On Law Invariant Coherent Risk Measures

Shigeo KUSUOKA Graduate School of Mathematical Sciences The University of Tokyo

1 Introduction

The idea of coherent risk measures has been introduced by Artzner, Delbaen, Eber and Heath [1]. We think of a special class of coherent risk measures and give a characterization of it. Let (Ω, \mathcal{F}, P) be a probability space. We denote $L^{\infty}(\Omega, \mathcal{F}, P)$ by L^{∞} . Following [1], we give the following definition.

Definition 1 We say that a map $\rho: L^{\infty} \to \mathbb{R}$ is a coherent risk measure if the following are satisfied.

- (1) If $X \geq 0$, then $\rho(X) \leq 0$.
- (2) Subadditivity: $\rho(X_1 + X_2) \leq \rho(X_1) + \rho(X_2)$.
- (3) Positive homogeneity: for $\lambda > 0$ we have $\rho(\lambda X) = \lambda \rho(X)$.
- (4) For every constant c we have $\rho(X+c) = \rho(X) c$.

Then Delbaen [2] proved the following.

Theorem 2 Let ρ be a coherent risk measure. Then the following conditions are equivalent.

(1) There is a (closed convex) set of probability measures Q such that any $Q \in Q$ is absolutely continuous with respect to P and for $X \in L^{\infty}$

$$\rho(X) = \sup\{E^{Q}[-X]; \ Q \in \mathcal{Q}\}.$$

(2) ρ satisfies the Fatou property, i.e., if $\{X_n\}_{n=1}^{\infty} \subset L^{\infty}$ are uniformly bounded and converging to X in probability, then

$$\rho(X) \leq \liminf_{n \to \infty} \rho(X_n).$$

(3) If X_n is a uniformly bounded sequence that decreases to X, then $\rho(X_n)$ tends to $\rho(X)$.

Now we introduce the following notion.

Definition 3 We say that a map $\rho: L^{\infty} \to \mathbb{R}$ is law invariant, if $\rho(X) = \rho(Y)$ whenever $X, Y \in L^{\infty}$ have the same probability law.

Our purpose is to characterize law invariant coherent risk measures with the Fatou property.

Let \mathcal{D} be the set of probability distribution functions of bounded random variables, i.e., \mathcal{D} is the set of non-decreasing right-continuous functions F on \mathbb{R} such that there are $z_0, z_1 \in \mathbb{R}$ for which F(z) = 0, $z < z_0$ and F(z) = 1, $z \ge z_1$. Let us define $Z : [0, 1) \times \mathcal{D} \to \mathbb{R}$ by

$$Z(x,F) = \inf\{z; F(z) > x\}, \qquad x \in [0,1), F \in \mathcal{D}.$$

Then $Z(\cdot, F): [0,1) \to \mathbf{R}$ is non-decreasing and right continuous. We denote by F_X the probability distribution function of a random variable X.

For each $\alpha \in (0,1]$, let $\rho_{\alpha}: L^{\infty} \to \mathbf{R}$ be given by

$$\rho_{\alpha}(X) = \alpha^{-1} \int_{1-\alpha}^{1} Z(x, F_{-X}) dx, \qquad X \in L^{\infty}.$$

Also, we define $\rho_0: L^{\infty} \to \mathbf{R}$ by

$$\rho_0(X) = ess.sup(-X) \qquad X \in L^{\infty}.$$

Then it is easy to see that $\rho(X):[0,1]\to \mathbf{R}$ is a non-increasing continuous function for any $X\in L^{\infty}$.

We will show later that ρ_{α} , $\alpha \in [0, 1]$, is a law invariant coherent risk measure with the Fatou property. Actually ρ_{α} is the same as WCM_{α} in [1].

From now on, we assume the following.

(Assumption) (Ω, \mathcal{F}, P) is a standard probability space and P is non-atomic.

Our main results are the following.

Theorem 4 Let $\rho: L^{\infty} \to \mathbb{R}$. Then the following conditions are equivalent.

(1) There is a (compact convex) set \mathcal{M}_0 of probability measures on [0,1] such that

$$\rho(X) = \sup\{ \int_0^1 \rho_{\alpha}(X) m(d\alpha); \ m \in \mathcal{M}_0 \}, \qquad X \in L^{\infty}.$$

(2) ρ is a law invariant coherent risk measure with the Fatou property.

