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On Law Invariant Coherent Risk Measures

Shigeo KUSUOKA
Graduate School of Mathematical Sciences
The University of Tokyo

1 Introduction

The idea of coherent risk measures has been introduced by Artzner, Delbaen, Eber and
Heath [1]. We think of a special class of coherent risk measures and give a characterization
of it. Let (2, F, P) be a probability space. We denote L>°(Q, F, P) by L*. Following (1],
we give the following definition.

Definition 1 We say that a map p : L — R is a coherent risk measure if the following
are satisfied.

(1) If X >0, then p(X) < 0.

(2) Subadditivity : p(X; + X2) < p(X1) + p(X2).

(3) Positive homogeneity : for A > 0 we have p(AX) = Ap(X).

(4) For every constant ¢ we have p(X +¢) = p(X) —c.

Then Delbaen (2] proved the following.

Theorem 2 Let p be a coherent risk measure. Then the following conditions are equiva-
lent.

(1) There is a ( closed convez ) set of probability measures Q such that any Q € Q 1is
absolutely continuous with respect to P and for X € L™

p(X) =sup{E-X];, Q€ Q}.

(2) p satisfies the Fatou property, i.e., if {X,}32, C L™ are uniformly bounded and
converging to X in probability, then

- p(X) < liminf p(X,).

n—o00
(3) If X, is a uniformly bounded sequence that decreases to X, then p(X,) tends to p(X).
Now we introduce the following notion.

Definition 3 We say that a map p : L™ — R is law invariant, if p(X) = p(Y) whenever
X,Y € L*™ have the same probability low. '

Our purpose is to characterize law invariant coherent risk measures with the Fatou
property.

Let D be the set of probability distribution functions of bounded random variables,
i.e., D is the set of non-decreasing right-continuous functions F' on R such that there are
29,2, € R for which F(z) =0, z < zg and F(z) =1, z > 2. Let us define Z : [0,1) x D —
R by

Z(z, F) = inf{z; F(2) > z}, z €[0,1), FeD.
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Then Z(-, F) : [0,1) = R is non-decreasing and right continuous. We denote by Fx the
probability distribution function of a random variable X.

For each o € (0,1], let p, : L — R be given by

1
pPa(X) = a"l/ Z(z, F_x)dz, X eL™.
l1-a
Also, we define py : L — R by
po(X) =ess.sup(—X) X € L™.

Then it is easy to see that p.(X) : [0,1] — R is a non-increasing continuous function for
any X € L*™.

We will show later that p,, a € [0,1], is a law invariant coherent risk measure with
the Fatou property. Actually p, is the same as WCM, in [1].

From now on, we assume the following.

(Assumption) (R, F, P) is a standard probability space and P is non-atomic.
Our main results are the following.

Theorem 4 Let p: L — R. Then the following conditions are equivalent.
(1) There is a ( compact conver ) set Mg of probability measures on [0, 1] such that

p(X) = sup{ fo ' pu(X)m(da); me Mo}, X € L™,

(2) p is a law invariant coherent risk measure with the Fatou property.

Theorem 5 If m; and my are probability measures on [0, 1], and if

/(; Pa(X)my(da) = /0 pa(X)ma(da),  for all X € L™,

then my; = mo.
Definition 6 (1) We say that a pair X andY of random variables is comonotone, if

(X(@) ~ X@)F @) - Y(@) >0  P(dw)® P(ds') — a.s.
(2) We say that a map p : L — R is comonotone, if
pPX +Y)=p(X)+p(Y)

for any comonotone pair X,Y € L™.

Theorem 7 Let p: L* — R. Then the following conditions are equivalent.
(1) There is a probability measure m on [0,1] such that for X € L*°

p(X) = /0 p(X)m(da), X €I

(2) p is a law invariant and comonotone coherent risk measure with the Fatou property.
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Deﬁnifion 8 We define VaR, : L =+ R, a € (0,1), by
VaR.(X) =sup{z € R; F_x(z) <1-a}.
Theorem 9 Let o € (0,1). If p is law invariant coherent risk measure sucﬁ that
p(X) > VaRa(X), X el

then we have :
p(X) > pa(X), Xel™.

The author thanks Prof. Delbaen for useful discussions. In particular, Theorems 7
and 9 are suggested by him.

