.7) we have 81 $\theta^{2}(1-\theta)=pk$ which implies that

$81 \theta(2-3\theta)\frac{\partial\theta}{\partial p}=k+p\frac{\partial k}{\Phi}$ .

Therefore, since $\theta=\frac{2}{3}$

. equilibrium, $\frac{\partial k}{\Phi}=-\frac{k}{p}<0$ holds in aneighborhood ofthe equilibrium.

Namely, we have the demand curve of commodity 1, which has a $\mathrm{n}\mathrm{e}\dot{\mathrm{g}}\mathrm{v}\mathrm{e}$ slope at the $\eta \mathrm{u}\mathrm{i}\mathrm{h}\mathrm{b}\mathrm{i}\mathrm{m}\mathrm{l}$

illustrated in Figure 4.

VI. Pareto Optimum ffocations

To describe an allocation in the economy, we have to specify the amount of commodity 1

consumed in the club, its members, and the $\mathrm{d}\mathrm{i}\mathfrak{W}\mathrm{l}\mathrm{b}\mathrm{m}\mathrm{i}\mathrm{o}\mathrm{n}$ of commodity 2among people. Let us
denote the amount of commodity 1consumed in ffie club by $X$ and the set of its members by a
measurable subset $M\mathrm{o}\mathrm{f}A$ . Then, the club is denoted by ($x$,A#).

To denote the distribution of commodity 2among individuals, we use areal-valued measurable

fimction $f$ on $A$ , where $\mathrm{f}\mathrm{i}\mathrm{a}$) is the quantity of commodity 2allocated to person $a\in A$ . Thus, an
allocation in the economy is indicated by these three elements, $\{(x, M),f\}$ . An allocation $\{(x, M)$,

$]$ in the economy is said to be $\underline{\mathrm{f}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}}$if $(x, \int_{A}fda)\in Y$.

In allocation $\{(x,\emptyset,J\}$ , the utility ofmember \^a Mis $U((x, \lambda(M)),f(a))$ , whereas the utility

non-member $a\in A\backslash M\mathrm{i}\mathrm{s}V((a))$ .

Definition 6.1: Afeasible allocation {$(x$, A4, $f$} is said to be Pareto $\mathrm{o}\mathrm{D}\dot{\mathfrak{g}}\mathrm{m}\iota \mathrm{m}$ if there is no other

feasible allocation $\{(z,N),\mathrm{g}\}$ such that
(1) $U((x, \lambda(M)),f(a))\leqq U((z, \lambda(N)),\mathrm{g}(a))$ for all \^a $\mathrm{M}\mathrm{O}\mathrm{N}$,

(2) $U((x, \lambda(M)),f(a))\leqq V(g(a))$ for all $a\in M\cap(A\psi$ ,

(3) $\nabla(Ka))\leqq U((z, \lambda(N)),\mathrm{g}(a))$ for all $a\in(A\backslash w\cap N$,

(4) $V(Ka))\leqq V(g(a))$ for all $a\in A\backslash (M\cup N)$,

and strict inequalities hold for some a&A (with positive measure).

Now we can prove the basic theorem ofwelfare economics for economies with clubs
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Theorem 6.1: Any allocation in the competitive equilibrium is Pareto optimum.

Proof Let $\{p, q, (x, \theta),y, m,r\}$ be competitive equilibrium. Define asetMand a $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{b}\mathrm{y}$

$M=[0, \theta]$ and $f(a)=\{$
$m+r-q$ for $a\in M$

$m+r$ for $a\in A\backslash M$

By (2) and (3) $\mathrm{o}\mathrm{f}\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\cdot \mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ $4.1$ ,

$\int_{A}fda=\theta(m+r^{-}q)+(1-d)$ $(m+r)=m+r-dq=px+y+r-dq=y$,

and therefore, $(x, \int_{A}fda)\in Y$. Namely, allocation {$(x,M),fl$ is feasible.

Now, suppose that alocation {($x$, A#), 7} were not Pareto optimum. Then, by Definition 6.1,

there is afeasible allocation $\{(z,N),\mathrm{g}\}$ such that
$U((x, \theta),m+r-q)\leqq U((z, \lambda(N)),\mathrm{g}(a))$ for all $a\in M\cap N$, (6.1)
$U((x, \theta),m+r-q)\leqq V(\mathrm{g}(a))$ for all $a\in M\cap(A\backslash N)$, (6.2)
$V(m+r)\leqq U((z, \lambda(N)),\mathrm{g}(a))$ for all $a\in(AW)\cap N$, (6.3)

$V(m+r)\leqq V(\mathrm{g}(a))$ for all $a\in A\backslash (M\cup N)$, (6.4)

and skid inequalities hold for some a&A with positive measure.
By (1) Definition 4.1, $U((x, \theta),m+r-q)\leqq V(m+r)$ holds in (6.3). TlrlefoIe, from (6.1)

and (6.3), it follows that
$U((x, \theta),m+r-q)\leqq U((z, \lambda(N)),\mathrm{g}(a))$ for all $a\in N$,

which implies, by (2) $\mathrm{o}\mathrm{f}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{i}\dot{\mathrm{u}}\mathrm{o}\mathrm{n}4.1$ , that
$\mu\dagger r\geqq(m+r^{-}\mathrm{g}(a))A(N)$ for all $a\in N$. (6.3)

By (1) Definition 4.1, $V(m+r)\leqq U((x, \theta),m+r-q)$ holds in (6.2). Therefore, ffom (6.2), it

follows that $V(m+r)\leqq V\ovalbox{\tt\small REJECT} a))$ for all $a\in M\cap(A\backslash N)$, which implies, by Assumption 2.2, that
$m+r\leqq \mathrm{g}(a)$ for $\mathrm{a}11a\in M\cap(A\mathrm{W})$ . (6.6)

Moreover, (6.4) and Assumption 2.2 imply that
$m+r\leqq \mathrm{g}(a)$ forall $a\in A\backslash (M\cup N)$ . (6.7)

Since strict inequalities hold for some \^a $A$ in (6.5), or (6.6), or (6.7), we have, by integration,

$m<pz+ \int_{A}\mathrm{g}da$ ,

which contradicts (3) ofOefinition 4.1. $\blacksquare$
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