Theorem 5 If m_1 and m_2 are probability measures on [0,1], and if

$$\int_0^1
ho_lpha(X) m_1(dlpha) = \int_0^1
ho_lpha(X) m_2(dlpha), \quad ext{ for all } X \in L^\infty,$$

then $m_1 = m_2$.

Definition 6 (1) We say that a pair X and Y of random variables is comonotone, if

$$(X(\omega) - X(\omega'))(Y(\omega) - Y(\omega')) \ge 0$$
 $P(d\omega) \otimes P(d\omega') - a.s.$

(2) We say that a map $\rho: L^{\infty} \to \mathbf{R}$ is comonotone, if

$$\rho(X+Y) = \rho(X) + \rho(Y)$$

for any comonotone pair $X, Y \in L^{\infty}$.

Theorem 7 Let $\rho: L^{\infty} \to \mathbf{R}$. Then the following conditions are equivalent.

(1) There is a probability measure m on [0, 1] such that for $X \in L^{\infty}$

$$\rho(X) = \int_0^1 \rho_{\alpha}(X) m(d\alpha), \qquad X \in L^{\infty}.$$

(2) ρ is a law invariant and comonotone coherent risk measure with the Fatou property.

Definition 8 We define $VaR_{\alpha}: L^{\infty} \to \mathbb{R}, \ \alpha \in (0,1), \ by$

$$VaR_{\alpha}(X) = \sup\{z \in \mathbf{R}; F_{-X}(z) < 1 - \alpha\}.$$

Theorem 9 Let $\alpha \in (0,1)$. If ρ is law invariant coherent risk measure such that

$$\rho(X) \geq VaR_{\alpha}(X), \qquad X \in L^{\infty},$$

then we have

$$\rho(X) \geq \rho_{\alpha}(X), \qquad X \in L^{\infty}.$$

The author thanks Prof. Delbaen for useful discussions. In particular, Theorems 7 and 9 are suggested by him.

2 Key Lemma

Since we assume that (Ω, \mathcal{F}) is a standard probability space and P be non-atomic, we may assume that our basic probability space (Ω, \mathcal{F}, P) is a Lebesgue space, i.e., $\Omega = [0, 1)$, \mathcal{F} is the Borel algebra over [0, 1), and P is the Lebesgue measure μ on [0, 1). Therefore we assume so throughout this paper.

Let \mathcal{G} be the set of non-decreasing right-continuous probability density functions on [0,1). In this section, we will prove the following.

Lemma 10 Let $\rho: L^{\infty} \to \mathbb{R}$. Then the following conditions are equivalent.

(1) There is a subset G_0 of G such that

$$\rho(X) = \sup\{\int_0^1 Z(x, F_{-X})g(x)dx; g \in \mathcal{G}_0\}, \qquad X \in L^{\infty}.$$

(2) ρ is a law invariant coherent risk measure with the Fatou property.

Let \mathcal{P} denote the set of probability measures on (Ω, \mathcal{F}) absolutely continuous with respect to P. For any $Q \in \mathcal{P}$, Y_Q denotes the Radon-Nykodim density dQ/dP. Let \mathcal{F}_n , $n \geq 1$, be a sub- σ -algebra of \mathcal{F} generated by $1_{[2^{-n}(k-1),2^{-n}k)}, k = 1,\ldots,2^n$. Let \mathcal{X} be the set of all bounded random variables X such that X is \mathcal{F}_n -measurable for some n.

Then we have the following.

Lemma 11 Let $Q \in \mathcal{P}$ and $X \in \mathcal{X}$. Then we have

$$\int_0^1 Z(x, F_X) Z(x, F_{Y_Q}) dx = \sup \{ E^Q[\tilde{X}]; \tilde{X} \in \mathcal{X}, F_{\tilde{X}} = F_X \}$$
$$= \sup \{ E^{\tilde{Q}}[X]; \tilde{Q} \in \mathcal{P}, F_{Y_{\tilde{Q}}} = F_{Y_Q} \}.$$

We make some preparations before proving Lemma 11. We easily see the following. Proposition 12 Let x_k , k = 1, 2, ..., n, be a sequence of numbers, and let y_k , k = 1, 2, ..., n, be a sequence of non-negative numbers. If $x_{i_1} \le x_{i_2} \le ... \le x_{i_n}$, $y_{j_1} \le y_{j_2} \le ... \le y_{j_n}$, and $\{i_1, i_2, ..., i_n\} = \{j_1, j_2, ..., j_n\} = \{1, 2, ..., n\}$, then

$$\sum_{k=1}^n x_k y_k \le \sum_{k=1}^n x_{i_k} y_{j_k}.$$

Also we have the following (see Williams [3] Chapters 3 and 17).