2 Key Lemma

Since we assume that (2, F) is a standard probability space and P be non-atomic, we may
assume that our basic probability space (2, F, P) is a Lebesgue space, i.e., 2 = [0,1), F
is the Borel algebra over [0,1), and P is the Lebesgue measure u on [0, 1). Therefore we
assume so throughout this paper.

Let G be the set of non-decreasing right-continuous probability density functions on
[0,1). In this section, we will prove the following.

Lemma 10 Let p : L® — R. Then the following conditions are equivalent.
(1) There is a subset Gy of G such that

p(x) = sup | 2o, Fox)g(@)dz; g€ o}, X € L.

(2) p is a law invariant coherent risk measure with the Fatou property.

Let P denote the set of probability measures on (2, F) absolutely continuous with
respect to P. For any Q € P, Y denotes the Radon-Nykodim density dQ/dP. Let F,
n > 1, be a sub-o-algebra of F generated by lj3-n(k_1)2-n¢),k = 1,...,2". Let X be the
set of all bounded random variables X such that X is F,-measurable for some n.

Then we have the following.

Lemma 11 Let Q € P and X € X. Then we have
1 -~ ~
/ Z(z, Fx)Z(z, Fy,)dz = sup{E°[X];X € X, Fg = Fx}
0

= sup{E?[X]; Q € P, Fy, = Fy,}.

We make some preparations before proving Lemma 11.
We easily see the following.



161

Proposition 12 Let zx, k = 1,2,...,n, be a sequence of numbers, and let y, k =
1,2,... ,n, be a sequence of non-negative numbers. If z;, < z; < ... < Ti, Yj, SYja <
o L Yjn, and {31, 4, ... ,in} = {J1,52,--- »,dn} = {1,2,... ,n}, then

n k3
Y T <Yz,
k=1 k=1

Also we have the following (see Williams [3] Chapters 3 and 17).

Proposition 13 (1) For any F € D, the probability distribution function of the law of
Z(z, F) under p(dz) is F.
(2) If F,, € D converges to F weakly, then Z(z, F,,) converges to Z(z, F) for p— a.s.x.

Now let us prove Lemma 11. Let X € X. Then X is F,,-measurable for some n > 1.
Let Y;, = E[Yg|Fm], m > n. Then for any m > n, we have

™ gm
X(w) = Z$m,k1[(k_1)2—m,k2—m)(w), Yon(w) = Zym,k]-[(k-l)Z-m,k/T'"‘)(w)r P-as,
k=1 k=1

where Z,,x = 2™EFP[X,[(k — 1)2™™,k27™)] and yms = 2"EF[Yy, [(k — 1)27™,k27™)),
k=1,2,...,2™ Let o,, and T,,, be a permutation on {1,2,...,2™} such that

Tm,om(1) < Tm,om(2) <...<Z Tm,om(2") and Ym,rm(1) < Ym, 1 (2) <...< Ym,rm(27)-

Then one can easily obtain that

2m 2™
Z (513, Fx)= Zmam(k)l[(k~1)2—m,k2-'")(z)» z (1‘, FYm) = Zyrm(k)ll(k—l)r'",kr’")(x)7
k=1 k=1
and so
27’1
ER[X] = E[XYg] = E[XY,]=2"" me KYmi <277 Zwm om (K)Ym.;7m (k)
k=1 k=1

— / ' 2(z, Fy)Z(z, Fy,)d.

0

Since Y, = E[Yq|Fm] converges to Y P-a.s., we see by Proposition 13 that Z(z, Fy,,) con-
verges to Z(z, FyQ) for 4 -a.e.z. Since {Ym}m__n are uniformly integrable, {Z(z, Fy,.)}%...
are also uniformly integrable by Proposition 13 (1). Therefore letting m — oo, we have

EQ[X] < /O ' Z(s, Fx)2(z, Fy,)ds (1)

for any X € X. Let

27"

m(w) Z Lo oo (i () Lik—1)2~, xa-m)(w).
k=1
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‘Then one can easily see that the probability distributions of X and X, under P are the
same and X, € X. Also, we have

20\

EQ [Xm] = 2-"' Z Zm’am(,’_;l(k))ym,k
k=1

= fl Z(z, Fx)Z(x,Fym)dz.

So letting m — oo, we have

1
sup{E[X]; X € X, Fg = Fx} > / 2(z, Fx)Z(z, Fy, )dz. @)
0
Let o
?m(w) = Z 1[((,¢_1)2_m,,,2-m)(w)Yq(w —k2™™ + r,,.(a;,‘(k))Z'"‘).
k=1

Then one can easily see that the probability distributions of Y and ¥,, under P are the
same. Let Q = Y,,P. Then we have

2ﬂl

- 1
FOX] = 2™ 3 St oy = fo Z(z, Fx)Z(z, Py, )ds.

k=1

So letting m — oo, we have
N _ 1
Sup{EQ[X],Q eP,F}’a =FYQ} 2 / Z(xv FX)Z(xi FYQ)dm' (3)
: 0

We have Lemxﬁa 11 from Equations (1), (2) and (3).
This completes the proof of Lemma 11.

Proposition 14 Let Q € P. Then for any X € L*, we have
1 ~ Ll
|| 2 F)2(a, Fro)is = sup{B9X1 @ € P, Frg = i)
o .

Proof. Let Y be a random variable whose distribution is the same as that of Yg. Let
X, = E[X|F,], n > 1. Then for any m > 1, we have
E(|X — Xa|¥] < BIX = Xa|(Y Am)+ || X — Xa lloo B[V, Y >m]
<mE[X — Xa[| + 2 || X |loo E[Y,Y > m].

So we have v ) )
sup{E°(|X — X.|;Q € P, Fy, = F,} -0, n— oo

By Proposition 13, we have

1 1 .
/ Z(z, Fx.)Z(z, ey )dz — / Z(z, Fx)Z(z, Fyy)dz,  n— oo.
0 0
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Therefore we have our assertion from Lemma 11. This completes the proof. '
Now let us prove Lemma 10.
Proof of Lemma 10. (1) = (2) Let Go be a subset of G, and p : L — R be given by

1
p(X) = sup{ / Z(z,F_x)g(z)dz; g€ Go}, X € L™,
0

Then it is obvious that p is law invariant. So it is sufficient to prove that p is a coherent
risk measure with the Fatou property. Let Qg be the set of @ € P such that Z(-,Yp)
€ Go. Then by Proposition 14, we have

p(X) =sup{E°[-X]); Q€ Q}, X€L™

So by Theorem 2, we see that p is a coherent risk measure with the Fatou property. This
implies our assertion. l
(2) = (1) Let p be a law invariant coherent risk measure with the Fatou property. Let
P, be the set of Q € P such that E?[—X] < p(X) for all X € L. Then by Theorem 2
we have

p(X) =sup{E°[-X]; Q€ Py}, X eL™.

Take a Q € Py and X € L™, and fix them for a while. Let X(w) = Z(w; Fx), w € Q)
= [0,1). Then we have p(X) = p(X). Let U,, n > 1, be random variables defined by

U — Xw+2™"), wel0,1-2"),
" [ X llo, well—271)

Then we see that U, | X, P — a.s. Let V, = EP[X|F,]. Then we see that V, < U,,
P —a.s. and that V,, = X, P — a.s. So by Theorem 2 we have

liminf p(V,) < lim p(Us) = p(X).
On the other hand, by Lemma 11 and Proposition 14 we have

EQ[-X] < / ' 2(s, F_g)Z(z, Fy,)da
0

1
tin [ 2(a, P Z(e, Fro)ds
= lim sup{E?[-V);V € X, F; = Fy,)}
< liminf p(Va) < p(X).

Thus letting Go = {Z(:, Fy,); @ € Po}, we see that

p(X) = sup{_/o1 Z(z,F_x)g(z)dz; g € Go}.

This implies our assertion. This completes the proof of Lemma 10.
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3 Proof of Theorem 4

In this section, we prove Theorem 4. Let g € G, and let § : R — R be given by
g(t) = 0,t < 0, g(t) = g(t),t € [0,1), and G(¢t) = g(1-),t > 1. Then we have for any
XeL®

/o Z(z, F_x)g(z)dz = /(0 '1)( f Z(y; F_x)dy)dg(z)
= [ (01— 2)ig(a).

o,

Letting X = —1, we have

1
1= [ gahia= [ (1-2)g(a).
0 [0,1)
From this observation and Lemma 10, we have the following.