Proposition 13 (1) For any $F \in \mathcal{D}$, the probability distribution function of the law of Z(x, F) under $\mu(dx)$ is F.

(2) If $F_n \in \mathcal{D}$ converges to F weakly, then $Z(x, F_n)$ converges to Z(x, F) for $\mu - a.s.x$.

Now let us prove Lemma 11. Let $X \in \mathcal{X}$. Then X is \mathcal{F}_n -measurable for some $n \geq 1$. Let $Y_m = E[Y_Q | \mathcal{F}_m], m \geq n$. Then for any $m \geq n$, we have

$$X(\omega) = \sum_{k=1}^{2^m} x_{m,k} 1_{[(k-1)2^{-m},k2^{-m})}(\omega), \quad Y_m(\omega) = \sum_{k=1}^{2^m} y_{m,k} 1_{[(k-1)2^{-m},k/2^{-m})}(\omega), \qquad P - a.s.,$$

where $x_{m,k} = 2^m E^P[X, [(k-1)2^{-m}, k2^{-m})]$ and $y_{m,k} = 2^m E^P[Y_Q, [(k-1)2^{-m}, k2^{-m})],$ $k = 1, 2, ..., 2^m$. Let σ_m and τ_m be a permutation on $\{1, 2, ..., 2^m\}$ such that

$$x_{m,\sigma_m(1)} \le x_{m,\sigma_m(2)} \le \ldots \le x_{m,\sigma_m(2^n)} \text{ and } y_{m,\tau_m(1)} \le y_{m,\tau_m(2)} \le \ldots \le y_{m,\tau_m(2^n)}.$$

Then one can easily obtain that

$$Z(x,F_X) = \sum_{k=1}^{2^m} x_{\sigma_m(k)} 1_{[(k-1)2^{-m},k2^{-m})}(x), \qquad Z(x,F_{Y_m}) = \sum_{k=1}^{2^m} y_{\tau_m(k)} 1_{[(k-1)2^{-m},k2^{-m})}(x),$$

and so

$$\begin{split} E^Q[X] &= E[XY_Q] = E[XY_m] = 2^{-m} \sum_{k=1}^{2^m} x_{m,k} y_{m,k} \le 2^{-m} \sum_{k=1}^{2^m} x_{m,\sigma_m(k)} y_{m,\tau_m(k)} \\ &= \int_0^1 Z(x, F_X) Z(x, F_{Y_m}) dx. \end{split}$$

Since $Y_m = E[Y_Q | \mathcal{F}_m]$ converges to Y P-a.s., we see by Proposition 13 that $Z(x, F_{Y_m})$ converges to $Z(x, F_{Y_Q})$ for μ -a.e.x. Since $\{Y_m\}_{m=n}^{\infty}$ are uniformly integrable, $\{Z(x, F_{Y_m})\}_{m=n}^{\infty}$ are also uniformly integrable by Proposition 13 (1). Therefore letting $m \to \infty$, we have

$$E^{Q}[X] \le \int_{0}^{1} Z(x, F_{X}) Z(x, F_{Y_{Q}}) dx$$
 (1)

for any $X \in \mathcal{X}$. Let

$$\tilde{X}_m(\omega) = \sum_{k=1}^{2^m} x_{m,\sigma_m(\tau_m^{-1}(k))} 1_{[(k-1)2^{-m},k2^{-m})}(\omega).$$

Then one can easily see that the probability distributions of X and \tilde{X}_m under P are the same and $\tilde{X}_m \in \mathcal{X}$. Also, we have

$$E^{Q}[\tilde{X}_{m}] = 2^{-m} \sum_{k=1}^{2^{m}} x_{m,\sigma_{m}(\tau_{m}^{-1}(k))} y_{m,k}$$

$$=\int_0^1 Z(x,F_X)Z(x,F_{Y_m})dx.$$

So letting $m \to \infty$, we have

$$\sup\{E^{Q}[\tilde{X}]; \tilde{X} \in \mathcal{X}, F_{\tilde{X}} = F_{X}\} \ge \int_{0}^{1} Z(x, F_{X}) Z(x, F_{Y_{Q}}) dx. \tag{2}$$