Proposition 15 Let p: L — R. Then the following conditions are equivalent.
(1) There is a set My of probability measures on (0,1] such that for X € L*>

p(X) = sup{ /( |, PelXIm(da); m € M),

(2) p is a law invariant coherent risk measure with the Fatou property.

Now we prove Theorem 4. For each pfobability measure m on [0, 1], let v,(m), n > 1,
be a probability measure on (0, 1] given by

vn(m)(A) = m(AN(0,1]) + m({0})dy/n(A), for a Borel set in [0, 1].
Then we see that for any X € L™

/ pa(Xm(da) = sup [ pu(X)va(m)(de).
(0,1 n J(03]

This and Proposition 15 imply Theorem 4. This completes the proof of Theorem 4.

4 Proof of Theorem 5

We give some computation on p, in this section.
Proposition 16 Let c € (0,1] and X (w) = 1p-c1)(w), w € R =[0,1).
(1) We have : .
pa(—Xc) =1A '& a € (Oa 1]
(2) Let m be a probability measure on [0, 1] and let f(s) = f[o,1] pa(—X,)m(de), s € (0,1]
Then f(c) is differentiable at s = ¢ € (0,1) such that m({c}) =0, and

df 1

()= /( 1 n(da).

c,1] a
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Proof. Noting that Fx, (z) = 1p—-c1)(z), = € [0,1), we easily have the assertion (1).
Then we havefor 0 < s <t <1

f(t)—f(s)___/( 1 n(da) + — A’t]a_sm(w).

t—s £,1) t—s a

This proves the assertion (2). ' 1
Theorem 5 is an easy consequence of Proposition 16 (2).

5 Supporting measures and Proof of Theorem 9

Let M denote the set of all probability measures on [0,1]. Then M is a compact metric
space with the Prohorov metric. Let p be a law invariant coherent risk measure with the
Fatou property. Let

M(p) = {m e M; /[01] pa(X)Mm(da) < p(X) for all X € L™=}.

Since pa(X) is continuous in a € [0,1], M(p) is a closed convex subset of M. Then from
Theorem 4 we have

p(X) = sup{ f pa(X)m(da); m€ M(p)}, X € L™,
[0,1]
For each X € L let
M(X; p) = {m € M(p); /[  pelXOm(da) = o2}

From the compactness of M(p) we see that M(X;p) # 0. It is obvious that M(X;p)
depends only on the distribution Fx of X, and so we denote it by M(FXx; p).
Now we prove Theorem 9. Let p be a law invariant coherent risk measure such that

p(X) > VaRo(X), X €L

Let X, (w) = lp—a—e(w), w € 2 ={0,1), € € (0,1 — @), and let m, € M(X,;p). Then
by Proposition 16 we see that

a+e
S

p(=X.) = /{0 AT ),

On the other hand, we have VaR,(—X,) = 1. So we see that m.([0,« + €]) = 1. Since
M(p) is compact, we see that there is an m € M(p) such that m([0, a]) = 1. Therefore

we see that po(X) < p(X), X € L*™.
This completes the proof of Theorem 9.
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6 Proof of Theorem 7

Proposition 17 Let X,Y be comonotone random variables and a,b € R. Then {X >
a}c{Y>2b} P—as. or{Y 2b}c{X>a} P—a.s.

Proof. Let C = {X > a}N{Y < b} and D = {X < a} N {Y > b}. Then for (w,w’)
eCxD,
(X(w) = X (")) (¥ (w) - Y () <O.

This implies that P(C) = 0 or P(D) = 0. So we have our assertion. 1
As an immediate consequence, we have the following.

Corollary 18 Let X,Y be comonotone random variables. Then we have
PX+Y>a+b)>2P(X2a)AP(Y 2b), a,beR.
Proposition 19 Let X,Y € L™ be comonotone and a,b € R. Then
Z(z,Fx4y) = Z(z,Fx) + Z(z, Fy), z €[0,1)

Proof. By the definition of Z(z, Fx) we have Fx(Z(z, Fx)—) < z. So we have P(X >
Z(z,Fx)) > 1—z. Similarly we have P(Y > Z(z, Fy)) > 1—z. Therefore by Corollary 18
we have

P(X+YZZ($,Fx)+Z($,Fy))21—:1:, :L'E[O,l).