Let

$$\tilde{Y}_m(\omega) = \sum_{k=1}^{2^m} 1_{[((k-1)2^{-m}, k2^{-m})}(\omega) Y_Q(\omega - k2^{-m} + \tau_m(\sigma_m^{-1}(k))2^{-m}).$$

Then one can easily see that the probability distributions of Y_Q and \tilde{Y}_m under P are the same. Let $\tilde{Q} = \tilde{Y}_m P$. Then we have

$$E^{\tilde{Q}}[X] = 2^{-m} \sum_{k=1}^{2^m} x_{m,k} y_{m,\tau_m(\sigma_m^{-1}(k))} = \int_0^1 Z(x, F_X) Z(x, F_{Y_m}) dx.$$

So letting $m \to \infty$, we have

$$\sup\{E^{\tilde{Q}}[X]; \tilde{Q} \in \mathcal{P}, F_{Y_{\tilde{Q}}} = F_{Y_{Q}}\} \ge \int_{0}^{1} Z(x, F_{X}) Z(x, F_{Y_{Q}}) dx. \tag{3}$$

We have Lemma 11 from Equations (1), (2) and (3).

This completes the proof of Lemma 11.

Proposition 14 Let $Q \in \mathcal{P}$. Then for any $X \in L^{\infty}$, we have

$$\int_0^1 Z(x, F_X) Z(x, F_{Y_Q}) dx = \sup \{ E^{\tilde{Q}}[X]; \tilde{Q} \in \mathcal{P}, F_{Y_{\tilde{Q}}} = F_{Y_Q} \}.$$

Proof. Let \tilde{Y} be a random variable whose distribution is the same as that of Y_Q . Let $X_n = E[X|\mathcal{F}_n], n \geq 1$. Then for any $m \geq 1$, we have

$$E[|X - X_n|\tilde{Y}] \le E[|X - X_n|(\tilde{Y} \wedge m)] + ||X - X_n||_{\infty} E[\tilde{Y}, \tilde{Y} > m]$$

$$\le mE[|X - X_n|] + 2 ||X||_{\infty} E[\tilde{Y}, \tilde{Y} > m].$$

So we have

$$\sup\{E^{\tilde{Q}}[|X-X_n|]; \tilde{Q} \in \mathcal{P}, F_{Y_{\tilde{Q}}} = F_{Y_{Q}}\} \to 0, \qquad n \to \infty.$$

By Proposition 13, we have

$$\int_0^1 Z(x, F_{X_n}) Z(x, F_{Y_Q}) dx \to \int_0^1 Z(x, F_X) Z(x, F_{Y_Q}) dx, \qquad n \to \infty.$$

Therefore we have our assertion from Lemma 11. This completes the proof.

Now let us prove Lemma 10.

Proof of Lemma 10. (1) \Rightarrow (2) Let \mathcal{G}_0 be a subset of \mathcal{G} , and $\rho: L^{\infty} \to \mathbf{R}$ be given by

$$\rho(X) = \sup\{\int_0^1 Z(x, F_{-X})g(x)dx; g \in \mathcal{G}_0\}, \qquad X \in L^{\infty}.$$

Then it is obvious that ρ is law invariant. So it is sufficient to prove that ρ is a coherent risk measure with the Fatou property. Let \mathcal{Q}_0 be the set of $Q \in \mathcal{P}$ such that $Z(\cdot, Y_Q) \in \mathcal{G}_0$. Then by Proposition 14, we have

$$\rho(X) = \sup\{E^{Q}[-X]; \ Q \in \mathcal{Q}_0\}, \qquad X \in L^{\infty}.$$

So by Theorem 2, we see that ρ is a coherent risk measure with the Fatou property. This implies our assertion.

 $(2) \Rightarrow (1)$ Let ρ be a law invariant coherent risk measure with the Fatou property. Let \mathcal{P}_0 be the set of $Q \in \mathcal{P}$ such that $E^Q[-X] \leq \rho(X)$ for all $X \in L^{\infty}$. Then by Theorem 2 we have

$$\rho(X) = \sup\{E^Q[-X]; \ Q \in \mathcal{P}_0\}, \qquad X \in L^{\infty}.$$

Take a $Q \in \mathcal{P}_0$ and $X \in L^{\infty}$, and fix them for a while. Let $\tilde{X}(\omega) = Z(\omega; F_X)$, $\omega \in \Omega = [0,1)$. Then we have $\rho(\tilde{X}) = \rho(X)$. Let U_n , $n \geq 1$, be random variables defined by

$$U_n = \begin{cases} \tilde{X}(\omega + 2^{-n}), & \omega \in [0, 1 - 2^{-n}), \\ \|X\|_{\infty}, & \omega \in [1 - 2^{-n}, 1) \end{cases}$$

Then we see that $U_n \downarrow \tilde{X}$, P - a.s. Let $V_n = E^P[\tilde{X}|\mathcal{F}_n]$. Then we see that $V_n \leq U_n$, P - a.s. and that $V_n \to \tilde{X}$, P - a.s. So by Theorem 2 we have

$$\liminf_{n\to\infty} \rho(V_n) \le \lim_{n\to\infty} \rho(U_n) = \rho(\tilde{X}).$$

On the other hand, by Lemma 11 and Proposition 14 we have

$$\begin{split} E^Q[-X] &\leq \int_0^1 Z(x,F_{-\tilde{X}})Z(x,F_{Y_Q})dx \\ &= \lim_{n\to\infty} \int_0^1 Z(x,F_{-V_n})Z(x,F_{Y_Q})dx \\ &= \lim_{n\to\infty} \sup\{E^Q[-\tilde{V}]; \tilde{V} \in \mathcal{X}, \ F_{\tilde{V}} = F_{V_n}\} \\ &\leq \liminf_{n\to\infty} \rho(V_n) \leq \rho(X). \end{split}$$

Thus letting $\mathcal{G}_0 = \{Z(\cdot, F_{Y_O}); Q \in \mathcal{P}_0\}$, we see that

$$\rho(X) = \sup\{\int_0^1 Z(x, F_{-X})g(x)dx; g \in \mathcal{G}_0\}.$$

This implies our assertion. This completes the proof of Lemma 10.

3 Proof of Theorem 4

In this section, we prove Theorem 4. Let $g \in \mathcal{G}$, and let $\tilde{g} : \mathbf{R} \to \mathbf{R}$ be given by $\tilde{g}(t) = 0, t < 0, \ \tilde{g}(t) = g(t), t \in [0, 1), \ \text{and} \ \tilde{g}(t) = g(1-), t \geq 1$. Then we have for any $X \in L^{\infty}$

$$\int_0^1 Z(x, F_{-X}) g(x) dx = \int_{[0,1)} (\int_x^1 Z(y; F_{-X}) dy) d\tilde{g}(x)$$
$$= \int_{[0,1)} \rho_{1-x}(X) (1-x) d\tilde{g}(x).$$

Letting X = -1, we have

$$1 = \int_0^1 g(x)dx = \int_{[0,1)} (1-x)d\tilde{g}(x).$$

From this observation and Lemma 10, we have the following.

Proposition 15 Let $\rho: L^{\infty} \to \mathbb{R}$. Then the following conditions are equivalent.

(1) There is a set \mathcal{M}_0 of probability measures on (0,1] such that for $X\in L^\infty$

$$\rho(X) = \sup\{\int_{(0,1]} \rho_{\alpha}(X) m(d\alpha); \ m \in \mathcal{M}_0\}.$$

(2) ρ is a law invariant coherent risk measure with the Fatou property.

Now we prove Theorem 4. For each probability measure m on [0,1], let $\nu_n(m)$, $n \ge 1$, be a probability measure on (0,1] given by

$$\nu_n(m)(A) = m(A \cap (0,1]) + m(\{0\})\delta_{1/n}(A),$$
 for a Borel set in [0,1].

Then we see that for any $X \in L^{\infty}$

$$\int_{[0,1]} \rho_{\alpha}(X) m(d\alpha) = \sup_{n} \int_{(0,1]} \rho_{\alpha}(X) \nu_{n}(m)(d\alpha).$$

This and Proposition 15 imply Theorem 4. This completes the proof of Theorem 4.