Note that Let Z(z, Fx4+y) = sup{z € R; Fx;y(z) < z}, z € (0,1). So we see that
Z(z,Fx) + Z(z, Fy) < Z(z, Fx4y), € (0,1). On the other hand, we have

o 1)(Z(ﬂv, Fx) + Z(z, Fy))u(dz) = E[X] + E[Y] = /[0 ) Z(z, Fx+y X)p(dz).

So we see that _
Z(Q,Fx)"‘Z(Q,Fy)=Z(.‘B,Fx+y), 4 —aezx.

Since both sides are right continuous, we have our assertion. 1
Proposition 20 p,, a € [0,1], are comonotone.

Proof. For each o € (0,1], we see that p, is comonotone from the definition of p, and
Proposition 19. Letting a | 0, we see that pg is also comonotone. 1

Proposition 21 Let p be a comonotone law invariant coherent risk measure with the
Fatou property. Then (Yoo M(Fi;p) #0 for anyn > 1 and Fy, F,... ,F, €D.

Proof. Let Xi(w) = Z(w, F}), w € @ =[0,1), i =1,... ,n. Then 35, X; and Xyy, are
comonotone for each k =1,... ,n— 1. Let X =) ", X;. Then we have

p(X) =3 p(X0).

i=1
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Let m € M(X;p). Then we have

) /[ peKim(de) = p(X) = 3 (X0

i=1
Also, we have
f pa(X)m(da) < p(X:),  i=1,...,n.
0]

So we have
/ pa(Xiym(da) = p(X:),  i=1,...,n.
0,]

This implies m € .A;t(X,-;p), i=1,...,n. So we have our assertion. 1
Now let us prove Theorem 7. Suppose that m € M and p : L — R is given by

p(X) = /m (peXmld), X1

Then by Theorem 4 and Proposition 20, we see that p is comonotone and law invariant.
On the other hand, suppose that p is a comonotone law invariant coherent risk measure

with the Fatou property. Then by Proposition 21 and the fact that M is compact, we

see that (Y{M(F; p); F € D} # . Let m be an element of this set. Then we see that

p(X) = /[ [pelmide), X eI

This completes the proof of Theorem 7.

7 A Remark
For each a € (0,1] let ¢, : [0,1] — [0, 1] be given by
Palt) = é A1, t € [0,1].

Then we have the following.

Proposition 22 For any a € (0,1] and X € L™ satisfying X <0, P —a.s., we have the
following.

o) = [ ulP-X > )iy

Proof. Let o € (0,1) and X € L™ such that X < 0 and X has a continuous strictly
increasing distribution on (ess.inf X, ess.sup X). Then we see that Z(z, F_x) = F_x(z),
z € (0,1). Let g, € (0,00) be such that F_x(gs) =1 — . Then we have

palX) = =2 [ yd(1 - Fox(w)

do

- —-é[y(l — Fx@)= + 21!— c’0(1 — F_x(y))dy

qa
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= [ oulP-X > ).

Since any nonpositive random variables is approximated by such random variables in
probability, we have our assertion for a € (0, 1). Letting a 1 1, we also have our assertion
for a = 1. This completes the proof. 1

Let m € M, and let ¢(t;m) = [, Pa(t)m(da), ¢ € [0,1]. Then we see that ¢(-,m) :
[0,1] — [0,1] is a continuous increasing concave function with ©(0) = 0, and (1) =
1 — m({0}). We also see that

%w(t; m) = [ %m(da),

for any continuous point ¢ € (0, 1) of the measure m. So (-, m) determines m.
For any nonpositive X € L™ we have

/o pa(X)m(da) = m({0})ess.sup(~X) + /o P(P(=X > y);m)dy.
These observations imply the following. |

Theorem 23 Let p: L™ — R. Then the following are egquivalent.
(1)p is a law invariant and comonotone coherent risk measure with the Fatou property.
(2) There is a continuous nondecreasing concave function ¢ : [0,1] — [0,1] such that

LX) = (1 - p(W)ess.oup(=X) + [ o(P(~X > ¥))ay

for any nonpositive X € L.
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