4 Proof of Theorem 5

We give some computation on ρ_{α} in this section.

Proposition 16 Let $c \in (0,1]$ and $X_c(\omega) = 1_{[1-c,1)}(\omega)$, $\omega \in \Omega = [0,1)$.

(1) We have

$$\rho_{\alpha}(-X_c) = 1 \wedge \frac{c}{\alpha} \qquad \alpha \in (0,1]$$

(2) Let m be a probability measure on [0,1] and let $f(s) = \int_{[0,1]} \rho_{\alpha}(-X_s) m(d\alpha)$, $s \in (0,1]$ Then f(c) is differentiable at $s = c \in (0,1)$ such that $m(\{c\}) = 0$, and

$$\frac{df}{ds}(c) = \int_{(c,1]} \frac{1}{\alpha} m(d\alpha).$$

I

Proof. Noting that $F_{X_c}(x) = 1_{[1-c,1)}(x)$, $x \in [0,1)$, we easily have the assertion (1). Then we have for 0 < s < t < 1

$$\frac{f(t)-f(s)}{t-s} = \int_{(t,1]} \frac{1}{\alpha} m(d\alpha) + \frac{1}{t-s} \int_{(s,t]} \frac{\alpha-s}{\alpha} m(d\alpha).$$

This proves the assertion (2).

Theorem 5 is an easy consequence of Proposition 16 (2).

5 Supporting measures and Proof of Theorem 9

Let \mathcal{M} denote the set of all probability measures on [0,1]. Then \mathcal{M} is a compact metric space with the Prohorov metric. Let ρ be a law invariant coherent risk measure with the Fatou property. Let

$$\mathcal{M}(
ho)=\{m\in\mathcal{M};\;\int_{[0,1]}
ho_lpha(X)m(dlpha)\leq
ho(X)\; ext{for all }X\in L^\infty\}.$$

Since $\rho_{\alpha}(X)$ is continuous in $\alpha \in [0,1]$, $\mathcal{M}(\rho)$ is a closed convex subset of \mathcal{M} . Then from Theorem 4 we have

$$ho(X) = \sup\{\int_{[0.1]}
ho_{lpha}(X) m(dlpha); \ m \in \mathcal{M}(
ho)\}, \qquad X \in L^{\infty}.$$

For each $X \in L^{\infty}$ let

$$\tilde{\mathcal{M}}(X; \rho) = \{ m \in \mathcal{M}(\rho); \int_{[0,1]} \rho_{\alpha}(X) m(d\alpha) = \rho(X) \}.$$

From the compactness of $\mathcal{M}(\rho)$ we see that $\tilde{\mathcal{M}}(X;\rho) \neq \emptyset$. It is obvious that $\tilde{\mathcal{M}}(X;\rho)$ depends only on the distribution F_X of X, and so we denote it by $\mathcal{M}(F_X;\rho)$.

Now we prove Theorem 9. Let ρ be a law invariant coherent risk measure such that

$$\rho(X) \ge \operatorname{VaR}_{\alpha}(X), \qquad X \in L^{\infty}.$$

Let $X_{\varepsilon}(\omega) = 1_{[1-\alpha-\varepsilon,1)}(\omega)$, $\omega \in \Omega = [0,1)$, $\varepsilon \in (0,1-\alpha)$, and let $m_{\varepsilon} \in \tilde{\mathcal{M}}(X_{\varepsilon};\rho)$. Then by Proposition 16 we see that

$$ho(-X_{m{arepsilon}}) = \int_{[0,1]} (1 \wedge rac{lpha + arepsilon}{s}) m_{m{arepsilon}}(ds).$$

On the other hand, we have $\operatorname{VaR}_{\alpha}(-X_{\varepsilon}) = 1$. So we see that $m_{\varepsilon}([0, \alpha + \varepsilon]) = 1$. Since $\mathcal{M}(\rho)$ is compact, we see that there is an $m \in \mathcal{M}(\rho)$ such that $m([0, \alpha]) = 1$. Therefore we see that $\rho_{\alpha}(X) \leq \rho(X)$, $X \in L^{\infty}$.

This completes the proof of Theorem 9.

6 Proof of Theorem 7

Proposition 17 Let X, Y be comonotone random variables and $a, b \in \mathbb{R}$. Then $\{X \ge a\} \subset \{Y \ge b\}$ P - a.s. or $\{Y \ge b\} \subset \{X \ge a\}$ P - a.s.

Proof. Let $C = \{X \ge a\} \cap \{Y < b\}$ and $D = \{X < a\} \cap \{Y \ge b\}$. Then for $(\omega, \omega') \in C \times D$,

$$(X(\omega) - X(\omega'))(Y(\omega) - Y(\omega')) < 0.$$

This implies that P(C) = 0 or P(D) = 0. So we have our assertion. As an immediate consequence, we have the following.

Corollary 18 Let X, Y be comonotone random variables. Then we have

$$P(X + Y \ge a + b) \ge P(X \ge a) \land P(Y \ge b), \qquad a, b \in \mathbb{R}.$$

Proposition 19 Let $X, Y \in L^{\infty}$ be comonotone and $a, b \in \mathbb{R}$. Then

$$Z(x, F_{X+Y}) = Z(x, F_X) + Z(x, F_Y), \qquad x \in [0, 1)$$

Proof. By the definition of $Z(x, F_X)$ we have $F_X(Z(x, F_X)-) \le x$. So we have $P(X \ge Z(x, F_X)) \ge 1-x$. Similarly we have $P(Y \ge Z(x, F_Y)) \ge 1-x$. Therefore by Corollary 18 we have

$$P(X + Y \ge Z(x, F_X) + Z(x, F_Y)) \ge 1 - x, \qquad x \in [0, 1).$$

Note that Let $Z(x, F_{X+Y}) = \sup\{z \in \mathbb{R}; F_{X+Y}(z) \le x\}, x \in (0, 1)$. So we see that $Z(x, F_X) + Z(x, F_Y) \le Z(x, F_{X+Y}), x \in (0, 1)$. On the other hand, we have

$$\int_{[0,1)} (Z(x,F_X) + Z(x,F_Y))\mu(dx) = E[X] + E[Y] = \int_{[0,1)} Z(x,F_{X+Y}X)\mu(dx).$$

So we see that

$$Z(x, F_X) + Z(x, F_Y) = Z(x, F_{X+Y}), \qquad \mu - a.e.x.$$

Since both sides are right continuous, we have our assertion.

Proposition 20 ρ_{α} , $\alpha \in [0,1]$, are comonotone.

Proof. For each $\alpha \in (0,1]$, we see that ρ_{α} is comonotone from the definition of ρ_{α} and Proposition 19. Letting $\alpha \downarrow 0$, we see that ρ_0 is also comonotone.

Proposition 21 Let ρ be a comonotone law invariant coherent risk measure with the Fatou property. Then $\bigcap_{i=1}^{n} \mathcal{M}(F_i; \rho) \neq \emptyset$ for any $n \geq 1$ and $F_1, F_2, \ldots, F_n \in \mathcal{D}$.

Proof. Let $X_i(\omega) = Z(\omega, F_i)$, $\omega \in \Omega = [0, 1)$, $i = 1, \ldots, n$. Then $\sum_{i=1}^k X_i$ and X_{k+1} are composition for each $k = 1, \ldots, n-1$. Let $X = \sum_{i=1}^n X_i$. Then we have

$$\rho(X) = \sum_{i=1}^{n} \rho(X_i).$$

Let $m \in \tilde{\mathcal{M}}(X; \rho)$. Then we have

$$\sum_{i=1}^{n} \int_{[0,1]} \rho_{\alpha}(X_{i}) m(d\alpha) = \rho(X) = \sum_{i=1}^{n} \rho(X_{i}).$$

Also, we have

$$\int_{[0,1]} \rho_{\alpha}(X_i) m(d\alpha) \leq \rho(X_i), \qquad i = 1, \ldots, n.$$

So we have

$$\int_{[0,1]} \rho_{\alpha}(X_i) m(d\alpha) = \rho(X_i), \qquad i = 1, \ldots, n.$$

This implies $m \in \tilde{\mathcal{M}}(X_i; \rho)$, i = 1, ..., n. So we have our assertion. Now let us prove Theorem 7. Suppose that $m \in \mathcal{M}$ and $\rho : L^{\infty} \to \mathbf{R}$ is given by

$$ho(X)=\int_{[0,1]}
ho_{m{lpha}}(X)m(dm{lpha}), \qquad X\in L^{\infty}.$$

Then by Theorem 4 and Proposition 20, we see that ρ is comonotone and law invariant. On the other hand, suppose that ρ is a comonotone law invariant coherent risk measure with the Fatou property. Then by Proposition 21 and the fact that \mathcal{M} is compact, we

$$ho(X) = \int_{[0,1]}
ho_{m{lpha}}(X) m(dm{lpha}), \qquad X \in L^{m{\infty}}.$$

see that $\bigcap \{\mathcal{M}(F;\rho); F \in \mathcal{D}\} \neq \emptyset$. Let m be an element of this set. Then we see that

This completes the proof of Theorem 7.

7 A Remark

For each $\alpha \in (0,1]$ let $\varphi_{\alpha} : [0,1] \to [0,1]$ be given by

$$\varphi_{\alpha}(t) = \frac{t}{\alpha} \wedge 1, \qquad t \in [0,1].$$

Then we have the following.

Proposition 22 For any $\alpha \in (0,1]$ and $X \in L^{\infty}$ satisfying $X \leq 0, P-a.s.$, we have the following.

$$\rho_{\alpha}(X) = \int_0^{\infty} \varphi_{\alpha}(P(-X > y)) dy.$$

Proof. Let $\alpha \in (0,1)$ and $X \in L^{\infty}$ such that $X \leq 0$ and X has a continuous strictly increasing distribution on (ess.inf X, ess.sup X). Then we see that $Z(x, F_{-X}) = F_{-X}^{-1}(x)$, $x \in (0,1)$. Let $q_{\alpha} \in (0,\infty)$ be such that $F_{-X}(q_{\alpha}) = 1 - \alpha$. Then we have

$$\begin{split} \rho_{\alpha}(X) &= -\frac{1}{\alpha} \int_{q_{\alpha}}^{\infty} y d(1 - F_{-X}(y)) \\ &= -\frac{1}{\alpha} [y(1 - F_{-X}(y))]_{q_{\alpha}}^{\infty} + \frac{1}{\alpha} \int_{a}^{\infty} (1 - F_{-X}(y)) dy \end{split}$$

$$=\int_0^\infty \varphi_\alpha(P(-X>y))dy.$$

Since any nonpositive random variables is approximated by such random variables in probability, we have our assertion for $\alpha \in (0,1)$. Letting $\alpha \uparrow 1$, we also have our assertion for $\alpha = 1$. This completes the proof.

Let $m \in \mathcal{M}$, and let $\varphi(t; m) = \int_{(0,1]} \varphi_{\alpha}(t) m(d\alpha)$, $t \in [0,1]$. Then we see that $\varphi(\cdot, m) : [0,1] \to [0,1]$ is a continuous increasing concave function with $\varphi(0) = 0$, and $\varphi(1) = 1 - m(\{0\})$. We also see that

$$\frac{d}{dt}\varphi(t;m)=\int_t^1\frac{1}{\alpha}m(d\alpha),$$

for any continuous point $t \in (0,1)$ of the measure m. So $\varphi(\cdot,m)$ determines m. For any nonpositive $X \in L^{\infty}$ we have

$$\int_0^\infty \rho_\alpha(X) m(d\alpha) = m(\{0\}) ess.sup(-X) + \int_0^\infty \varphi(P(-X > y); m) dy.$$

These observations imply the following.

Theorem 23 Let $\rho: L^{\infty} \to \mathbb{R}$. Then the following are equivalent.

- (1) ρ is a law invariant and comonotone coherent risk measure with the Fatou property.
- (2) There is a continuous nondecreasing concave function $\varphi:[0,1] \to [0,1]$ such that

$$\rho(X) = (1 - \varphi(1))ess.sup(-X) + \int_0^\infty \varphi(P(-X > y))dy$$

for any nonpositive $X \in L^{\infty}$.

References

- [1] Artzner, Ph., F. Delbaen, J.-M. Eber, and D. Heath, Coherent Measures of Risk, Math. Finance 9(1999), 203-228.
- [2] Delbaen, F., Coherent Risk Measures on General Probability Spaces, Preprint 1999.
- [3] Williams, D., *Probability with Martingales* Cambridge University Press 1991, Cambridge.